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The genus Salmonella contains the most common foodborne pathogens

frequently isolated from food-producing animals and is responsible for zoonotic

infections in humans and animals. Salmonella infection in humans and animals can

cause intestinal damage, resulting in intestinal inflammation and disruption of

intestinal homeostasis more severe cases can lead to bacteremia. Pyroptosis, a

proinflammatory form of programmed cell death, is involved in many disease

processes. Inflammasomes, pyroptosis, along with their respective signaling

cascades, are instrumental in the preservation of intestinal homeostasis. In recent

years, with the in-depth study of pyroptosis, our comprehension of the virulence

factors and effector proteins in Salmonella has reached an extensive level, a deficit

persists in our knowledge regarding the intrinsic pathogenic mechanisms about

pyroptosis, necessitating a continued pursuit of understanding and investigation. In

this review, we discuss the occurrence of pyroptosis induced by Salmonella

effectors to provide new ideas for elucidating the regulatory mechanisms

through which Salmonella virulence factors and effector proteins trigger

pyroptosis could pave the way for novel concepts and strategies in the clinical

prevention of Salmonella infections and the treatment of associated diseases.
KEYWORDS
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1 Introduction

It is well known that when pathogenic microorganisms invade humans and animals,

they trigger a host immune response that defends against infection, but host-adapted

pathogens employ numerous virulence strategies to overcome these host defense

mechanisms. To some extent, the strategies of host-adapted pathogens promote the

generation of new host defense mechanisms. At the same time, host defense

mechanisms impose evolutionary pressure on the virulence strategies of host-adapted

pathogens. Therefore, the interaction between the host and pathogen is a dynamic process
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that shapes the evolution of the host’s immune response (1). Among

the mechanisms that humans and animals utilize to control

infections include regulated cell death (RCD) pathways such as

pyroptosis, apoptosis, and necroptosis. Over the course of

evolution, these pathways have become intricate and complex,

coevolving with pathogens that infect hosts. In addition, microbes

have evolved strategies to interfere with the pathways of regulated

cell death to avoid eradication by the host (2).

Salmonella represents a large genus of global public health

significance and is the leading cause of foodborne illnesses

responsible for thousands of deaths worldwide (3). Salmonella has

developed multiple strategies to invade and establish a systemic

infection in the host (4). For example, these pathogens employ

flagella to swim towards the cell and utilize the type III secretion

system (T3SS), which allows the translocation of virulence factors

or effector proteins into the host for optimal bacterial replication

and dissemination (5). Furthermore, the Salmonella flagella and

T3SS components are recognized by the canonical inflammasome,

while lipopolysaccharide (LPS) activates the noncanonical

inflammasome formed by caspase-11 in mice (caspase-4 and-5 in

humans) (6). Indeed, the inflammatory response is the most

prominent outcome of stimulation of innate immune system,

which helps to control infection and initiate the development of

adaptive immunity (7). As a result, Salmonella utilizes a different set

of effectors to restrict the inflammatory response to facilitate its

survival in the host.

During infection, the death of infected cells and the induction of

the immune response are critical for maintaining organismal

homeostasis. Programmed cell death (PCD) is a fundamental

biological process that plays an essential role in the mammalian

host immune defense against invading pathogens (8). Pyroptosis is a

novel form of PCD induced by the gasdermin (GSDM) protein family

and is accompanied by the secretion of inflammatory cytokines such

as IL-1b and IL-18 (9). Pyroptosis can be activated by a variety of

extracellular signals, such as extracellular nucleotides, LPS, bacterial

DNA and flagellin, as well as intracellular signals, such as oxidative

stress, K+ efflux, and mitochondrial DNA (10). Subsequently, the

GSDM protein family members are triggered to induce pyroptosis by

regulating various complex signaling pathways (8, 10) Pyroptosis is

specifically induced to eliminate pathogen niches and engage

inflammatory responses to potentiate protective host immunity;

therefore, it plays an important role in the innate immune response

of the host (11). However, growing evidence suggests that bacterial

pathogens have evolved to regulate host pyroptosis to evade immune

clearance and establish progressive infection.

Recently, based on the interplays between the host and microbes,

especially in the case of Salmonella infections, increasing evidence has

suggested that pyroptosis plays an important role in Salmonella

infection. This evidence provides increasing insights into the

pathogen-driven regulation of pyroptosis and further advances the

understanding of the intricate regulatory mechanisms underlying

pyroptosis at the host-pathogen interface (8). Here, we describe the

latest progress in the study of the mechanisms by which Salmonella
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virulence factors and effector proteins interfere with pyroptosis,

which may advance our knowledge of the immune functions and

regulatory mechanisms of pyroptosis in the context of bacterial

infections. A more in-depth understanding of the regulatory

mechanisms underlying pyroptosis-mediated immunity at the host-

Salmonella interface is helpful for a better understanding of the

pathogenic mechanism of Salmonella effectors and the complex

relationship between Salmonella and the host to effectively pave

new paths for the rational design of novel vaccines and prevention

of Salmonella infection in the clinic.
2 Pyroptosis

2.1 The discovery and definition
of pyroptosis

Regulated cell death (RCD), also known as programmed cell

death (PCD), is essential for defending against intracellular infections

by eliminating the replication niche of pathogens. These pathways

include apoptosis, autophagy, necroptosis and pyroptosis, among

which pyroptosis is a type of cell death characterized by cell lysis (1).

The evolution of human comprehension regarding pyroptosis has

been a lengthy journey. Currently, researchers are actively engaged in

investigations aimed at acquiring a more comprehensive and

profound insight into pyroptosis and the various patterns of

cell death.

In 1992, Zychlinsky et al. found that macrophages displayed

some of the characteristics of apoptosis such as dependence on

caspase when studying Shigella flexneri-infected mechanism of

action on macrophages (12). Brennan et al. reported that

Salmonella can induce cell death that is caspase-1-dependent but

not accompanied by caspase-3 activation, which is slightly different

from the characteristics of apoptosis (13). Subsequently, Boise et al.

defined this caspase-1-dependent cell death as “pyroptosis”. “Pyro”

means “fire”, indicating that pyroptosis can trigger an inflammatory

response, and “ptosis” means “falling”, indicating that pyroptosis is

a regulated by cell death (14).

In 2014, Shao, F et al. discovered that LPS can activate the

nonclassical pathway of pyroptosis mediated by caspase-4/5/11 in

the cytoplasm and further discovered that gasdermin D (GSDMD)

of the gasdermin protein family is a key molecule involved in

mediating pyroptosis (15, 16). These discoveries have led to a new

understanding of pyroptosis. In 2017, researchers discovered that

gasdermin E (GSDME) can be specifically cleaved by caspase-3,

resulting in oligomerization of the N-terminal fragment of GSDME,

thereby inducing pyroptosis (17, 18). Initially, caspase-1 was

regarded as a catalyst for cell death. Nevertheless, it has been

subsequentially validated that this mechanism is contingent upon

the regulation of cell death processes mediated by the GSDM

protein family. As research in this domain has advanced, our

comprehension of pyroptosis has been significantly enhanced.
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2.2 Characteristics of pyroptosis

During pyroptosis, the N-terminus of gasdermin family

proteins oligomerizes on the cell membrane to form 10-20 nm

pores, and then pyroptotic bodies are formed. The cells swell

gradually until the plasma membrane ruptures, the cell contents

are released, the nucleus condenses, the chromatin DNA breaks, a

large number of inflammatory factors are released, and

inflammatory reactions occur, ultimately leading to cell death (9).

Regarding the modes of cell death, pyroptosis is usually

associated with apoptosis. However, during apoptosis, under the

action of caspases, intracellular apoptotic bodies are formed, the

nucleus shrinks and becomes fragmented, and DNA is degraded

(19). Thus, pyroptosis is different from apoptosis, as the former but

not the latter can trigger an inflammatory response.
2.3 The activation mechanism
of pyroptosis

2.3.1 Inflammasomes: integral components
in pyroptosis

In 2002, the Tschopp research team in Switzerland first proposed

the concept of the inflammasome (20). The inflammasome is a type

of multiprotein complex that is composed mainly of pattern

recognition receptors (PRRs), the adaptor protein apoptosis-

associated speck-like protein containing a caspase recruitment

domain (ASC), and caspases. NLR/ALR family members can

contain either a nucleotide-binding domain and leucine-rich-

repeat-containing (NLR) protein or an AIM2-like receptor (ALR)

protein with an N-terminal PYD. These entities collectively function

as PRRs. The PRRs, ASC and caspase-1 form ternary inflammasome

complexes through the pyrin domain (PYD) and caspase recruitment

domain (CARD) interactions of ASC (21).

Upon activation by pathogen-associated molecular patterns

(PAMPs) or damage-associated molecular patterns (DAMPs),

both AIM2 and NLRP3 recruit the PYD-containing bipartite

adaptor ASC through PYD-PYD interactions. Moreover, ASC can

bind to pro-caspase-1 through CARD-CARD interactions, and the

three components assemble into complexes to form inflammasomes

(22, 23). Currently, the most extensively investigated

inflammasomes are NLRP3, NLRC4, and AIM2. As for other

inflammasomes, including NLRP1, NLRP6, and so forth, further

exploration is required to enhance our comprehension of their

functions and mechanisms. Inflammasome assembly can promote

the activation of caspase-1, the processing of GSDMD, and the

release of the inflammatory cytokines IL-1b and IL-18 precursors,

mediating pyroptosis (23). Therefore, the inflammasome plays an

important role in pyroptosis and even the innate immune response

of the host.

2.3.2 Pyroptosis signaling pathway mediated by
the canonical inflammasome

When pathogens infect the host, PRRs located in the cytoplasm

are stimulated by danger signaling molecules and recognize PAMPs

or DAMPs, including extracellular ATP, pore-forming toxins, RNA
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viruses, and particulate matter (24). Receptor recognition of

pathogens activates PRRs, which bind to ASC. As mentioned

previously, the PYD of the adaptor protein ASC connects to

upstream PRRs, while the CARD connects to downstream pro-

caspase-1 and assembles into inflammasomes such as the NLRP3

inflammasome and the NLRC4 inflammasome (25). The intricate

complexes they assemble are capable of activating caspase-1 (26–28).

When the inflammasome is successfully assembled, caspase-1 located

downstream of the inflammasome is also activated, and GSDMD is

cleaved into N-terminal and C-terminal fragments (29, 30). The N-

terminal fragment of GSDMD oligomerizes and adheres to the cell

membrane, binds to membrane lipids to punch holes in the

membrane, and finally leads to membrane rupture and the release

of cytoplasmic contents (30). Moreover, caspase-1, which is activated,

can promote the maturation and release of IL-1b and IL-18, inducing

pyroptosis (26, 30). Therefore, we refer to this pathway, which relies

on the activation of caspase-1 by the inflammasome to induce

pyroptosis, as the classical pyroptosis pathway (10).

2.3.3 Pyroptosis signaling pathway mediated by
the noncanonical inflammasome

Unlike the pathway of caspase-1-dependent pyroptosis, the

noncanonical inflammasome pathway of pyroptosis relies on the

activation of caspase-4/5/11 (10). The outer membrane vesicles

(OMVs) of gram- negative bacteria containing LPS enter host cells

through fusion or endocytosis with the cell membrane (31). When

host cells are stimulated by LPS, caspase-11 in mice (represented in

humans by its direct congeners caspase-4 or caspase-5) can bind

directly to LPS (32, 33). The CARD domain of caspase-11 interacts

with LPS to form a complex, also known as the noncanonical

inflammasome (34, 35). Subsequently, caspase-11 is activated and

further cleaves the GSDMD protein. The cell membrane is

perforated by oligomerization of the N-terminal fragment of

GSDMD. The activation of the noncanonical inflammasome

caspase-11 can also induce the proteolytic activation of caspase-1,

and activated caspase-1 promotes the maturation and release of the

cytokines IL-1b and IL-18, resulting in an inflammatory response

and inducing pyroptosis (29, 33, 36).

Following the specific binding of LPS to caspase-11, caspase-11

can break the pannexin-1 channel followed up by ATP release, and

then activates the purinergic P2X7 receptor. Cleaving of Pannexin-1

channel and activation of P2X7 can induce the disruption of ion

channels in the cell membrane, cytotoxicity and pyroptosis (37).

This discovery gives us a new understanding of the signaling events

that mediate pyroptosis downstream of caspase-11. The non-

classical pathway of pyroptosis characterized by the direct

activation of caspase-4/5/11, thereby bypassing the requirement

for inflammasome activation.
3 A concise overview of Salmonella

The Salmonella genus represents the most common foodborne

pathogens and is a major group of zoonotic foodborne pathogens that

cause morbidity, mortality, and disease burden in all regions of the

world (38, 39). Salmonella is a facultative anaerobic, gram-negative,
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rod-shaped bacterium belonging to the Enterobacteriaceae family.

The Salmonella genus is comprised of two species, namely,

Salmonella enterica and Salmonella bongori (40). Salmonella

bacteria are classified according to their surface structures such as

LPS, flagella, and capsule polysaccharides (41). The pathogenesis of

Salmonella is governed by various pathogenicity islands, secretion

systems, virulence genes and effector proteins, which is why these

pathogens can cause disease in humans and animals (42). Salmonella

pathogenicity islands (SPIs) are cluster of genes positioned in a large

region of chromosomal DNA that can encode virulence effectors.

These SPIs are acquired through horizontal gene transfer (HGT)

during bacterial evolution and strongly contribute to the survival,

virulence, and dissemination of pathogens.

To date, more than 20 SPIs have been identified, with SPI-1 and

SPI-2 having been the subject of extensive research. SPI-1 and SPI-2

are capable of encoding T3SS pertinent to the invasive mechanisms

of Salmonella, given that these two pathogenicity islands are replete

with an array of virulence factors and effector proteins that are

integral to bacterial pathogenicity. For instance, genes that encode

T3SS translocation proteins, including sipB, sipC, sseB, and sseC,

genes that encode T3SS effector proteins such as sopD, sopE, spiC,

and sifA, as well as genes that encode molecular chaperones like

sicP, invB, sscB, and ssaE, are all integral to the functionality of the

secretion system (42). Pathogenic Salmonella employs a

sophisticated mechanism involving the T3SS to deliver a suite of

specialized effector proteins. These effector proteins coordinate to

manipulate numerous signaling pathways within host cells,

facilitating the internalization of the pathogen and enabling it to

infiltrate non-phagocytic intestinal epithelial cells. This process not

only initiates inflammatory responses but also plays a pivotal role in

the pathogenesis of Salmonella infections.

The remaining SPIs including SPI-3 which is responsible for the

uptake of Mg2+ and encodes MisL adhesins, SPI-4 and SPI-9 which

encode the type I secretion systems (T1SS), as well as SPI-6, SPI-7,

and SPI-10 which encode pilin proteins, play a critical role in

bacterial invasion, colonization, circumvention of the host immune

system’s detection mechanisms, and the persistence within host

organisms (43). Currently, an extensive body of literature exists

concerning the SPIs and secretion systems of Salmonella, and as

such, we will refrain from delving into these topics in depth within

the context of this discussion.
4 Interaction between virulence
factors or effector proteins by
Salmonella and pyroptosis

In this study, we systematically organized and meticulously

analyzed the interactions between the virulence factors and effector

proteins of Salmonella, as well as their implications in pyroptosis

(Table 1). This will facilitate an in-depth comprehension of the

characteristics and pathogenic mechanisms of Salmonella, offer

fresh perspectives for the identification of new antibacterial

targets and vaccine development, thereby laying the groundwork

for future therapeutic advancements.
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4.1 Salmonella pathogenicity island-related
factors and pyroptosis

4.1.1 Salmonella pathogenicity island 1-related
factors and pyroptosis

Salmonella pathogenicity island 1 (SPI-1) is a 40 kb gene cluster

that includes 39 genes encoding the T3SS and its molecular

chaperones and effector proteins, as well as a number of

transcriptional regulators that control virulence gene expression

(43). To date, many effector proteins of SPI-1 have been identified

in Salmonella, and these effector proteins play various roles in

Salmonella infection, including participating in host cytoskeleton

rearrangement, immune cell recruitment, cell metabolism, and the

regulation of the host inflammatory response (92). For example,

effectors such as InvJ, PrgH, PrgI, and SpaO assemble into the

needle-like complex of the T3SS, and SipB, SipC, and SipD

transport effectors through this needle-like device, whereas SopB,

SopD, and SopE2 induce changes in the actin cytoskeleton, leading

to invasion of Salmonella (42). Therefore, SPI-1 plays an important

role in the interaction between Salmonella and host cells (92).

AvrA, which is from SPI-1, is a multifunctional protein with

acetyltransferase and deubiquitinase activity that inhibits the

activation of eukaryotic signaling pathways and host

inflammatory responses (44). Research has shown that AvrA

effectively blocks the c-Jun N-terminal kinase (JNK) signaling

pathway by inhibiting the expression of mitogen-activated protein

kinase signaling pathway (MAPK) MKK4/7, thereby inhibiting

JNK-mediated apoptosis in chicken and murine models (44, 45).

Lin, Z et al. reported that AvrA can inhibit the release of

inflammatory factors such as IL-6, IL-18 and IL-1b in mouse

intestinal epithelial cells (IECs) through the JNK signaling

pathway, thereby inhibiting Caco-2 cell apoptosis (Figure 1A)

(46). Wang, X et al. reported that the ALK/JNK signaling

pathway can activate the NLRP3 inflammasome, inducing

pyroptosis during Streptococcus pneumoniae infection (47).

Zhang, Z et al. reported that GSDME triggered doxorubicin-

induced pyroptosis in the caspase-3-dependent manner through

the JNK signaling pathway (48). Another study showed that the

xanthine oxidase-ROS can activate the MAP3K5/JNK2 substrate

licensing complex as a novel regulator of the GSDMDmobilization,

which precedes pyroptosis (49). Thus, it appears that AvrA can

affect pyroptosis through the JNK signaling pathway. However, this

conjecture still requires sufficient evidence to prove.

There are five Salmonella invasion protein (sip) genes: sipE, sipB,

sipC, sipD, and sipA. Early studies revealed that the SipB protein of

Salmonella is similar to the IpaB protein of Shigella, which can

interact with caspase-1, activate caspase-1, and promote the

maturation and release of IL-1b, inducing apoptosis in RAW264.7

macrophages (93). Veronika et al. reported that during the induction

of apoptosis by SipB, the activation of caspase-1 during the rapid

Salmonella-induced apoptosis partially relies on caspase-2 (50). In

addition, the caspase-1-independent pathway involves the activation

of other caspases and the release of cytochrome from mitochondria,

none of which occurs during caspase-1-dependent apoptosis. This

means that the protein can activate the apoptosis mechanism by

regulating components other than caspase-1 (50). Further research
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has shown that the SipB protein induces not only caspase-1-

dependent cell death but also apoptosis by activating caspase-8 and

caspase-3 (50, 51). Other studies have shown that the SipB protein

can activate caspase-4, thereby cleaving GSDMD into the N-terminal

fragment that oligomerizes, inducing pyroptosis in human intestinal

epithelial cells and promoting the maturation and release of IL-18

and IL-1b, which lead to inflammatory reactions (Figure 1B) (52).

GSDME can be specifically cleaved by caspase-3, which induces

pyroptosis, and caspase-1 can interact with caspase-3. However, it

is still unclear whether SipB can activate GSDME and cause host

pyroptosis through caspase-1 or caspase-3, and this possibility needs

to be further explored and verified.

The transcription activator HilA of the OmpR/ToxR family is

the central regulator of positive feedback regulation of the SPI-1-

encoded T3SS (T3SS-1), which can synergistically regulate SPI-1

genes in response to environmental stress (63). Studies have

shown that overexpression of HilA in Salmonella Paratyphi A

(SPtA) can upregulate the expression of the SPI-1 gene and

enhance the invasiveness of Salmonella Paratyphi A to host

cells, leading to disruption of epithelial cell integrity and

promoting the secretion of the cytokine IL-8 (64). It has been

shown that overexpression of HilA in Salmonella Paratyphi A

could promote the invasion of T3SS-1 in THP-1 macrophages and

the occurrence of pyroptosis (65).

SopB, also known as SigD, is the main pathogenic protein of

Salmonella SPI-1 and has inositol phosphatase activity (53). SopB

plays an important role in the process of Salmonella infection,

including the formation of cell membrane folds, the inhibition of

fusion of Salmonella-containing vesicles (SCVs) with lysosomes,

and influencing various cell pathways during the infection process

(54). Inflammasome activation plays a crucial role in inducing

pyroptosis. SopB promotes the phosphorylation of the Akt-YAP

pathway in B cells, inhibits the assembly of inflammasomes, and

promotes the survival of Salmonella in B cells (55, 56). In addition,

SopB-mediated phosphorylation of Akt also inhibits the activation

of caspase-1 and GSDMD in Caco-2 cells (Figure 1B), thereby

inhibiting the pyroptosis, which was conducive to the survival of

Salmonella in intestinal epithelial cells (57).

The effector protein SopE is a guanine nucleotide exchange

factor that can mediate changes in the membrane skeleton structure

of host cells, which helps Salmonella invade macrophages (54).

Early studies suggested that SopE can activate the Rho GTP

enzymes Rac-1 and Cdc-42 in host cells, thereby mediating the

maturation of caspase-1 and the maturation and release of IL-1b
and IL-18 in RAW264.7 cells and preventing the spread of

Salmonella in the host (Figure 1A) (58, 59).

PANoptosis is an inflammatory programmed cell death

regulated by the PANoptosome complex and is characterized by

essential features such as pyroptosis, apoptosis, and necroptosis.

However, PANopotosis cannot be characterized solely by any of the

cell death modes of pyroptosis, apoptosis or necroptosis (60).

Recent research has shown that the SopF effector of Salmonella

SPI-1 can trigger Caco-2 cells to undergo PANoptosis. SopF

binding to phosphoinositide (PIP) activates the phosphoinositide

dependent protein kinase-1 (PDK1) - ribosomal S6 kinase (RSK)

signaling pathway to inhibit caspase-8 activation; the activation of
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caspase-3 and the cleavage of GSDMD and GSDME are

downregulated, and the pyroptosis and apoptosis of IECs are

inhibited (Figure 1B). At the same time, SopF promote the

phosphorylation of mixed lineage kinase domain-like protein

(MLKL), resulting in programmed necrosis of IECs (61).
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The PrgH effector protein encoded by Salmonella prgH is an

important component of the T3SS-1. Some studies have shown that

prgH is involved in the activation of the NLRP3 inflammasome,

promoting the expression of NLRP3, caspase-1 and IL-1b in

chickens, inducing an inflammatory response, and contributing to
FIGURE 1

(A). Salmonella virulence island 1-related proteins and macrophage pyroptosis. AvrA regulates RAW264.7 macrophage apoptosis through the JNK
signaling pathway. PrgH can activates the NLRP3 inflammasome and caspase-1 in chickens. SopE activates caspase-1 in RAW264.7 cells through
Rho-GTPase. (B). Salmonella virulence island 1 related proteins induce pyroptosis in intestinal epithelial cells (IECs). SopB inhibits Caco-2 cells
pyroptosis by inhibiting the AKT signaling pathway. SipB can activate caspase-4 inducing IECs pyroptosis. SopF induces pyroptosis, apoptosis and
necroptosis (PANotosis) in Caco-2 cells by inhibiting PDK1-RSK signaling pathway.
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the invasion and colonization of Salmonella Pullorum in the host (62).

These findings provide a reference for determining whether prgH can

induce pyroptosis by promoting the expression of NLRP3, caspase-1

and IL-1b (Figure 1A). However, further evidence is needed to fully

demonstrate whether PrgH can induce pyroptosis through the

canonical inflammasome-mediated pyroptosis signaling pathway.

QSec is a membrane-bound histidine sensor kinase found in

gram-negative bacteria that can participate in the regulation of

bacterial virulence (66). Studies have shown that QSec blockers can

inhibit the expression of QSec-related virulence genes flhD, flhC,

sifA and sopB in Salmonella Typhimurium, effectively reduce the

virulence of Salmonella Typhimurium, and significantly inhibit the

excessive pyroptosis of peritoneal macrophages caused by

Salmonella Typhimurium infection, which is conducive to the

clearance of bacteria in macrophages (94).

4.1.2 Salmonella pathogenicity island 2-related
factors and pyroptosis

Salmonella pathogenicity island 2 (SPI-2) is a 39 kb gene cluster

that includes the ssa operon, which encodes T3SS, the sse gene suite,

coding for effector proteins, the ssr regulatory network, which governs

the T3SS expression, and the ssc locus, considered to function as a

molecular chaperone (95). The T3SS encoded by SPI-2 is also involved

in the pathogenesis of Salmonella. Salmonella transports various

effector proteins to the host cell membrane system via the T3SS

encoded by SPI-2 and replicates and multiplies within the

Salmonella-containing vacuole (SCV) (96). Salmonella T3SS-2 plays

an important role in gastrointestinal diseases and systemic infections,

and is also necessary for Salmonella survival in different host cells (97).
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Among many effectors, Salmonella secreted factor L (SseL) is a

specific protein secreted by the SPI-2-encoded T3SS that can

translocate Salmonella and is also a putative virulence factor

possessing deubiquitinase activity. The expression of SseL in

Salmonella Typhimurium suppresses NF-kB activation downstream

of IkBa kinases and impairs IkBa ubiquitination and degradation in

RAW 264.7 cells and bone marrow-derived macrophages (BMDMs),

but not IkBa phosphorylation (Figure 2) (67). Although the NF-kB
transcription factor can promote inflammasome assembly and

activation, whether SseL can induce pyroptosis by influencing

inflammasome activation through the NF-kB signaling pathway

remains to be further investigated (98, 99).

SpiC is a virulence factor encoded within SPI-2. Research has

shown that SpiC in Salmonella Typhimurium can activate the

mitogen-activated protein kinase (MAPK) signaling pathway,

restraining the expression of suppressor of cytokine signaling

(SOCS-3) in macrophages. The effector SpiC promotes the

expression of fliC at the transcriptional level (68). FliC is an

effector of Salmonella flagellar that can activate the NAIP/

NLRC4 inflammasome and promote pyroptosis in human and

murine macrophages. SpiC can participate in the expression of

fliC, but whether SpiC affects the occurrence of pyroptosis by

affecting the expression of fliC is currently unclear and needs to

be verified.

In addition, SifA, SpvB, SseF, SseJ, and SteA are all T3SS effector

proteins of SPI-2. Studies have shown that these five effectors can

synergistically induce cytotoxicity and T3SS-1-independent

inflammatory response, but the specific mechanism underlying

these effects still needs further research (100).
FIGURE 2

Salmonella virulence island 2-related facrors and pyroptosis. SseL inhibits the expression of the NLRP3 inflammasome and caspase-1 in RAW 264.7
cells and BMDMs by inhibiting the NF- kB signaling pathway.
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4.2 Salmonella plasmid virulence factor
and pyroptosis

The Salmonella plasmid virulence (spv) genes, including spvA,

spvB, spvC, spvD, and spvR, are ubiquitously distributed across a diverse

array of Salmonella serotypes. These spv genes are integral to the

organism’s adhesive properties, invasive capabilities, and its proficiency

in surviving within host (101, 102). Studies have shown that SpvA can

coordinate the production of virulent proteins in a timely manner and

negatively regulate the expression of spvA, spvB, spvC, and spvD

without affecting the expression of spvR (103). SpvB can disrupt the

integrity of the intestinal epithelial barrier and promote the spread of

Salmonella throughout the host (104). At present, the interactions

between Salmonella plasmid virulence genes and pyroptosis that have

been studied most frequently involve spvB and spvC.

The effector protein SpvB has ADP-ribosyltransferase activity,

which can reduce the repair ability of DNA and the content of

reactive oxygen species (ROS), and ROS can affect inflammasome

assembly (69). It has been reported that SpvB can induce necroptosis of

IECs by destroying the integrity of the intestinal epithelial cell barrier

(70, 104). Recently, We have shown that SpvB can delay pyroptosis in

RAW264.7 macrophages (Figure 3). The delayed pyroptosis of

macrophages induced by the Salmonella plasmid virulence gene spvB

was associated with the influence of the NLRP3 and NLRC4

inflammasomes, and spvB inhibited the production of ROS and the

activation of NLRP3 at the early stage of infection, and subsequently

inhibited the activation of NLRC4 (71, 72).

SpvC has phosphothreonine lyase activity, which can inhibit the

intestinal inflammatory response and promote systemic transmission
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of Salmonella through the MAPK signaling pathway (73). It has been

shown that the plasmid virulence spvC gene of Salmonella can inhibit

the expression of the macrophage inflammasome components

NLRP3 and NLRC4 and the occurrence of pyroptosis in

RAW264.7 macrophages through the MAPK signaling pathway

(Figure 3). Moreover, spvC can decrease the levels of neutrophil C-

X-Cmotif chemokine ligand 2 (CXCL2) and C-X-Cmotif chemokine

ligand 3 (CXCL3) released by macrophages, as well as the level of

neutrophil C-X-C motif chemokine receptor 2 (CXCR2), and inhibit

the release of IL-1b by neutrophils, thereby inhibiting the recruitment

of neutrophils and their synergistic antibacterial effect with

macrophages (74). In addition, it has also been shown that spvC

participates in a newmechanism of Salmonella pathogenesis and host

inflammatory response by inhibiting autophagy and the NLRP3 and

NLRC4 inflammasomes (75). SpvC can regulate both autophagy and

pyroptosis through the activity of its phosphothreonine lyase,

however whether autophagy and pyroptosis can be regulated at the

same time and whether the mechanism of their interaction is through

autophagy to induce pyroptosis or through pyroptosis to induce

autophagy needs further investigation.
4.3 Structural virulence factors in
Salmonella and pyroptosis

Salmonella has a complex antigen structure, and serotyping is

performed based on the different antigen components on the

surface of the bacteria. The antigen components of Salmonella

include four types: bacterial antigen (O antigen), flagella antigen
FIGURE 3

Salmonella plasmid virulence factors and pyroptosis. SpvB induces pyroptosis in RAW264.7 macrophages by ROS and the NLRP3 inflammasome.
SpvC induces pyroptosis in RAW264.7 macrophages by regulating the MAPK signaling pathway.
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(H antigen), surface envelope antigen (Vi antigen), and pili antigen

(105). Among them, the O antigen and H antigen are the most

important antigens and are closely related to the movement,

invasion, colonization, biofilm formation and immune escape of

Salmonella in the host (106).

fepE is a pseudogene in Salmonella Typhi, but it can be highly

expressed and encode the very long O antigen chain of LPS in

Salmonella Paratyphi A (76). Researchers have shown that the very

long O antigen chain encoded by fepE can interfere with

inflammasome and caspase-4 activation, inhibit pyroptosis in

THP-1 cells (Figure 4), and promote immune escape and

systemic spread of Salmonella Paratyphi A in the host (65).

The flagellin of Salmonella is encoded mainly by fliC and fljB

(77). The Nod-like receptor ICE protease-activating factor (IPAF)

in macrophages recognizes the flagellin of Salmonella enterica

serovar Typhimurium and causes the activation of caspase-1 and

the secretion of IL-1b (78). In a study of the relationship between

flagellin and pyroptosis, it was shown that fliC and fljB were

recognized and assembled by NAIP5 and NAIP6 to form the

NAIP/NLRC4 inflammasome. As a result, caspase-1 was

activated, and the amino-terminal cleavage fragment of GSDMD

induced pyroptosis in mouse macrophages such as RAW264.7 cells

and in BMDMs (25, 79). At the same time, the authors also found

that a mutation in the flaA gene, which encodes a flagellar protein,

can lead to the activation of caspase-1 and the occurrence of

pyroptosis in macrophages (80). Other studies have shown that

the flagellar proteins FliC and FljB activate the NLRP3
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inflammasome in THP-1 cells by affecting the production of ROS

and the release of cathepsin, thereby activating the downstream

caspase family and even inducing pyroptosis (Figure 4) (81).

YdiV, a negative regulator of the flagellar main transcriptional

activator complex FlhD4C2, downregulates the expression of the

flagellar gene fliC through the CadC-YdiV-FlhDC pathway (82, 83).

fliC can induce pyroptosis in human and murine macrophages, and

YdiV inhibits the expression of fliC, preventing macrophage

pyroptosis and releasing inflammatory factors (Figure 4), thereby

facilitating the colonization and immune escape of Salmonella in

host cells (84, 85).
4.4 Other virulence factors of Salmonella
and pyroptosis

SiiD, the T1SS effector protein encoded by Salmonella SPI-4,

further blocks the formation of ASC by specifically inhibiting the

production of mitochondrial ROS in BMDMs, thereby inhibiting

the activation of the NLRP3 inflammasome, which evades the

bacterial clearance mechanism mediated by NLRP3/caspase-1 and

promotes Salmonella replication and survival, resulting in

persistent infection (Figure 5) (86, 87). Although we know that

SiiD can affect the survival of Salmonella in BMDMs via NLRP3/

caspase-1, we are not sure whether SiiD induces pyroptosis in

BMDMs through NLRP3/caspase-1, and thus, this hypothesis

needs to be verified.
FIGURE 4

Structural virulence factors in Salmonella and pyroptosis. Salmonella flagellar protein FliC induces pyroptosis in human and murine macrophages by
the NLRP3 inflammasome, but YdiV inhibits the expression of FliC preventing pyroptosis through the FlhD4C2 transposon. FljB induces pyroptosis in
human and murine macrophages by activating the NLRC4 inflammasome. The deficiency of fepE in Salmonella Paratyphi A can activate caspase-4
and induce pyroptosis in THP- 1 macrophages.
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GalE encodes UDP-galactose-4-epimerase, an enzyme

involved in galactose metabolism and glycosylation (88). GalE

can affect the assembly and activation of the inflammasome. A

study revealed that Salmonella Enteritidis-deficient GalE can

activate the NLRP3 inflammasome in mice, promoting the

activation of caspase-1 and secretion of IL-1b. These results

suggest that the protein can inhibit the expression of NLRP3,

caspase-1 and IL-1b in BMDMs and promote Salmonella infection

(Figure 5). Therefore, GalE plays an important role in the

regulatory network of Salmonella evasion of inflammasome

activation. Moreover, the mechanism by which GalE regulates

pyroptosis remains to be explored (89).

The DinJ protein encoded by dinJ is an antitoxin of the YafQ-

DinJ family of the Salmonella type II toxin-antitoxin (TA) system

(90). The DinJ protein is not only a bacterial antitoxin but also an

effector protein that can inhibit the activation of the host

inflammasome to evade host defense and promote Salmonella

infection. A study revealed that DinJ deficiency in Salmonella

Enteritidis can activate caspase-1 and the secretion of IL-1b and

IL-18 in J774A.1 macrophages and BMDMs. Further studies have

shown that the DinJ protein can specifically inhibit the activation of

the NLRP3 inflammasome, thereby blocking the release of

inflammatory cytokines, which is conducive to the survival of

Salmonella in the host (Figure 5) (91). Although we know that the

inflammasome plays an important role in inducing pyroptosis,

whether DinJ can induce GSDM protein family activation remains

to be verified.
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5 The significance of pyroptosis in
the salmonellosis

5.1 Pyroptosis to intestinal inflammatory
disorders induced by Salmonella

Salmonellosis is one of the most common foodborne infections.

Salmonella infection in humans and animals can cause intestinal

damage, resulting in intestinal inflammation, more severe cases can

lead to bacteremia. Studies have shown that pyroptosis is involved in

a variety of diseases, such as ulcerative colitis. Pyroptosis plays an

important central role in intestinal immune defense and pathology by

regulating microbial infections and secretion of inflammatory factors,

ROS production, or lysosomal damage (107). Researchers have

established a model of Salmonella infection in mice and found that

activation of the canonical and non-canonical inflammasome

pathways can control Salmonella pathogen burdens and IEC

shedding in the mice intestine, which highlights the importance of

IEC pyroptosis as a host defense mechanism (10, 108). Evidence from

other studies suggested that NAIP/NLRC4 inflammasome can

protect mice from a TNF-driven inflammatory response during

Salmonella infection (109). In other words, NAIP/NLRC4

inflammasome-mediated pyroptosis eliminates the replicative niche

for Salmonella. In addition, other studies have shown that GSDMD

restricts Salmonella Typhimurium loads in the gut tissue and

systemic organs, controls gut inflammation kinetics, and prevents

epithelium disruption by 72 h of the infection (110).
FIGURE 5

Other virulence factors of Salmonella and pyroptosis. SiiD inhibits the expression of caspase-1 in BMDMs by inhibiting the expression of ROS,
thereby suppressing the inflammatory response, but it hasn’t yet been proven to inhibit the occurrence of pyroptosis. DinJ can inhibit the expression
of the NLRP3 and caspase-1 in BMDMs and J774A.1 macrophages, but further inhibition of pyroptosis remains to be confirmed. GalE can inhibit the
expression of the NLRP3 inflammasome and caspase-1 in BMDMs, and whether it can further inhibit pyroptosis remains to be verified.
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The precise identification and suppression of pyroptosis are

essential for the survival and proliferation of Salmonella within the

host. For example, as we mentioned earlier, the SopB of Salmonella

evades recognition and clearance by B cells, a type of immune cell, by

inhibiting pyroptosis (55, 56). The same study showed the importance

of SpvC for bacterial dissemination in mice and damage to secondary

tissues, such as spleen and liver, during infection (75). These findings

indicate that downregulation of pyroptosis by the virulence factor is

essential for bacterium’s survival and reproduction within the host. In

conclusion, pyroptosis exhibits both protective and detrimental effects

during Salmonella infection. It is imperative to embrace a dialectical

perspective on this matter. Interventions that are both targeted and

selective ought to be grounded in the pathogenic mechanisms

of Salmonella.
5.2 Potential mechanisms underlying
pyroptosis in the intestinal damage
induced by Salmonella

Intestinal homeostasis serves as the cornerstone for sustaining

overall health. Disruption of intestinal homeostasis due to various

factors can result in a range of diseases, with inflammasomes,

pyroptosis, and their associated signaling pathways playing crucial

roles in the maintenance of intestinal equilibrium. Short-chain fatty

acids (SCFAs) generated by gut microbiota can modulate immune

responses. Hockenberry et al. found that SCFAs could decrease

population-level T3SS-1 expression of Salmonella (111). Other
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studies have demonstrated that SCFAs enhance inflammasome

activation by binding to the ASC PYRIN domain in macrophages,

thereby promoting heightened inflammasome activity that

suppresses Salmonella survival through pyroptosis and facilitates

neutrophil recruitment to bolster bacterial elimination, ultimately

inhibiting systemic dissemination within the host (112). These

findings have implications that SCFA levels and their dynamics

play a crucial role in preventing Salmonella colonization of the gut

and bacterial elimination. Although our current understanding of

the impact pyroptosis on intestinal microbiota within Salmonella

infection is limited, it remains an area of ongoing research. As a

result, this enhances our understanding of the intricate mechanisms

by which Salmonella orchestrates pyroptosis during infection and

unveils groundbreaking insights for prospective therapeutic

strategies aimed at combating salmonellosis.
6 Conclusions and future perspectives

In recent years, an in-depth investigation into pyroptosis has

elucidated our comprehension of its molecular underpinnings and its

crucial function in the context of Salmonella infection. To a certain

extent, pyroptosis can endow the host with resistance to Salmonella

invasion; nonetheless, inversely, Salmonella has the capability to

inhibit host pyroptosis, thereby facilitating its colonization and

enhancing its survival within the host’s microenvironment. Given

the dual nature of this phenomenon, the objective of this article is to

summarize the complex mechanisms by which Salmonella virulence
FIGURE 6

The interaction between virulence factors and effector proteins of Salmonella and pyroptosis. Summarize the virulence genes and effector proteins
of Salmonella that can cause pyroptosis, and analyze the possible consequences of regulating pyroptosis.
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factors or effector proteins regulate host pyroptosis (Figure 6) and to

propose several potential therapeutic approaches for future

interventions aimed at countering Salmonella infections.

Firstly, from the perspective of Salmonella pathogenicity,

Zigangirova and his colleagues have discovered a novel small

molecule inhibitor, Fluorothiazinon (formerly known as CL-55),

which effectively reduces the replication and proliferation of

Salmonella by inhibiting its T3SS, while not hindering it in vitro

growth (113). The small molecule inhibitor quercitrin has

demonstrated a significant capacity to repress the expression of SPI-1

genes and associated effectors, thereby impairing T3SS functionality

and substantially reducing both Salmonella colonization and cecal

pathological damage in murine models (114). It would be judicious

to consider the development of inhibitors that are specifically tailored

to target the secretion system of Salmonella, thereby interrupting the

discharge of effector proteins pivotal to circumventing pyroptosis, and

consequently, curbing bacterial proliferation. Moreover, as previously

encapsulated, the excision of specific virulence genes in Salmonellamay

result in either an upsurge or a suppression of pyroptosis in the host,

thereby affecting its viability within the host organism. This revelation

also implies that the creation of novel attenuated vaccines targeting

Salmonella could prove to be a critical tactic in the future prevention

and management of infections attributable to this bacterium.

Secondly, from the vantage point of pyroptosis, we may

consider the strategy of achieving pathogen elimination by

selectively stimulating pyroptosis during the infectious process.

For example, MCC950, a specific small molecule inhibitor, has

been documented to markedly suppress inflammasome activation

in diverse disease models (115). Traditional Chinese medicinal

compounds, such as Licochalcone B (LicoB), Oridonin (Ori), and

Helenin, act as targeted inhibitors of the NLRP3 inflammasome by

interfering with the interaction between NLRP3 and NEK7, thus

inhibiting both the assembly and activation of this inflammasome

complex (116–118). Investigators have shown that Coptisine and

Compound parthenolide potently inhibit NLRP3 inflammasome

activation and NF-kB signaling in macrophages by downregulating

caspase-1 protease activity, thereby preventing the occurrence of

inflammatory cytokine storms (119, 120). These findings suggest

that both traditional Chinese medicine monomers and natural

small molecule compounds, which are directed at the regulation

of inflammasomes and pyroptosis, may pave new pathways for the

prophylaxis and management of Salmonella infections, as well as

additional bacterial infections, in future therapeutic endeavors.

Finally, we consider from the perspective of the host. The

metabolic reprogramming of immune cells is instrumental in

orchestrating the inflammatory response, activating inflammasomes,

and facilitating pathogen persistence within the host. Salmonella

augments its virulence by prompting metabolic changes in host

macrophages and harnessing the resultant glucose accumulation as a

substrate for intracellular proliferation (121). Additional studies have

underscored the notion that various metabolic pathways converge to

serve as potent regulators of the NLRP3 inflammasome, which intricate

structure that initiates pyroptosis (122). By manipulating metabolic

pathways or metabolites to facilitate pyroptosis, leveraging the

pathogen’s metabolic reprogramming traits or those of the infected

host during infection, it may be feasible to regulate pathogen infection,
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thereby presenting novel avenues for the treatment of salmonellosis

(123). Elucidating the role of metabolic reprogramming in pathogen-

induced pyroptosis, especially within the context of Salmonella

infection, requires further investigation and a deeper level of

understanding. A more profound grasp of metabolic reprogramming

and the mechanisms of cell pyroptosis could pave the way for the

development of innovative concepts and strategies to combat

Salmonella-related maladies in the future.

Although our comprehension of the virulence factors and

effector proteins in Salmonella has reached an extensive level, a

deficit persists in our knowledge regarding the intrinsic pathogenic

mechanisms, necessitating a continued pursuit of understanding

and investigation. The regulation of pyroptosis by other virulence

factors or effector proteins in Salmonella remains largely elusive,

underscoring the need for additional research. Elucidating the

regulatory mechanisms through which Salmonella virulence

factors and effector proteins trigger pyroptosis could pave the way

for novel concepts and strategies in the clinical prevention of

Salmonella infections and the treatment of associated diseases.
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RCD regulated cell death
Frontiers in Immunol
PCD programmed cell death
T3SS the type III secretion system
T1SS the type I secretion systems
GSDM gasdermin protein family
LPS lipopolysaccharide
GSDMD gasdermin D
GSDME gasdermin E
ELANE neutrophil-specific serine protease neutrophil elastase
PRRs pattern recognition receptors
ASC apoptosis-associated speck-like protein containing a caspase

recruitment domain
PYD pyrin domain
CARD caspase recruitment domain
NLR nucleotide-binding domain and leucine-rich-repeat-

containing protein
ALR AIM2-like receptor protein
PAMPs pathogen-associated molecular patterns
DAMPs damage-associated molecular patterns
NLRP3 nucleotide-binding oligomerization domain-like receptor

family, pyrin domain-containing 3 inflammasome
NAIP NLR apoptosis inhibitory protein
OMVs Outer membrane vesicles
SPIs Salmonella pathogenicity islands
ogy 17
HGT horizontal gene transfer
IECs intestinal epithelial cells
JNK the c-Jun N-terminal kinase signaling pathway
SPtA Salmonella Paratyphi A
SCVs Salmonella-containing vesicles
PDK1 phosphoinositide dependent protein kinase-1
RSK Ribosomal S6 kinase
MLKL mixed lineage kinase domain-like protein
SseL Salmonella secreted factor L
MAPK mitogen-activated protein kinase signaling pathway
SOCS-3 suppressor of cytokine signaling
ROS reactive oxygen species
Spv Salmonella plasmid virulence
CXCL2 C-X-C motif chemokine ligand 2
CXCL3 C-X-C motif chemokine ligand 3
CXCR2 C-X-C motif chemokine receptor 2
IPAF Nod-like receptor ICE protease-activating factor
BMDMs Bone Marrow-Derived Macrophages
TA type II toxin-antitoxin system
SCFAs Short-chain fatty acids
LicoB Licochalcone B
Ori Oridonin
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