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Connective tissue diseases-related pulmonary arterial hypertension (CTD-PAH)

is a disease characterized by an elevated pulmonary artery pressure that arises as

a complication of connective tissue diseases. The number of patients with CTD-

PAH accounts for 25.3% of all PAH patients. The main pathological features of

CTD-PAH are thickening of intima, media and adventitia of pulmonary arterioles,

increased pulmonary vascular resistance, autoimmune activation and

inflammatory reaction. It is worth noting that abnormal immune activation will

produce autoantibodies and release cytokines, and abnormal immune cell

recruitment will promote inflammatory environment and vascular remodeling.

Therefore, almost all forms of connective tissue diseases are related to PAH. In

addition to general therapy and targeted drug therapy for PAH, high-dose

glucocorticoid combined with immunosuppressant can quickly alleviate and

stabilize the basic CTD-PAH disease. Given this, the development of

therapeutic approaches targeting immune dysregulation and heightened

inflammation is recognized as a promising strategy to prevent or reverse the

progression of CTD-PAH. This review explores the potential mechanisms by

which immune cells contribute to the development of CTD-PAH and examines

the clinical application of immunosuppressive therapies in managing CTD-PAH.
KEYWORDS

inflammation, immunity, cytokines, chemokines, pulmonary hypertension,
immunosuppressive therapy
1 Introduction

Connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH)

refers to the progressive elevation of pulmonary artery caused by connective tissue

disease, which is a common complication of CTD (1, 2). CTD-PAH belongs to the

category of PAH. CTD-PAH patients account for 25.3% of all PAH patients, and it is the
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second most common cause of PAH, second only to the idiopathic

form. The pathological features of CTD-PAH are mainly

pulmonary vascular remodeling, including pulmonary arteriole

middle-layer hypertrophy, intimal fibrosis, plexiform lesions and

tiny pulmonary artery occlusion, etc (3, 4). These changes are

closely related to vascular endothelial injury, proliferation and

migration of smooth muscle cells (SMCs), extracellular matrix

deposition and chronic inflammatory reaction mediated by

immune abnormalities, which together lead to increased

pulmonary artery pressure and increased pulmonary circulation

resistance (5, 6). Among them, immune imbalance is an important

feature of CTD-PAH, which is very important for the initiation and

maintenance of vascular remodeling (7). For example, the change of

vascular cell phenotype leads to the change of sensitivity to

inflammatory trigger, the enhancement of self-staged

inflammatory response and the active secretion of cytokines and

chemokines (8). At present, in clinical treatment, in addition to

general treatment and targeted drug therapy for PAH, high-dose

glucocorticoid combined with immunosuppressant can quickly

alleviate and stabilize the basic CTD condition, and can effectively

improve CTD-PAH (9).

CTD encompass a broad range of systemic autoimmune

rheumatic conditions that affect multiple organ systems, such as

systemic lupus erythematosus related PAH (SLE-PAH), systemic

sclerosis related PAH (SSc-PAH), connective tissue disease related

PAH (MCTD-PAH), and rheumatoid arthritis related PAH, etc (10,

11). CTD-PAH is different in different regions. For example, in

Europe and the United States, systemic sclerosis is the main cause,

while in Asia, systemic lupus erythematosus is more common (11).

Notably, patients with SLE-PAH tend to respond more favorably to

treatm (12–14). These conditions are characterized by immune

dysregulation and the production of disease-specific autoantibodies

(15, 16). In addition, the pathogenesis of these diseases involves

immunity and vascular remodeling. In patients with CTD-PAH,

antibodies and immune complexes are often deposited on the

pulmonary artery wall, especially anti-U1RNP antibodies (17).

These antibodies can significantly up-regulate the expression of

adhesion factors (such as ICAM21 and ELAM21) and MHC class II

molecules in pulmonary artery endothelial cells (ECs), leading to

inflammatory cells infiltrating the vascular wall. The deposition of

immune complex will attract inflammatory cells (such as

neutrophils, macrophages, etc.) to infiltrate into the blood vessel

wall, causing vasculitis and cellulose necrosis, further aggravating

blood vessel injury (6). The autoimmune reaction of CTD-PAH

patients is extremely active, which leads to inflammatory reaction

and fibrosis changes in pulmonary vascular wall, which is an

important basis for the formation of pulmonary hypertension (6).

Due to the infiltration of inflammatory cells and the deposition of

immune complexes, the inner ECs are damaged, resulting in intima

thickening. Stimulated by inflammatory factors, vascular SMCs will

proliferate abnormally, aggravating lumen stenosis (18). So, this

paper reviews the potential pathogenesis of CTD-PAH in

autoimmune and immune dysregulation in recent years. And

further put forward the feasibility of immunosuppressive

treatment strategy in CTD-PAH.
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2 Immune activation in CTD-PAH

The pathogenesis of CTD-PAH is intricate and not fully

elucidated. Currently, the predominant theory associates PAH

with extensive vascular remodeling (19). Its main characteristics

are proliferation of ECs and SMCs, fibrinoid necrosis caused by

vasculitis, and deposition of immunoglobulin and complement

components in intima and medial layers of pulmonary blood

vessels (20). Under normal conditions, blood vessels maintain a

balanced state between constriction and dilation (8, 21). However,

in the context of an immune-inflammatory response, a cascade of

inflammatory mediators and reactive oxygen species is unleashed,

leading to endothelial dysfunction (22, 23). This dysfunction

manifests as reduced production of pulmonary vasodilators,

increased production of pulmonary vasoconstrictors, and

enhanced expression of proliferation-inducing factors, thereby

elevating vascular tension and ultimately driving vascular

remodeling (24). Chronic inflammatory aggregates and the

formation of tertiary lymphoid organs (TLOs) (25, 26). TLOs,

which structurally resemble lymph nodes, include specialized

zones for T-cells with dendritic cells (DCs), organized B-cell

clusters containing germinal centers, high endothelial venules,

and lymphatic vessels (27). TLOs are thought to develop in

response to sustained local immune activation and are considered

a hallmark of chronic diseases (28). Within TLOs, tissue-migrated

DCs present antigens to naïve T-cells, inducing their activation and

differentiation (27). Immune cells such as T cells, B cells, and

macrophages are activated, releasing inflammatory mediators that

contribute to vascular remodeling and endothelial dysfunction.

In CTD-PAH, various pro-inflammatory molecules, such as

interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-a and

chemokines (such as chemokine ligand 2(CCL2)/monocyte

chemoattractant protein-1 (MCP-1), RANTES chemokines or

fracta) are synthesized by fibroblasts, ECs and vascular SMCs (9,

29, 30). In SSc-PAH, this pro-inflammatory signal involves

oxidative stress and the production of a large number of pro-

inflammatory molecules (31). For example, in SSc-PAH,

autoreactive T cells infiltrate the pulmonary vasculature and

secrete cytokines like interferon (IFN)-g and IL-17, which

promote smooth muscle cell proliferation and fibrosis (32).

Furthermore, SLE patients with severe PAH exhibit enhanced

expression of various growth factors and chemokines such as

RANTES/CCL5 and fractalkine/fractalkine (CX3CL1) within the

pulmonary artery, emphasizing the complex interplay of factors

involved in this condition.

Notably, immunoglobulins and complement have been found

to accumulate on arterial walls, triggering pulmonary vasculitis

(33). The presence of these immune complexes within pulmonary

vascular walls may contribute to the development of SLE-PAH (34).

In SLE-PAH, immune complexes preferentially adhere to larger

blood vessels, whereas in SLE-induced pneumonia, smaller vessels

may be the primary sites of immune complex deposition (34).

However, some researchers argue that inflammation appears to be

less significant in the pathogenesis of SSc-PAH andMCTD-PAH, in

contrast to SLE-PAH, where the features closely resemble the
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1464762
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1464762
plexogenic lesions observed in IPAH (35). These variations in the

inflammatory profile of SSc-PAH may account for the limited

efficacy of immunosuppressive therapies in this condition.

Additionally, genetic abnormalities are less common in CTD-

PAH compared to IPAH, although they may still contribute in

specific cases. An analysis of 79 CTD-PAH patients screened for a

panel of 35 PAH-specific genes identified abnormalities in 9

individuals (11.4%) (36). Left ventricular dysfunction, prevalent in

CTD, can result in pulmonary venous hypertension, particularly

evident in SSc-PAH, where pulmonary veno-occlusive lesions are

more pronounced (37).
3 DCs in CTD-PAH

DCs are effective and multifunctional antigen presenting cells,

and their migration ability is the key to start protective pro-

inflammatory and tolerant immune response (38). At the

crossroads of innate immunity and adaptive immunity, dendritic

cells do play a prominent role in the immune monitoring of self and

non-self antigens and the initiation and coordination of specific

adaptive immune responses of different types of antigens (39).

Therefore, the first line of defense is very important at the barrier,

especially in the lungs. However, they are also involved in the

pathogenesis and progress of highly prevalent respiratory

diseases (40).

Recent studies have demonstrated that DCs become activated and

accumulate in the lungs of patients with CTD-PAH (27). These

activated DCs enhance the production of inflammatory cytokines

and chemokines, which in turn lead to pulmonary vascular

remodeling and increased pulmonary vascular resistance.

Additionally, the levels of inflammatory cytokines and chemokines

produced by these DCs are elevated. In patients with SSc, circulating

type 2 conventional DCs (cDCs) exhibit increased production of IL-6,

IL-10, and tumor necrosis factor-a (TNF-a) following stimulation with

TLR2 and TLR4 (41, 42). These cytokines are believed to play a crucial

role in the immunopathology of PAH. Notably, IL-6 stands out as a

critical cytokine in the pathogenesis of PAH, as evidenced by the

development of pulmonary hypertension symptoms in mice

overexpressing IL-6, whereas IL-6-deficient mice do not develop

pulmonary hypertension under hypoxic conditions (43, 44). These

findings indicate that DCs contribute to the development

and progression of CTD-related PAH through their pro-

inflammatory effects.

Plasmacytoid DCs (pDCs) are primarily found in lymphoid

tissues and blood under normal conditions. The severity of lung

diseases in SSc patients is related to the incidence of pDCs found in

the lungs (45). Importantly, pDC plays a direct role in causing and

maintaining fibrosis, because their consumption has been proved to

improve pulmonary fibrosis. During inflammation, pDCs migrate

to peripheral tissues, where they produce IFNs and facilitate the

activation of immune cells. Several autoimmune diseases are

associated with the interferon gene signature, to which different

cells contribute. In patients with SLE and SSc, the number of
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circulating pDCs is reduced compared to healthy controls, likely

due to their migration to affected tissues (46, 47). In SSc patients,

elevated serum levels of C-X-C motif chemokine 10 (CXCL10) are

linked with PAH, suggesting that pDCs may have a significant role

in the immunopathology of the disease (48). Besides IFN, pDCs are

also the primary producers of CXCL4 in SSc (49). The pDC of SSc

patients abnormally expressed Toll-like receptor (TLR) 8, while

TLR8 was not expressed in healthy conditions (47). This abnormal

expression contributes to the disease progression, because the signal

transduction through TLR8 will induce the production of CXCL4

(47). CXCL4 can attract CD45-positive cells into target tissues,

potentially contributing to tissue remodeling and disease

progression. In addition, the expression of TLR8 leads to the

infiltration of pDCs into tissues, which aggravates the disease and

leads to fibrosis (47). Activation of TLR9 under anoxic conditions

has also been proved to induce the production of CXCL4 (50).

Additionally, monocytes serve as precursors for mo-DCs, which

are produced under inflammatory conditions (51), and there is an

observed increase in the number of non-classical monocytes in SSc-

PAH (52). Non-classical monocytes, which express CD16, are

known to monitor the endothelium for danger signals. They can

differentiate into tissue-resident macrophages under steady-state

conditions or into anti-inflammatory macrophages during

inflammation to assist in tissue repair. At the same time, non-

classical monocytes expressing CXCL10, CXCL8, and CCL4 are

involved in SSc pathology, with higher numbers observed in SSc

patients compared to controls (41). In summary, the increased

pulmonary expression of chemokines may draw monocytes to the

lungs of CTD-PAH patients, where they become activated and

undergo gene expression changes due to the pro-inflammatory

environment. These modified monocytes may then give rise to

mo-DCs at the site of inflammation, capable of inducing T cell

activation. The roles of cDCs, pDCs, mo-DCs and their

inflammatory mediators in CTD-PAH are shown in Figure 1.
4 Lymphocytes in CTD-PAH

Lymphocytes are the main immune cells in the body, which are

responsible for removing pathogens such as bacteria, viruses and

parasites, thus protecting the human body from infection. They play

a central role in the immune system by secreting cytokines,

participating in cellular immunity and humoral immunity (53).

The immune cells that mainly play a role include B cells and T cells,

which participate in the immune activation in the process of

vascular remodeling. The roles of c B cells, T cells and their

inflammatory mediators in CTD-PAH are shown in Figure 2.

B cells have the ability to differentiate into plasma cells, which

are responsible for producing autoantibodies. B cells achieve this

goal by presenting antigen, producing various cytokines and

promoting the differentiation of T effector cells (22, 54). B cells

play a significant role in the formation of autoantibodies in SSc. In

recent years, there has been growing recognition that B cells are a

major source of pro-inflammatory cytokines, particularly IL-6 and
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IFN-g, in autoimmune diseases (55). IL-6, a potent pro-

inflammatory cytokine, also has strong fibrotic effects (56). For

example, circulating B cells in SSc patients produce more IL-6

compared to healthy controls (57, 58). However, there is limited

data on these pro-inflammatory characteristics in PAH. In a novel
Frontiers in Immunology 04
approach to studying SSc-PAH using female mice deficient in P-

selectin glycoprotein ligand-1, IFN-g-producing B cells showed

greater lung infiltration compared to the control group (59).

Additionally, in a rat model of PAH induced by the combination

of anti-vascular endothelial growth factor (VEGF) Sugen-5416
FIGURE 2

Potential mechanism of B cells and T cells on CTD-PAH. Beff: effector B cells, Breg, regulatory B cells; BAFF, B cell activating factor; VEGF, vascular
endothelial growth factor; TGF-b, transforming growth factor-beta; IL, interleukin; IFN, interferon.
FIGURE 1

Involvement of cDCs, pDCs and mo-DCs in CTD-PAH. cDCs, circulating type 2 conventional; pDCs, plasmacytoid DCs; IL, interleukin; CCL, C-C
motif chemokine ligand; TNF, tumor necrosis factor-alpha; CXCL, C-X-C motif chemokine ligand.
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injection and ovalbumin immunization, the depletion of B cells

correlated with reduced IL-6 expression in the lung (60). Besides,

for the peripheral blood mononuclear cells of SSc-PAH patients, the

genes involved in B-cell receptor signaling and NF-kB pathway in

the disease group were significantly up-regulated (61, 62). Unlike

effector B cells (Beffs), regulatory B cell (Bregs) produce IL-10, an

anti-inflammatory and anti-fibrotic cytokine (63). Furthermore, the

role of serum B cell-activating factor (BAFF) has been well

established in a murine model of SSc induced by bleomycin (64).

BAFF inhibits Bregs and their ability to produce IL-10. In

individuals with SSc-PAH, the levels of circulating CD24hi CD27

Bregs are lower compared to SSc patients without PAH (65). While

the existence and role of this subset in pulmonary arterial

hypertension are yet to be thoroughly investigated, indirect

evidence suggests a direct involvement of B cells in the vascular

system of these patients (66). In SSc, B cells exhibit a higher

tendency to produce vasculogenic mediators such as vascular

endothelial growth factor and angiopoietin-1 compared to healthy

controls, with no difference observed between patients with and

without PAH (67).

T cells are an important part of adaptive immune response,

including helper T cells (Th cells), regulatory T cells (Tregs) and

angiogenic T cells (Tang), etc (68). Different types of T cells have

specific functions and reactions in the inflammatory cascade reaction.

Th cells produce a pro-inflammatory response, while Tregs exert a

balanced response to achieve self-tolerance and prevent autoimmune

(53). Similar to B cells, T cells can be categorized into two main

opposing subpopulations: type 1 T cells, which primarily produce

IFN-g and IL-2, and type 2 T cells, which release IL-4, IL-5, and IL-

13, thereby activating fibroblasts via the transforming growth factor

(TGF)-b pathway (63, 69). An examination of T cell subpopulations

in SSc has revealed a complex phenotype (70). Alongside Th2 cells,

Th22, Th17, and CD4+ T cells reactive to topo-I play an active role in

initiating pulmonary involvement in SSc (70, 71). Specifically, the

topo-I-reactive CD4+ T cells demonstrate a Th17 phenotype and,

along with Th22 cells, are elevated in patients, showing a negative

correlation with pulmonary function parameters. Th17 cells produce

IL-17, known for its fibrotic properties (72). At the same time, it was

found that the expressions of IL-7R, LCK and HDAC1 were

positively correlated with the number of T cell CD4 initiation and

T cell CD4 memory. They reduce T cells in SSc-PAH PBMCs by

regulating T cell activation (32). Although an increase in regulatory

Tregs has been linked to decreased functional capacities in SSc, the

precise role of these cells remains poorly understood (73). Studies

have also delved into the involvement of T cells in angiogenesis. Hur

et al. explored T cell subsets expressing CD31 and CXCR4,

categorizing them as angiogenic T cells (Tang) due to their

significant impact on vascular formation (74, 75). A recent study

revealed their role in SSc pathogenesis. The presence of Tang cells is

higher in SSc-PAH patients compared to those without PAH and

healthy individuals (76). Moreover, there is a positive correlation

between Tang cell numbers and VEGF levels in SSc-PAH, suggesting

a connection between Tang cell activity and endothelial function.
Frontiers in Immunology 05
5 Macrophages in CTD-PAH

Macrophages can remove pathogens and foreign bodies

through their powerful phagocytosis, and serve as antigen

presenting cells, presenting the treated antigens to T cells and B

cells, thus initiating specific immune response (77). At the same

time, macrophages can secrete a variety of inflammatory mediators,

regulate immune response and promote inflammation regression

(77). Macrophages play a crucial role in local innate immunity and

provide comprehensive protection of the lungs against external

substances (78). M1 macrophages are activated during the early

inflammatory phase and induce tissue damage, with this

differentiation pathway being regulated by damaged epithelial

cells and IFN-g (79). On the other hand, M2 macrophages, which

exhibit fibrotic characteristics, are predominant during the

proliferative phase (80–82). These activated macrophages can

mitigate the differentiation of fibroblasts into myofibroblasts, a

process particularly notable in SSc (82, 83). M2 macrophages,

identifiable by their CD163+ and CD204+ markers, accumulate in

the skin and serum of SSc patients (79). Additionally, M2

macrophages produce the chemokine CCL18, which can induce T

cell migration and stimulate fibroblasts to produce collagen (84).

Consequently, elevated levels of CCL18 in SSc patients are regarded

as markers of lung fibrotic remodeling (85). While M2 cells are

known for their fibrotic attributes, other cell populations also

contribute to this complementary remodeling process. In fact, a

mixed M1/M2 macrophage population is associated with SSc-PAH

in both human and murine models (86, 87). Furthermore,

alterations in macrophage-endothelial interactions can precipitate

vascular pathologies and subsequent fibrosis. In models of

bleomycin-induced injury, endothelial-derived cells exacerbate

fibrosis and exhibit markers indicative of endothelial-

mesenchymal transition (88). Notably, by knocking out RGC32,

macrophage activation shifts from M2 to M1, which consequently

reduces the skin and lung manifestations of bleomycin-induced

pulmonary fibrosis (89). In addition, recent studies have shown that

Regnase-1 is a multifunctional protein with RNAse activity, which

can bind and degrade the mRNA of various inflammatory

cytokines, thus inhibiting the inflammatory reaction. In patients

with CTD-PAH, the expression level of Regnase-1 is decreased,

which may lead to the over-expression of inflammatory cytokines,

and then promote the development of pulmonary hypertension

(90). The lack of Regnase-1 in macrophages will lead to the

spontaneous development of severe CTD-PAH-like lesions in

mice. This indicates that Regnase-1 in macrophages plays a key

role in maintaining immune homeostasis and preventing the

occurrence of CTD-PAH (90).

Macrophage migration inhibitory factor (MIF) is a substance

that can limit the activity of macrophages in vivo. Its main function

is to limit the excessive movement of macrophages, promote the

infiltration of macrophages in inflammatory sites, and participate in

immune regulation (91). A study investigated the role of MIF in

SLE-PAH (92). Circulating MIF levels were measured in SLE
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patients, SLE-PAH patients, and healthy donors. The results

showed that circulating MIF was elevated in SLE-PAH patients

compared to both SLE patients and healthy donors. In SLE mice,

those with higher right ventricular systolic pressure (RVSP)

produced more MIF protein in the pulmonary arteries than those

with lower RVSP. Treatment with MIF098 reduced RVSP and

inhibited excessive proliferation, muscularization, and collagen

deposition in the distal pulmonary arteries of hypoxia-challenged

mice. Additionally, MIF098 suppressed pulmonary arterial smooth

muscle cell proliferation and migration by modulating the Mitogen-

Activated Protein Kinase/Extracellular Signal-Regulated Kinase 1/2

signaling pathway and cell cycle-related proteins. In cell

experiments, MIF098 also decreased collagen synthesis by

inhibiting the TGF-b1/Smad2/Smad3 pathway. These findings

suggest that MIF could serve as a biomarker and therapeutic

target for SLE-PAH. MIF antagonists may be an effective means

to improve SLE-PAH. The pathological mechanism involved above

is shown in Figure 3.
6 Vascular cells in CTD-PAH

Immune cells can regulate angiogenesis by secreting cytokines

such as VEGF and TNF-a . Immune cells can promote

angiogenesis (such as tumor-associated macrophages) and

inhibit angiogenesis (such as CD8+T cells) (93). Angiogenesis

can affect the recruitment and infiltration of immune cells, and

then affect the effect of immune response. Although vascular ECs

are not professional antigen presenting cells, they can present

antigens to T cells and express adhesion factors and cytokines to

participate in immune response. ECs play a key role in

maintaining vascular homeostasis under various stimuli, and
Frontiers in Immunology 06
regulate inflammation through mediators such as NO, ET, cell

adhesion molecules, cytokines and chemokines (22). It is found

that leptin derived from s plays a role in the immune pathogenesis

of SSc-PAH by controlling regulatory T cells (94). At the same

time, endothelial activation occurs in SSc, and Bosentan can block

T cell/endothelial interaction in SSc-PAH and regulate the

expression of vascular factors in serum (95). In addition, the

researchers detected the response of human pulmonary artery ECs

to BMPR2 signal and pyrophosphate factor stimulated by

lipopolysaccharide. In PAECs interfered by autologous BMPR2

+/R899X ECs and SIMPR 2, the expressions of IL-8 and E- selectin

were up-regulated. The defect of BMPR2 signal transduction and

proinflammatory factors promote vascular remodeling in SLE-

PAH (96).

As an important vascular cell, fibroblasts also play an important

role in CTD-PAH. Pulmonary fibrosis is a sign of patients with SSc-

PAH, and fibroblasts are the main target cells in this process.

Fibroblasts express TGF-b and platelet-derived growth factor

receptor (97). Overregulation of Wnt/b-catenin signaling pathway

(98) and increased expression of insulin-like growth factor binding

protein regulate the induction of TGF-b in fibroblasts. All these

overexpressed protein induce fibrosis by transforming fibroblasts

into myofibroblasts (99). At the same time, the study showed that in

TGF-b-dependent SSc-PAH mouse model, bone morphogenetic

protein receptor (BMPR)2 decreased, signal transduction was

damaged and receptor turnover activity changed. Similarly, the

expression of BMPR2 was significantly decreased in SSc lung tissue

and fibroblasts. The increase of proteasome degradation of BMPR2

seems to be the basis, which may be caused by the increase of TGF-b
activity. This suggests that the damage of BMP signal transduction

caused by the increase of TGF-b dependent receptor degradation

may promote the susceptibility of PAH in SSc (100).
FIGURE 3

Potential mechanism of macrophages on CTD-PAH. MIF, macrophage migration inhibitory factor; CCL, C-C motif chemokine ligand; CXCL, C-X-C
motif chemokine ligand; IFN, interferon; RGC32, response gene to complement 32; MAPK, mitogen-activated protein kinases; ERK, extracellular
signal-regulated kinase; TGF, transforming growth factor.
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7 Immunosuppression therapy in
CTD-PAH

At present, the clinical treatment of CTD-PAH includes

specific treatment for PAH and treatment for primary CTD.

The specific treatment for PAH is to use targeted drugs. For

example, Bosentan can improve exercise tolerance, cardiac

function classification, hemodynamic parameters and clinical

deterioration time of patients with CTD-PAH (101). At the

same time, the study confirmed that Bosentan can prevent

endothelial activation in SSc by restoring T cell function (95).

For the treatment of primary CTD, high-dose glucocorticoids

(cyclophosphamide, mycophenolate mofetil, azathioprine,

methotrexate or hydroxychloroquine, etc.) combined with

immunosuppressants are usually used to alleviate the condition

of CTD and effectively improve CTD-PAH (9). Different from all

previous therapeutic drugs for PAH, Sotatercept is an activin

signal inhibitor and a First-in-class activin receptor IIA-Fc

(ActRIIA Fc) fusion protein, which can selectively bind TGF-b
family ligands, restore the balance between pro-proliferation

and anti-proliferation signal pathways related to pulmonary

artery wall and right ventricular remodeling, and play the role

of inhibiting cell proliferation, reversing vascular remodeling

and smoothing blood vessels (102). It was found that the

treatment with ActRIIA-Fc significantly reversed the expression

of pro-inflammatory and proliferative genes and normalized

macrophage infiltration in the lungs of diseased rodents (7).

This shows that sotatercept may have anti-inflammatory activity

besides its anti-proliferation effect on vascular cells.

Growing evidence confirms the significant involvement of the

immune system in the occurrence and development of CTD-PAH.

Some studies have explored the potential of immunosuppressive

therapy as a treatment target for CTD-PH. Among these, rituximab

(an anti-CD20 monoclonal antibody)-induced B cell depletion has

been the most researched intervention. Patients treated with

rituximab exhibited reductions in rheumatoid factor, IL-12, and

IL-17 (103). Several reports indicated that CTD-PAH patients

experienced improvements in conditions other than pulmonary

vascular diseases following rituximab treatment (104–106).

However, the role of immunosuppression in SSc-PAH remains

unclear, as there has been no observed response to corticosteroid or

cytotoxic therapies. The pathophysiological differences between

SSc-PAH and other types of CTD-PAH may explain the varying

responses to immunosuppressive treatments. A recent study by

Zamanian et al. revealed that after 24 weeks of rituximab treatment,

there was no significant change in the six-minute walk distance

(6MWD) for SSc-PAH patients, although an improving trend was

noted (103). The authors suggest that low levels of rheumatoid

factor, IL-2, and IL-17 might predict a favorable response to

rituximab. For non-SSc CTD-PAH patients, immunosuppressive

therapy, such as glucocorticoids or macitentan, could be considered,

especial ly i f they present with non-cardiopulmonary

manifestations, potentially benefiting from the treatment. Further
Frontiers in Immunology 07
research is essential to better understand the role of rituximab in

specific SSc-PAH patients (11). Variability in study outcomes may

be attributed to differences in sample sizes, leading to experimental

errors. Moreover, during the research, the primary outcome

measure was changed from hemodynamic improvement to

6MWD variability due to the unexpectedly low baseline

pulmonary vascular resistance in SSc-PAH patients, which

significantly reduced the utility of the original primary outcome

measure (66). Interestingly, an independent reanalysis of trial data

focused on identifying biomarker characteristics that could indicate

rituximab efficacy within subgroups, uncovering noteworthy

findings. It is also noteworthy that in studies using a pulmonary

arterial hypertension animal model, anti-CD20 therapy began

during disease induction, making it more of a preventive rather

than a curative treatment (107, 108). Therefore, further research is

required to determine the relevance and positioning of B-cell

depletion in the PAH treatment arsenal.

The Bruton tyrosine kinase (BTK) inhibitor has shown

promising results in improving hemodynamics, reducing right

ventricular hypertrophy, and mitigating pulmonary arterial

remodeling and fibrosis, as well as reversing endothelial-to-

mesenchymal transition in PAH rats (109). BTK expression

primarily co-localizes with macrophages, suggesting that the

inhibitor’s effects are largely mediated through its action on

macrophage BTK (109). Moreover, an increase in intracellular

BTK in the B cells of CTD-PAH patients was associated with

elevated serum autoantibodies (6). This indicates that BTK

inhibition might alleviate PAH, at least in part, through its

impact on B cells. In SSc patients, ibrutinib, a BTK inhibitor, has

been found to reduce the production of pro-inflammatory cytokines

and autoantibodies by peripheral B cells, while not affecting their

IL-10 secretion (110). These findings suggest that BTK inhibitors

could potentially serve as a therapeutic strategy for PAH by

targeting both macrophages and B cells, thereby addressing

multiple facets of the disease.
8 Conclusion and prospect

It is generally believed that autoimmune activation plays a key

role in the pathophysiology of various subtypes of CTD-PAH. Their

abnormal activation promotes the inflammatory environment and

vascular remodeling characteristics of this devastating disease

through various mechanisms, including autoantibody production,

cytokine release and direct cell interaction. In the pathophysiology

of CTD-PAH, the meaning of immune imbalance and immune cell

activation is “enemy”, which leads to vascular cell damage and

enlarges vascular inflammation. However, many molecular and

cellular mechanisms behind this process remain unsolved.

A better understanding of how immunity promotes the

development of CTD-PAH is very important to promote the

immunosuppressive treatment of this disease.
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