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Background: Cancer stem cells (CSCs) are a subset of cells within tumors that

possess the unique ability to self-renew and give rise to diverse tumor cells. These

cells are crucial in driving tumor metastasis, recurrence, and resistance to treatment.

The objective of this study was to pinpoint the essential regulatory genes associated

withCSCs in prostate adenocarcinoma (PRAD) and assess their potential significance

in the diagnosis, prognosis, and immunotherapy of patients with PRAD.

Method: The study utilized single-cell analysis techniques to identify stem cell-

related genes and evaluate their significance in relation to patient prognosis and

immunotherapy in PRAD through cluster analysis. By utilizing diverse datasets

and employing various machine learning methods for clustering, diagnostic

models for PRAD were developed and validated. The random forest algorithm

pinpointed HSPE1 as the most crucial prognostic gene among the stem cell-

related genes. Furthermore, the study delved into the association between

HSPE1 and immune infiltration, and employed molecular docking to investigate

the relat ionship between HSPE1 and its associated compounds.

Immunofluorescence staining analysis of 60 PRAD tissue samples confirmed

the expression of HSPE1 and its correlation with patient prognosis in PRAD.

Result: This study identified 15 crucial stem cell-related genes through single-

cell analysis, highlighting their importance in diagnosing, prognosticating, and

potentially treating PRAD patients. HSPE1 was specifically linked to PRAD

prognosis and response to immunotherapy, with experimental data supporting

its upregulation in PRAD and association with poorer prognosis.

Conclusion: Overall, our findings underscore the significant role of stem cell-

related genes in PRAD and unveil HSPE1 as a novel target related to stem cell.
KEYWORDS
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1 Introduction

Prostate adenocarcinoma (PRAD) ranks as the second most

prevalent form of cancer and stands as the fifth highest contributor

to cancer-related mortality among males across the globe (1, 2).

Patients often lack significant clinical symptoms in the early stages,

leading to advanced disease at diagnosis. Late-stage diagnosis

results in missed treatment opportunities. While early-stage

PRAD generally carries a good prognosis, outcomes worsen when

patients progress to castration-resistant stages or develop

metastasis. The introduction of targeted drugs like abiraterone

acetate, bicalutamide, and enzalutamide has significantly

improved the prognosis for PRAD patients (3). However, patient

responses to drug treatments for PRAD vary, and there is a lack of

specific markers for diagnosing the disease (4). While PSA is widely

used as a serum marker for PRAD, its specificity and sensitivity

have limitations. Recent advancements in PSA testing, including the

use of indicators like free PSA and the free PSA/total PSA ratio,

have enhanced the screening effectiveness for PRAD. Despite these

improvements, the overall impact remains unsatisfactory. This

underscores the critical need for identifying new diagnostic and

prognostic markers to enhance outcomes for PRAD patients.

Cancer stem cells (CSCs) are a unique cell population that

possesses the ability to self-renew and acquire diverse mutations

over time, leading to resistance to cancer treatments, metastasis, and

recurrence. Essentially, CSCs sustain tumor cell populations by

continuously renewing themselves and proliferating limitlessly,

while their migration capabilities contribute to tumor metastasis.

These cells can remain inactive for extended periods and harbor

various drug-resistant molecules, making them impervious to

external factors that typically eradicate tumor cells. Consequently,

even after conventional treatments eliminate the majority of tumor

cells, relapse is still likely. PRAD Stem Cells (PCSC), along with

prostate progenitor cells or prostate initiating cells, are present in

PRAD and facilitate the progression of the disease (5). Growing

evidence suggests that they are involved in the initiation,

advancement, and response to androgen receptor-targeted

therapies in PRAD, contributing to treatment resistance (6). The

most recent study has revealed that berbamine is effective in

targeting cancer stem cells and reversing cabazitaxel resistance in

PRAD by inhibiting IGF2BP1 and p-STAT3 (7). Additionally,

RCC2 has been found to promote proliferation and migration of

PRAD cells through the Hh/GLI1 signaling pathway and cancer

stem-like cells (8). Moreover, Lupeol, an inhibitor of the androgen

receptor, has been shown to improve the sensitivity of PRAD stem

cells to treatment with the anti-androgen enzalutamide (9). The

significance of understanding the stemness characteristics of tumors

in PRAD cannot be overstated, as it holds great promise for

addressing clinical challenges associated with PRAD.

Single-cell RNA sequencing (scRNA-seq) represents a

revolutionary technology that has markedly improved our

understanding of the variety and behavior of cellular

transcriptomes in various organisms (10). Numerous studies have

illustrated the heterogeneity present in various tumor tissues, such

as PRAD, through the use of scRNA-seq. Lai and Xu et al. identified
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CAFs-related genes using single-cell analysis and developed an

online tool to predict clinical outcomes and radiotherapy

prognosis for PRAD (11). Fan et al. demonstrated through single-

cell sequencing analysis that the loss of AR-regulated AFF3

contributes to prostate cancer progression and decreases

sensitivity to ferroptosis by downregulating ACSL4 (12). Cheng

et al. revealed that autocrine IL11 mediates docetaxel resistance in

prostate cancer by activating the JAK1/STAT4 pathway, as shown

through single-cell deconvolution algorithm analysis (13). Single-

cell analysis holds significant promise in the medical field by

offering novel perspectives and tools for basic research, as well as

making a substantial impact on clinical applications (14–16). With

the ongoing technological advancements, single-cell analysis is

anticipated to have a greater role in precision medicine,

understanding disease mechanisms, and drug development.

Through the analysis of clinical data and medical images from

patients, machine learning algorithms can assist healthcare

professionals in swiftly and accurately diagnosing diseases (17). In

conclusion, the integration of single-cell analysis and machine

learning techniques is becoming more prevalent in the medical

field and is proving to be crucial. Our own research focused on

identifying signature genes among stem cell markers through

single-cell analysis, examining their correlation with prognosis,

diagnosis, and immunotherapy in PRAD. By categorizing PRAD

patients based on stem cell-related genes and analyzing their

prognosis and response to immunotherapy using NMF clustering,

we constructed an optimal diagnostic model that combines

machine learning techniques and multiple datasets for validation.

The core significance of HSPE1 was determined through the

Random Forest (RF) algorithm and Friend analysis. The role of

HSPE1 in PRAD was investigated using Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, with

experimental validation confirming its expression and prognostic

significance in this context. In summary, our research provides

novel perspectives on potential markers and therapeutic targets for

the diagnosis, prognosis, and immunotherapy of patients

with PRAD.
2 Materials and methods

2.1 Datasets and patient samples

Four PRAD samples from the GSE168668 dataset were

analyzed at the single-cell level. Additionally, RNAseq data and

clinical details from the TCGA database’s prostate adenocarcinoma

(PRAD) dataset were incorporated into the study. Various datasets,

including TCGA-PRAD, GSE6956, GSE16120, GSE14206, and

GSE32571, were used to create and validate diagnostic models.

Sixty PRAD tissue samples, along with their adjacent tissue

counterparts, were obtained from Shanghai Aoduo Biotechnology

Company. The tissue chip study involved individuals who

underwent surgical procedures between January 2011 and

December 2014, with follow-up extending until November 2021,

covering a period ranging from 6 to 10 years.
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2.2 Processing of single-cell RNA-seq data

Four PRAD samples from the GSE168668 data set were utilized

for single-cell analysis (18). Utilizing the Seurat package, we

generated objects and filtered out poor-quality cells, ensuring that

only high-quality data was included in our analysis. A standard data

preprocessing procedure was then performed to examine the

percentage of gene number, cell number, and mitochondrial

content. The filtering criteria we used included genes detected in

less than 3 cells and cells with fewer than 200 genes. Each cell was

normalized by scaling the UMI count with a scale factor of 10,000,

ensuring that the data was standardized and comparable across

samples. After log transformation of the data, the Seurat (v3.0.2)

ScaleData function was applied to further enhance the quality of the

normalized data. The top 10 variable genes were selected for

principal component analysis (PCA), allowing us to identify the

key genes contributing to the variability in the dataset. We retained

the first 11 principal components for UMAP visualization and

clustering, providing insights into the underlying structure of the

data. Cell clustering was performed using the FindClusters function

within the Seurat R package, with a resolution set at 0.5 to ensure

clear and distinct clustering patterns among the cells.
2.3 Negative matrix factorization cluster
analysis and difference analysis in TCGA-
PRAD dataset

The NMF algorithm is used to identify biologically significant

coefficients in the gene expression matrix, organizing genes and

samples to emphasize the internal structural characteristics of the

data, which helps in grouping samples (19). Differential expression

analysis comparing clusters A and B was performed using the

‘Limma’ R package with criteria of |logFC| > 0.5 and an adjusted

p-value of <0.05. Subsequently, the ‘NMF’ R package was employed

to cluster all samples based on the DEGs identified within the

subclusters, aiming to unveil potential molecular subtypes. The

‘brunet’ algorithm with 100 iterations for each specified value and a

range of 2 to 10 clusters was utilized. The optimal number of

clusters was determined by considering cophenetic correlation,

dispersion, and silhouette width (20). The Limma package in R

software (version 3.40.2) was utilized to analyze the differential

expression of mRNA between cancer and para-cancerous tissues in

the TCGA-PRAD dataset.
2.4 Immune infiltration analysis

To ensure the credibility of the immune score results, we

employed immunedeconv, an R software package (21). Thorough

testing was conducted on each algorithm, revealing unique

advantages. The selection of the XCELL method for this study

was based on its ability to assess a wider range of immune cell types

(22, 23).
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2.5 Constructing diagnostic model

We combined multiple machine learning algorithms to create

various algorithmic combinations aimed at developing diagnostic

models related to PRAD. The algorithms employed include

Random Forest (RF), Extreme Gradient Boosting (XGBoost),

Elastic Net (Enet), Least Absolute Shrinkage and Selection

Operator (Lasso), Ridge, Stepglm, glmBoost, Linear Discriminant

Analysis (LDA), Gradient Boosting Machine (GBM), Support

Vector Machine (SVM), and Naive Bayes. Training was

conducted on the TCGA-PRAD dataset, with validation on the

GSE6956, GSE16120, GSE14206, and GSE32571 datasets. Each

combination was assessed based on its AUC value, and the best

model was chosen based on the combination with the highest

average AUC. The ROC curve analysis was conducted using the

pROC [1.18.0] package, and the outcomes were visualized using

ggplot2 [3.3.6].
2.6 Gene enrichment analysis

The study utilized GO to focus on molecular function (MF),

biological pathways (BP), and cellular components (CC). KEGG

Enrichment Analysis was used to explore gene functions and

genome functional details. For further analysis of mRNA

carcinogenesis, the ClusterProfiler package in R was utilized for

GO function analysis of potential targets and KEGG pathway

enrichment (24–26).
2.7 Expression and prognostic relevance of
HSPE1 in PRAD tissue microarrays analyzed
by immunofluorescence methods

First, immerse the paraffin sections in two tanks of xylene,

soaking them for 15 minutes each. Subsequently, transfer the

sections into absolute ethanol, followed by 95% ethanol, 85%

ethanol, 75% ethanol, and distilled water, allowing 5 minutes for

each solution. Upon completion of these steps, place the slices in a

repair box containing pH 9.0 EDTA alkaline antigen repair solution

and heat them in a pressure cooker for 2 minutes. After natural

cooling, the sections should be placed in PBS (pH 7.4) and washed

three times while shaking on a destaining shaker for 5 minutes each

time. Next, immerse the slices in a 3% hydrogen peroxide solution

and incubate at room temperature in the dark for 15 minutes.

Following this, apply the blocking solution dropwise to ensure even

coverage of the tissue, and allow it to block at room temperature for

30 minutes. Then, add the HSPE1 antibody (bs-7026R), diluted

with antibody diluent, onto the sections and incubate overnight at

4°C. The next day, wash the sections three times with PBS for 5

minutes each time. After gently shaking the slices dry, add a poly-

HRP secondary antibody corresponding to the species of the

primary antibody dropwise, and incubate at room temperature in

the dark for 10-20 minutes. The TSA fluorescent dye reaction
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solution should then be evenly applied to the sections and incubated

at room temperature for 15 minutes. Afterward, apply DAPI ready-

to-use dye on the sections and incubate at room temperature for 10

minutes in the dark. Finally, mount the slides and capture images

under a fluorescence microscope. Immunostaining intensity was

evaluated using a scale ranging from 0 to 3 to assess reaction

strength, and another scale from 1 to 4 to determine the percentage

of positive staining. The final expression score was calculated by

multiplying the intensity score by the percentage scale score,

yielding a total score that ranged from 0 to 5 for low expression,

and from 6 to 12 for high expression (27).
2.8 Statistical analysis

The expression level of HSPE1 in both PRAD and normal

tissues was assessed via the Wilcoxon rank-sum test. The log-rank

test was utilized for conducting the prognostic analysis. Spearman

correlation analysis was used to analyze the correlation between

genes and stemness scores. A p-value of less than 0.05 was set as the

threshold for statistical significance.
3 Result

3.1 Single-cell RNA-seq analysis and
screening of stem cell-related
marker genes

Four PRAD samples from the GSE168668 dataset were initially

selected for single-cell analysis. Cell quality control criteria included a

minimum of 200 RNAs per cell, a maximum of 5000 RNAs per cell,

and a maximum of 10% mitochondrial RNAs per cell (Figure 1A).

The filtered data underwent analysis using the HARMONY method

focusing on highly variable genes, followed by batch removal analysis

using these feature sets (Figures 1B–D). Variance analysis highlighted

the top 10 genes that exhibited significant differential expression

across cell samples, which include KLK3, KLK2, SYT4, S100P, and

PLA2G2A (Figures 1E, F). The four PRAD samples were divided into

11 different cell groups through single-cell analysis, including

Monocytes, Stem Cells, Neural Precursor Cells, Mitotic Fetal Germ

Cells, B Cells, Leydig Cells, Epithelial Cells, Tex Cells, NKT Cells,

Sertoli Cells, and Proliferating Cells (Figures 1G, H). Finally, an

analysis of the function of these cell populations revealed that the

stem cell populations were associated with extracellular matrix

(ECM) related genes (Figure 1I).
3.2 Screening for stem cell-related
prognostic differential genes

Using ‘ P < 0.05 and Log2 (Fold Change) >1.3 or Log2(Fold

Change) < −1.3’ as the criteria for differential analysis, 2110 genes

exhibiting significantly increased expression in PRAD compared to

normal prostate tissue were identified (Figure 2A). The 2110 genes
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that are highly expressed in PRAD were intersected with the stem

cell-related genes identified previously and analyzed for their

prognostic significance. Ultimately, 15 differential genes exhibiting

stem cell characteristics related to PRAD prognosis were identified

(Figures 2B, C). Further single-cell analysis showcased the abundance

of these 15 genes within each cell population (Figure 2D).
3.3 Molecular typing based on stem cell-
related genes

A NMF clustering algorithm was used to cluster the TCGA-

PRAD samples. In order to determine the most suitable approach

for dividing the TCGA-PRAD samples into subgroups for our

subsequent studies, the current standard of judging based on the

cophenetic curve is the clearest method. The optimal grouping is

identified by the top point with the largest decrease in the

cophenetic curve. Our study revealed that dividing the TCGA-

PRAD samples into three groups according to the cophenetic curve

is the most appropriate approach (Figures 3A–C). Analysis of the

expression of specific genes related to stem cells was conducted

across various groups. The results indicated a marked variance in

gene expression among the groups, whether the TCGA-PRAD

samples were categorized into 2 or 3 distinct groups. Moreover,

when the samples were separated into 2 groups, individuals in

cluster 1 showed a significantly superior prognosis in comparison to

those in cluster 2. Conversely, when the samples were split into 3

groups, patients within cluster 3 displayed the most favorable

prognosis while those in cluster 2 experienced the poorest

prognosis. (Figures 3D–G).
3.4 Analysis of the correlation between
stem cell-related genes and
immunotherapy for PRAD

The therapy known as immune checkpoint blockade (ICB) has

revolutionized cancer treatment in humans (28). For this research,

we made use of the TIDE algorithm, which focuses on Tumor

Immune Dysfunction and Exclusion, to forecast how effective

immune checkpoint inhibitors will be for every specimen

included in the TCGA-PRAD dataset (Figure 4A). The algorithm

TIDE assesses two different ways of tumor immune avoidance,

namely the impairment of cytotoxic T lymphocytes (CTLs)

infi l trating the tumor and the resistance of CTLs to

immunosuppressive elements. A high score of TIDE is linked to

low effectiveness of ICB and decreased survival after ICB therapy.

Upon dividing the TCGA-PRAD samples into two clusters, we

observed a discrepancy in the response to ICB treatment between

the clusters. However, this discrepancy was not evident when the

samples were divided into three clusters (Figures 4B, C). xCell is a

tool that evaluates the presence of immune cells by analyzing gene

expression data in order to detect possible subgroups of immune

cells and assess their proportion in tissues. In our study, we

employed a specific algorithm to analyze variations in immune
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cell infiltration levels in TCGA-PRAD samples across different

clusters. Our results suggest significant differences in various

immune cell types, such as T cell CD4+ memory, T cell CD4+

central memory, T cell CD4+ effector memory, Common lymphoid

progenitor, Endothelial cell, Macrophage M1, Mast cell, NKT cell, T

cell CD4+ Th1, T cell CD4+ Th2, and Tregs, regardless of whether

the samples were grouped into 2 or 3 clusters (Figures 4D–G).
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3.5 Combination of machine learning
algorithms to build diagnostic models

For early detection in PRAD patients, a diagnostic model

centered on PRAD was developed. The training utilized the

TCGA-PRAD dataset, while the validation involved four datasets:

GSE6956, GSE32571, GSE16120, and GSE14206. Out of 108 tested
FIGURE 1

Identification of stem cell marker genes. (A) Quality control of scRNA-seq for cell sub-population. (B–D) Plot of PCA analysis after combined
removal of batch effects. (E, F) Batch removal postcounts to find highly variable genes. (G, H) Stratification of PRAD samples by the umap method.
(I) Functional analysis of different cell populations.
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algorithmic combinations, the RF+NaiveBayes pair proved to be the

most effective for model construction (Figure 5A). The AUC value

for the TCGA-PRAD training data was 0.927, and the

corresponding AUC values for the validation datasets GSE6956,

GSE32571, GSE16120, and GSE14206 were 0.857, 0.664, 0.831, and

0.877, respectively. The RF+NaiveBayes algorithm helped identify

four critical genes: NME1, IMPDH2, PDCD5, and HSPE1

(Figure 5B). Additionally, ROC curves were plotted for these four

genes across all the datasets, including TCGA-PRAD, GSE6956,

GSE32571, GSE16120, and GSE14206 (Figures 5C–G).
3.6 HSPE1 identified as the most relevant
gene among stem cell marker genes for
PRAD prognosis and diagnosis

Utilizing the random forest algorithm, we conducted an analysis

on stem cell-related genes in TCGA-PRAD samples to determine

their association with patient overall survival (OS) and progression-

free survival (PFS). HSPD1, HSPE1, SFPQ, PRELID1, AP1S1, NHP2,

APRT, and GNG emerged as the top ten genes significantly linked to

both OS and PFS in these patients (Figures 6A, B). The Friends

analysis, a method that compares similarities between genes based on

gene ontology, revealed HSPD1 and HSPE1 as the most crucial genes
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in this context (Figure 6C). We also discovered notable differences in

the expression levels of HSPE1, SFPQ, PRELID1, and NHP2 when

comparing various groups based on pathological stages, survival

outcomes, and cancer progression status (Figures 6D–G). To

quantify this, we employed the one-class logistic regression (OCLR)

algorithm created by Malta et al. to calculate mRNAsi, a metric that

represents the stemness of cells based on gene expression profiles.

This analysis allowed us to gain insights into the molecular

characteristics associated with cancer progression and prognosis

based on the differential expression of these specific genes. Initially,

we presented the expression profiles of stemness score and stem cell

marker genes, followed by the calculation of correlation between stem

cell marker genes and stemness score. Our findings indicated that

HSPD1 and HSPE1 exhibited the strongest correlation with stemness

score (Figures 6H, I). Considering these results and the genes

incorporated in the diagnostic model, HSPE1 emerged as the most

relevant and significant gene among stem cell marker genes for

further investigation in PRAD progression.
3.7 Functional analysis of HSPE1 in PRAD

The samples in the TCGA-PRAD dataset were grouped

according to the median expression levels of HSPE1. Samples
FIGURE 2

15 stem cell-related differential genes identified as associated with PRAD prognosis. (A) Variance analysis volcano chart. (B) Expression of stem cell-
related differential genes. (C) Prognostic analysis of stem cell-associated differential genes. (D) Abundance of stem cell-associated differential genes
in different cell populations. ****p< 0.0001.
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exhibiting expression higher than the median were assigned to the

high HSPE1 expression group, whereas those with lower expression

were classified into the low HSPE1 expression group. Following this

categorization, differential expression analysis was performed with

P < 0.05 and Log2 (Fold Change) >1.3 or Log2(Fold Change) < −1.3

as the criteria for identifying significant differences (Figures 7A, B).

The functions of HSPE1 were analyzed based on differential genes
Frontiers in Immunology 07
using GO. Among the upregulated genes, HSPE1 was found to be

most related to the structural constituent of ribosome in the MF

module, ATP metabolic process in the BP module, and

mitochondrial inner membrane in the CC module. Among the

genes exhibiting lower expression levels, HSPE1 showed strong

correlation with actin binding in the MF category, organization of

the extracellular matrix in the BP category, and collagen-containing
FIGURE 3

Clustering of PRAD samples based on NMF cluster analysis methods. (A, B) Consensus map of NMF clustering. (C) Assessment of performance and
stability pertaining to clusters through multiple methods. (D, E) Survival differences between clusters. (F, G) Differences in the expression of stem
cell-related genes between different clusters. ***p< 0.001; ns, not significant.
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extracellular matrix in the CC category. The utilization of KEGG

enrichment analysis serves as an effective approach for dissecting

gene functionalities and advanced genomic functional insights.

Conversely, in the case of genes displaying higher expression

levels, HSPE1 demonstrated predominant relevance to

Huntington disease, while in contrast, among the genes displaying

lower expression levels, HSPE1 was primarily associated with the

PI3K-Akt signaling pathway (Figures 7C–F). GSEA results
Frontiers in Immunology 08
indicated a correlation between HSPE1 and the activation of

MYC (Figure 7G). MYC, a widely recognized oncogene, has been

linked to the advancement of PRAD. Given that MYC functions as a

transcription factor, our analysis explored the possibility of a

transcriptional regulatory association between HSPE1 and MYC,

which was validated by our findings (Figure 7H). Consequently, we

hypothesize that HSPE1 may promote oncogenesis by

activating MYC.
FIGURE 4

Stem cell marker genes are associated with immune infiltration in PRAD. (A) TIDE-based algorithm to assess responsiveness of TCGA-PRAD samples
to immunotherapy. (B, C) Analysis of differences in TIDE scores between clusters. (D, E) Immune cell score heatmap. (F, G) Immune Cell Score Box
Plot. *p< 0.05, **p< 0.01, ***p< 0.001,****p< 0.0001.
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3.8 Analysis of the correlation of immune
infiltration of HSPE1 in PRAD

The TCGA-PRAD dataset samples were grouped based on

HSPE1 expression to analyze differences in immune cell

infiltration levels between the groups. Variations in B cell plasma,

Mast cell, T cell CD4+ Th2, macrophage M2, and Granulocyte-

monocyte progenitor infiltration levels were observed (Figure 8A).

The distribution of immune cells infiltrating tumors in each TCGA-

PRAD specimen was also illustrated (Figure 8B). Additionally, a

correlation network diagram was generated to display the

relationship between HSPE1 expression and scores of immune
Frontiers in Immunology 09
cell infiltration calculated using the XCELL algorithm and TIP

algorithm, as well as the correlation analysis among the scores of

different immune cells (Figure 8C). Finally, we also verified the

above conclusions by single-cell analytical methods (Figures 8D–I).
3.9 Analysis of HSPE1-related
targeted drugs

To develop targeted drugs related to HSPE1, we initially

identified 50 genes that interact with HSPE1 using the STRING

website. Subsequently, we cross-referenced these genes with those
FIGURE 5

Identification of optimal diagnostic models based on machine learning algorithms. (A) Comparison of AUC values among diagnostic models created
by various algorithm combinations. (B) Number of genes incorporated in diagnostic models built using different algorithm combinations. (C–
G) Diagnostic significance of genes within diagnostic models across various datasets.
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positively associated with HSPE1 in the TCGA-PRAD dataset,

resulting in the identification of 10 key genes that not only

correlated with HSPE1 but also interacted with it (Figures 9A,

B). Network analysis revealed the central role of HSPE1 among

these genes (Figure 9C). Additionally, we analyzed the correlation

of HSPE1-related genes with androgen-related compounds using

the CMAP website, identifying five compounds with correlation
Frontiers in Immunology 10
scores exceeding 70 or falling below -70 in prostate cancer cells

PC3 and VCAP (Figures 9D, E). To further verify the affinity of

these compounds for HSPE1, we conducted molecular docking

studies. It is widely accepted that a Vina score of less than -7

indicates a favorable docking effect. Our analysis demonstrates the

strong binding affinity of these five compounds to HSPE1

(Figures 9F–H).
FIGURE 6

Multiple machine learning approaches identify genes most relevant to prognosis in PRAD. (A) Random forest algorithm identifies the top 10 genes
most associated with OS in PRAD. (B) Random forest algorithm identifies the top 10 genes most associated with PFS in PRAD. (C) Friend analysis
identifies key genes in stem cell-related genes. (D–G) Histogram of stem cell-related gene expression in different clinicopathologic parameters.
(H) Dryness score and gene expression distribution map. (I) Correlation analysis of dryness score and gene expression. *p< 0.05, **p< 0.01,
***p< 0.001.
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3.10 HSPE1 is highly expressed in PRAD
and is associated with poor
patient prognosis

This study underscores the pivotal role of HSPE1 as a gene

linked to PRAD metastasis. A total of 60 PRAD samples, along with

corresponding normal prostate tissue samples, were collected, and

immunofluorescence staining was conducted to investigate the
Frontiers in Immunology 11
differences in HSPE1 expression and its correlation with the

prognosis of PRAD patients. The blue staining represents the cell

nucleus, while the red staining indicates the expression of HSPE1.

The findings demonstrated a notably higher HSPE1 expression in

PRAD when compared to normal prostate tissue (Figure 10A).

Furthermore, boxplots were employed to visually represent the

variations in HSPE1 expression between PRAD and normal

tissues (Figure 10B). Additionally, the analysis revealed a
FIGURE 7

Functional analysis of HSPE1. (A) Variance analysis volcano map. (B) Differential Gene Expression Circle Map. (C–F) Functional analysis of HSPE1 in
PRAD based on KEGG and GO methods. (G) Gene enrichment analysis results identify HSPE1 as associated with MYC activation in PRAD. (H) HSPE1
is associated with MYC transcriptional regulation in PRAD.
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correlation between the expression of HSPE1 and the prognosis of

PRAD patients, indicating that individuals with heightened levels of

HSPE1 had a worse prognosis (Figure 10C). The tumors were

classified based on their HSPE1 expression, and the relationship

between tumor invasion and HSPE1 expression was evaluated.

Remarkably, the occurrence of tumor invasion in the high-

expression category of HSPE1 was notably higher than that in the

low-expression category (Figure 10D).
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4 Discussion

Analysis at the single-cell level can offer more precise and

detailed cellular data, allowing for a deeper exploration of the

dynamic changes and interactions among cells (29). By utilizing

single-cell analysis, researchers can acquire a comprehensive

understanding of cell functions, metabolism, signaling pathways,

and other biological features, ultimately providing more precise
FIGURE 8

Investigating the relationship between HSPE1 expression and infiltration of immune cells. (A) Heatmap showing scores of immune cells.
(B) Percentage of tumor-infiltrating immune cells in each sample. (C) Visual representation of the connection between HSPE1 expression and
immune cell infiltration scores. (D–I) Analysis at the single-cell level revealing the link between HSPE1 expression and immune cell infiltration.
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information for disease diagnosis and treatment (30). PRAD is a

prevalent malignancy affecting the male urinary tract, often

diagnosed in advanced stages with metastasis (31, 32). Early

detection is crucial for enhancing patient outcomes. In this study,

we utilized single-cell analysis on 4 PRAD samples to identify stem

cell marker genes. Furthermore, the advancement of tumors is

closely associated with alterations in the tumor microenvironment,

as tumor cells manipulate their surroundings by secreting different

chemokines and cytokines (33–36). Our analysis also explored the

correlation between stem cell marker genes and immune
Frontiers in Immunology 13
infiltration. Overall, our findings offer new insights into potential

markers for early PRAD detection and improved patient prognosis.

In spite of notable progress in treatments that have enhanced

the survival rates of cancer patients, the disease remains a leading

global cause of death. Recent findings suggest that one significant

reason many therapeutic approaches fail is their incapacity to

eradicate stem cells, which are essential for initiating and

sustaining tumor growth. Therefore, effectively targeting stem

cells offers a hopeful strategy for managing cancer patients (37).

In the context of single-cell analysis, 15 marker genes have been
FIGURE 9

Identification of compounds with high HSPE1 relevance. (A) Network Diagram of HSPE1 Interacting Genes. (B) Heatmap of co-expression of HSPE1-
interacting genes. (C) Similarity of HSPE1-related genes analyzed based on the Friends analysis method. (D, E) Analysis of HSPE1-related compounds
based on the CMAP website. (F–H) Molecular docking of HSPE1 with HSPE1-related compounds.
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identified, some of which have established regulatory relationships

with stem cells. For instance, an essential function in the self-

renewal of embryonic stem cells and the viability of differentiated

cells derived from them is carried out by the expression of HSPD1

(38). CCT2 has been found to sustain CSC properties and drive

tumor advancement in epithelial ovarian cancer by inhibiting the

proteasomal degradation of b-catenin (39). Additionally, the

upregulation of SFPQ in extracellular vesicles derived from

induced pluripotent stem cells has been demonstrated to

safeguard retinal Müller cells from damage induced by hypoxia

(40). The functional analysis of these cell populations revealed that

the stem cell population is associated with ECM-related genes.

There exists a significant interactive relationship between the ECM

and CSCs, which plays a crucial role in the occurrence,

development, and metastasis of tumors. For instance, the ECM
Frontiers in Immunology 14
provides a supportive microenvironment for CSCs, facilitating the

maintenance of their stem cell properties, proliferation, and

survival. Components of the ECM, such as collagen, fibronectin,

and glycosaminoglycans, can activate signal transduction pathways

and promote the self-renewal and differentiation of stem cells by

interacting with receptors on the surface of CSCs (41). Cluster

analysis was conducted on PRAD samples in the TCGA-PRAD

dataset using the NMF algorithm based on the expression of 15

selected stem cell-related genes. The cophenetic curve suggested

that dividing PRAD samples into 3 groups yielded the best

grouping. Regardless of whether PRAD samples were divided into

3 groups or 2 groups, significant differences in patient prognosis

were observed between the groups, with patients in cluster 2

consistently having the worst prognosis. To investigate the

reasons behind these differences in patient prognosis, the
FIGURE 10

HSPE1 is highly expressed in PRAD and is associated with poor patient prognosis. (A, B) Differential expression of HSPE1 in PRAD. (C) KM curve of
overall survival of HSPE1 in PRAD. (D) Analysis of the correlation between HSPE1 expression and tumor invasion. ***p< 0.001.
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response of patients to immune checkpoint inhibitor treatment

among different clusters was analyzed using the TIDE algorithm.

Results showed that patients in cluster 2 exhibited higher TIDE

scores and poorer responses to immunotherapy, potentially

contributing to the unfavorable prognosis observed in this cluster.

Due to the absence of clear diagnostic markers for PRAD

patients, many individuals are unfortunately diagnosed at an

advanced stage of the disease (42). To address this issue, we

conducted a comprehensive follow-up analysis. Our study

involved the development of a PRAD diagnostic model utilizing

various machine learning algorithms. This model, which focused on

the genes NME1, IMPDH2, PDCD5, and HSPE1, yielded promising

results. In the training set, our model demonstrated strong

performance, achieving an AUC value of 0.927. To further

validate the effectiveness of our diagnostic model, we tested it

against four different datasets. While one dataset showed

suboptimal results, the remaining three datasets consistently

confirmed the robustness and reliability of the diagnostic model

we have constructed. The stemness score of each sample in PRAD

samples was calculated using the OCLR algorithm developed by

Malta et al. (43). Within the TCGA-PRAD dataset, out of the 15-

stem cell-related marker genes that were chosen, only one gene’s

expression did not show a significant correlation with the stemness

score. This further validates the accuracy of the selected genes.

Utilizing the random forest algorithm, we identified the top 10

genes from a pool of 15 stem cell marker genes that exhibited

associations with both OS and PFS in PRAD patients. By integrating

the expression levels of these genes across various pathological

stages, we pinpointed HSPE1 as a significant stem cell marker gene

linked to the prognosis and progression of PRAD. KEGG functional

analysis confirmed that HSPE1 exhibits the strongest correlation

with the PI3k-Akt signaling pathway. This pathway, known as

PI3K/Akt/mTOR, plays a crucial role in CSCs by regulating

stemness, proliferation, differentiation, epithelial-to-mesenchymal

transition, migration, and autophagy (44). Therefore, we inferred

that HSPE1 may affect the stemness of PRAD cells by regulating the

PI3k signaling pathway. The GSEA results indicated a robust

correlation between HSPE1 and the transcription factor MYC.

Additionally, our analysis revealed a significant enrichment of

MYC in the HSPE1 promoter, thus confirming a direct regulatory

relationship between HSPE1 and MYC. The role of the oncogene

MYC in regulating stem cells in various tumors is well-established

(45–49). It is highly probable that HSPE1 influences the stemness

properties of PRAD by interacting with MYC. To develop targeted

drugs related to HSPE1, we analyzed the correlation between

HSPE1 and androgen receptor-related drugs using the CMAP

website. Our findings indicate a significant relationship between

HSPE1 and bicalutamide, a targeted drug commonly utilized in the

clinical treatment of PRAD patients. Furthermore, the molecular

docking results corroborate these findings. Molecular docking can

predict potential interactions between drug molecules and their

targets, thereby serving as a foundation for drug development. The

results of docking studies yield critical insights into the mechanisms

of drug action and are essential for a comprehensive understanding

of how drugs influence cellular biological processes. Numerous
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studies have validated the significance of genes as drug targets

through the application of molecular docking methods (50). Our

results highlight the potential of HSPE1 as a candidate for PRAD-

targeting drug development. In addition, we conducted

immunofluorescence experiments to examine the expression

levels and prognostic implications of HSPE1 in PRAD samples.

The findings from our study further support the significance of

HSPE1 in both the diagnosis and prognosis of PRAD. Our primary

analyses utilized the TCGA-PRAD dataset. To enhance the

robustness of our findings, it is crucial to include a larger sample

size and a diverse validation set. Furthermore, additional

experiments are necessary to confirm our conclusions.
5 Conclusion

Through single-cell analysis and utilization of multiple machine

learning algorithms, our research has established a significant

correlation between stem cell marker genes and the prognosis,

diagnosis, and immune infiltration in patients with PRAD.

Among these genes, HSPE1, identified as a key stem cell marker

gene, emerges as particularly crucial in the progression of PRAD.

Notably, HSPE1 exhibits a strong association with the diagnosis,

prognosis, and immune infiltration patterns in PRAD patients.

Furthermore, through experimental validation, the study

underscores the pivotal role of HSPE1 in PRAD. Ultimately, our

findings contribute valuable insights by introducing novel

biomarkers and potential therapeutic targets for early detection of

PRAD and enhancement of patient outcomes.
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