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Distinct soluble immune
checkpoint profiles characterize
COVID-19 severity, mortality and
SARS-CoV-2 variant infections
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Ionela-Larisa Miftode1,2, Petru Cianga3,4 and Egidia Miftode1,2

1Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa
University of Medicine and Pharmacy, Iasi, Romania, 2St. Parascheva Clinical Hospital for Infectious
Diseases, Iasi, Romania, 3Department of Immunology, Faculty of Medicine, Grigore T. Popa University
of Medicine and Pharmacy, Iasi, Romania, 4Laboratory of Immunology, St. Spiridon County Clinical
Emergency Hospital, Iasi, Romania
Introduction: Over the past four years, the COVID-19 pandemic has posed

serious global health challenges. The severe form of disease and death resulted

from the failure of immune regulatory mechanisms, closely highlighted by the

dual proinflammatory cytokine and soluble immune checkpoint (sICP) storm.

Identifying the individual factors impacting on disease severity, evolution and

outcome, as well as any additional interconnections, have become of high

scientific interest.

Methods: In this study, we evaluated a novel panel composed of ten sICPs for

the predictive values of COVID-19 disease severity, mortality and Delta vs.

Omicron variant infections in relation to hyperinflammatory biomarkers. The

serum levels of sICPs from confirmed SARS-CoV-2 infected patients at hospital

admission were determined by Luminex, and artificial neural network analysis

was applied for defining the distinct patterns of molecular associations with each

form of disease: mild, moderate, and severe.

Results: Notably, distinct sICP profiles characterized various stages of disease

and Delta infections: while sCD40 played a central role in all defined diagrams,

the differences emerged from the distribution levels of four molecules recently

found and relatively less investigated (sCD30, s4-1BB, sTIM-1, sB7-H3), and their

associations with various hematological and biochemical inflammatory

biomarkers. The artificial neural network analysis revealed the prominent role

of serum sTIM-1 and Galectin-9 levels at hospital admission in discriminating

between survivors and non-survivors, as well as the role of specific anti-

interleukin therapy (Tocilizumab, Anakinra) in improving survival for patients

with initially high sTIM-1 levels. Furthermore, strong associations between

sCD40 and Galectin-9 with suPAR defined the Omicron variant infections,

while the positive match of sCD40 with sTREM-1 serum levels characterized

the Delta-infected patients.
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Conclusions: Of importance, this study provides a comprehensive analysis of

circulatory immune factors governing the COVID-19 pathology, and identifies

key roles of sCD40, sTIM-1, and Galectin-9 in predicting mortality.
KEYWORDS

COVID-19, soluble immune checkpoints, sCD40, STIM-1, galectin-9, neural
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1 Introduction
Even though four years have passed since the outbreak of the

COVID-19 pandemic, it continues to pose a global health challenge.

The clinical features of SARS-CoV-2 infected patient are well

documented, ranging from asymptomatic, mild, and moderate to

critically ill patients who present acute respiratory distress

syndrome (ARDS), septic shock, metabolic acidosis, coagulopathy,

organ failure, and eventually death (1–3). The fate of the COVID-19

disease is decided by T cells, which have been an important

component of the cell-mediated immune responses (4–7). Despite

a general reduction in the lymphocyte count, the CD4+ and CD8+

T lymphocyte subsets are hyperactivated (1). In mild COVID-19,

SARS-CoV-2 induces a memory and Th1 phenotype with CD4+ T

cells expressing higher levels of IFN-g, IL-2 and TNF and a strong

response of CD8+ T cells with high expression of granzyme A, B,

and perforins (8). By contrast, in severe COVID-19 patients, the

immune responses are marked by exhausted T cells displaying high

levels of terminal differentiation/senescence markers (immune

checkpoints like Programmed Death-1 (PD-1), T cell

immunoglobulin and mucin domain-containing protein 3

[TIM-3), T cell immunoreceptor with Ig and ITIM domains

(TIGIT)], with proinflammatory CD25+ CD8+ T cells of reduced

cytotoxic potential dominating the T cell profile (9, 10). The

immunological profile in ARDS is further exacerbated by the

cytokine storm, which mainly arises from deficiencies in immune

regulatory mechanisms. Regulatory T cells (Tregs) are central in

mainta in ing the immune homeos ta s i s due to the i r

immunosuppressive potential of inhibiting excessive immune

responses. Interestingly, despite a significant expansion of Tregs

in severe cases compared to mild ones, their functionality is

deranged. They exhibit similarities with tumor-infiltrating Tregs,

characterized by a distinct transcriptional signature marked by

upregulation of FoxP3, overexpression of both suppressive

effectors (IL-10) and proinflammatory molecules (IL-32), and

apoptotic features (11–13). As a feedback loop, components of

the proinflammatory storm (IL-6 and IL-18) contribute to and

potentiate this disturbed Treg phenotype (12).

The up-listed dysfunctions in immune cells characterizing the

severe COVID-19 patients are associated with alterations in

immune checkpoints (ICPs). ICPs comprise paired receptor-
02
ligand molecules with co-stimulatory, inhibitory or dual effects on

immune activity, defense, regulation or self-tolerance (14, 15). The

up-regulation of inhibitory ICP expression on various immune

cells, such as T and B lymphocytes and NK cells, and their increased

interaction with specific membrane or soluble ligands in tissue

endothelium, antigen-presenting cells (APCs), and plasma are

tightly linked to their exhaustion and depletion in a variety of

viral infections, including COVID-19 (16, 17). Of note, soluble

isoforms of immune checkpoints (sICPs) may result from the

protease-mediated shedding of the membrane ICPs(mICPs) or by

alternative mRNA splicing, and likely form a complex circulating

immune regulatory system (18, 19). On one hand, the blood levels

of sICPs may reflect the extent of expression of their membrane-

bound counterparts, but interacting with their specific membrane

receptors or ligands, these ICPs may potentiate or inhibit the

activity of various immune cells. Indeed, a storm of sICPs was

associated with severe COVID-19 and their levels on hospital

admission were suggested they might serve as biomarkers of

disease progression and outcome (19, 20). Thus, understanding

the profile of soluble immune checkpoints in COVID-19 patients

with distinct forms of disease severity, ranging from mild to

moderate and severe, and their potential interlinks with multiple

inflammatory mediators would provide a broad picture of the

complex immune processes underlying the disease pathogenesis,

and potentially predict the individual pattern of evolution and

outcome. These observations would be crucial in the management

of the SARS-CoV-2 infected patients and for applying the most

effective therapeutic strategy.

Based on these considerations, we set up the evaluation of a novel

sICPs panel composed of commonly investigated sICPs (including

sCD40 with its ligands sCD40L and Gal-9; sCD25; sCD27) as well as

molecules recently found and relatively underexplored (such as

sCD30, s4-1BB, sTIM-1, sB7-H3 and sCD163), in relation to

previously investigated inflammatory mediators (3) and clinical

characteristics of SARS-CoV-2-infected patients (for instance, the

vaccination status, the presence of comorbidities, and the

administered therapy during hospitalization). Here we have

identified distinct baseline sICPs profiles at hospital admission

characterizing the 3 forms of disease severity (mild, moderate and

severe), the Delta vs. Omicron variant infections, and the non-

survivors’ group of COVID-19 patients. While sCD40 is central in

all defined profiles, the variations in distribution of four sICPs
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1464480
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Paranga et al. 10.3389/fimmu.2024.1464480
(sCD30, s4-1BB, sTIM-1, sB7-H3) and their interactions with

additional paraclinical and clinical variables help distinguishing

between the different subgroups of COVID-19 patients. Applying

an artificial neural network analysis to our complex patients’ data,

retrospectively revealed the importance of administering targeted

anti-inflammatory therapy (Tocilizumab or Anakinra) in defining the

outcome of patients with high baseline of sTIM-1 levels.
2 Methods

2.1 Patients’ selection and
general characteristics

This study involved a retrospective analysis of prospectively

collected blood samples from 153 individuals confirmed with

SARS-CoV-2 infection by qRT-PCR tests through nasopharyngeal

and oropharyngeal swab samples and admitted at “St. Parascheva”

Clinical Hospital for Infectious Diseases (Iasi, Romania) between

October 2021 and May 2022. The study included adult patients who

needed hospitalization of either gender and irrespective of their

vaccination status (yes/no). The patients with anti-inflammatory

medication administered prior to hospital admission,

immunocompromised (cancer, HIV/AIDS, transplant), pregnant or

with autoimmune diseases were excluded from the study, as detailed

in our previous manuscript (3). Additionally, since the first two cases

of Omicron infection were officially reported in Romania on the 4th of

December 2021, all the cases before 1st of December were designated

as Delta variant infections. Since more than 60% of the

nasopharyngeal/oropharyngeal swab samples sequenced by RNIPH

were reported as Omicron variant starting with 1st of January 2022,

all the cases after this date were categorized as predominantly

Omicron infections. Based on these considerations, the cases from

December 2021 were thus excluded from our analysis.

The patients were stratified according to disease severity in

mild, moderate and severe cases according to the international

clinical spectrum guidelines of SARS-CoV-2 infection, detailed in

ratio (3). The general patients’ characteristics are detailed in

Supplementary Table 1. Aliquots from the blood samples were

previously analyzed for investigating the inflammatory profile of the

COVID-19 patients stratified according to disease severity or SARS-

CoV-2 variant infections: CRP (C-reactive protein), suPAR (soluble

urokinase plasminogen activator receptor), sTREM-1 (soluble form

of triggering receptor expressed on myeloid cells 1), MCP-1/CCL2

(monocyte chemoattractant protein-1), HGF (hepatocyte growth

factor), IL-1b, IL-6, NLR (neutrophil-lymphocyte ratio), PLR

(platelet-lymphocyte ratio), fibrinogen, ferritin, LDH (lactate

dehydrogenase) (3).

Participation in the study did not affect patient management,

and attending physicians retained full discretion over

therapeutic decisions.

The study was reviewed and approved by Institutional Ethics

Committee – Grigore T. Popa University of Medicine and

Pharmacy of Iasi, no. 119/31.10.2021. The patients/participants

provided their written informed consent to participate in this study.
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2.2 Quantification of soluble
immune checkpoints

The blood samples were collected within 4 hours of hospital

admission in vacutainers with no anticoagulant and processed

within 6 hours of receipt. The blood was spun at 2000 G for

5 min, and the serum was separated in multiple aliquots of 500 ml
which were stored at -80°C until further analysis, as detailed in (3).

The serum concentration of distinct immune checkpoint

molecules was performed using a human custom pre-mixed

multi-analyte kit from R&D systems and performed on a

Luminex 100/200 analyzer in the Laboratory of Immunology of

the “St. Spiridon” Emergency County Hospital, Iasi. A fresh aliquot

of each patient sample, previously stored at -800C, was thawed and

centrifuged at 2,000 G for 5 min. The supernatants were 2-fold

diluted using the calibrator diluent RD6-52 prior to processing as

per the manufacturer’s guidelines. The investigated biomarkers

included the soluble forms of: CD40/TNFRSF5, CD27/TNFRSF7,

CD30/TNFRSF8, 4-1BB/TNFRSF9/CD137, CD25/IL-2Ra, TIM-1/

KIM-1/HAVCR, CD40 Ligand/TNFSF5, Galectin-9, B7-H3/

CD276, and CD163/M130/p155. Importantly, the kit allowed the

identification of total Galectin-9 levels, including both full-length

and truncated isoforms. Briefly, 50 ml of magnetic microparticle

cocktail were incubated with 50 ml of standards and prediluted

samples in designated 96-well plates for 2 hours at room

temperature on a horizontal orbital microplate shaker at 500 rpm.

Following the washing procedure (which included 3 separate

washes and the use of a magnetic device designed to

accommodate 96-well plates), the microparticles were further

incubated with 50 ml of diluted biotin-antibody solution for

1 hour at room temperature on a shaker at 500 rpm. After

another washing procedure, 50 ml of the diluted streptavidin-PE

solution were added for an incubation step of 30 min. The

microparticles were next resuspended in 100 ml of washing buffer

and the plates were read within 60 minutes.

The quantification of serum concentrations of various

inflammatory cytokines/chemokines (suPAR, sTREM-1, MCP-1/

CCL-2, HGF, IL-1b, IL-6) was performed in our previous study (3).

The values of additional hematological and biochemical markers

were collected retrospectively from patients’ electronic charts, while

the clinical variables were prospectively investigated by clinical

consult and anamnesis.
2.3 Statistical analysis

Statistical analysis was performed using SPSS, v25 (IBM SPSS

Software, Chicago, IL, USA) and Graph Pad Prism, v5 (Graph Pad

Software, San Diego, CA, USA). Data are presented as scatter dot

graphs, or box and whiskers plots. Each figure legend contains the

relevant statistical information: the n, total number of participants,

the significance p-value with the applied statistical tests. All data

were checked for both normality and variance using the Shapiro-

Wilk test prior further analysis with parametric tests (unpaired t-

test and one-way ANOVA with Post-hoc Tukey’s Multiple
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Comparison test) or non-parametric statistical tests, such as Mann-

Whitney test (the non-parametric counterpart to unpaired t-test),

and Kruskal-Wallis with Dunn’s Multiple Comparison test (the

non-parametric counterpart to one-way ANOVA). The positive or

negative associations between measured variables were assessed

using the Spearman’s correlation coefficients (R). R values

between 0.2-0.39 were treated as weak, between 0.4-0.59 as

moderate, between 0.6-0.79 as very strong and above 0.8 as

excellent correlation factors. The coefficient of determination R-

squared (R2) was used as a goodness-of-fit measure and the F-test

to determine the level of significance for each linear regression. The

receiver operating characteristic (ROC) curves were generated in

SPSS Statistics, v25 and the area under those curves (AUC) was used

as a measure of test performance. The optimal cut-off values were

determined as previously described in (21). The Kaplan-Meier

survival curves, together with the univariate and multivariate

analysis, and neural network models were also performed in

SPSS, v25. A modern feedforward artificial neural network

(multilayer perceptron/MLP) was used to investigate and reveal

the existence of non-linear relationships interconnecting our

patients’ clinical and paraclinical variables. To enable the

comparison between multiple generated models and minimize

overfitting, we performed a random assignment of 105 cases for

training (68.6%) and 48 samples (31.4%) for testing prior MLP

implementation. The hidden layer included 3 units and a Sigmoid

activation function, while the output layer included 2 units and

Softmax as activation function. Random forest models, detailed in

(22), were created in Spyder 5.0 (Python 13.2) utilizing the

RandomForestClassifier meta-estimator (n_estimators = 8) from

the scikit-learn module. The decision tree models were generated

using SPSS Statistics, v25, based on the Classification and

Regression Tree (CRT) growing method, where a minimum

number of 8 cases for the parent node, and 4 cases for the child

node were established. The p-values less than 0.05 were considered

statistically significant.
3 Results

3.1 COVID-19 cohort description

This study involved a retrospective analysis of prospectively

collected blood samples from 153 confirmed SARS-CoV-2 infected

patients upon hospital admission from October 2021 to May 2022.

The blood samples have previously been investigated for the

presence of a hyperinflammatory phenotype and any other

disparities linked to disease severity and mortality or SARS-CoV-

2 variant infection (Delta vs. Omicron) (3). The majority of

COVID-19 cases fell into the moderate (71 patients [46.4%]) and

severe (68 of patients [44.4%]) categories, with only 9.2% mild cases

(14 patients). Importantly, 98 patients in our cohort were Delta

variant-infected and the rest of 55 cases were categorized as
Frontiers in Immunology 04
Omicron infections. If the severe cases accounted for only 34.5%

among Omicron infections, then, an even distribution of severe

(50% of cases) and non-severe (the remaining 50% comprised by

mild and moderate cases) characterized the Delta variant cohort. All

mild cases survived during hospitalization, while the death rate

among moderate cases was 2.8% and considerably higher among

severe cases of 26.5% (p = 0.0012, Supplementary Table 1) with

significant differences between Delta and Omicron infections (p =

0.0012). Additionally, no notable differences in age distribution (p =

0.1786) and female-to-male ratio (p = 0.4071) were observed

between our groups of investigated COVID-19 patients.
3.2 Soluble forms of immune checkpoint
molecules CD40, CD25 and Galectin-9
associate with the severe form of
COVID-19

Since the hyperinflammatory phenotype and the different Th

responses were intensively investigated for COVID-19, we aimed to

extend our analysis towards the study of soluble immune

checkpoint molecules (sICPs) which are believed to bridge

between T and B cell activation, and the initiation of

hyperinflammation. From this perspective, both soluble immune

checkpoint receptors (sICRs) and ligands (sICLs) were included in

our study along with the marker of macrophage activation, the

soluble receptor CD163 (23). Among the investigated soluble forms

of co-stimulatory ICRs belonging to the tumor necrosis factor

receptor (TNFR) family (including sCD40, sCD27, sCD30, s4-

1BB, Figures 1A–D), only the sCD40 serum levels showed a

strong relation to disease severity, progressively increasing from

mild to severe cases with median values of 586.3 pg/mL, 803.2 pg/

mL, and 934.2 pg/mL for the three distinct groups of disease

severity (p = 0.0003, Figure 1A). Importantly, sCD25, the soluble

form of IL2Ra expressed on activated T cells and regulatory T cells

(Tregs) followed a similar rising pattern towards severe cases (p <

0.0001, Figure 1E). Additionally, sTIM-1 (soluble T-cell

immunoglobulin and mucin protein-1), the soluble form of the

co-stimulatory T cell receptor TIM-1 (TIM-1) known to be a key

regulator of Th2 responses, showed at least 3-fold increase in

moderate and severe COVID-19 cases (Figure 1F). Interestingly,

among sICLs, the soluble variants of both co-stimulatory molecules

CD40L and Galectin-9 exhibited elevated levels in severe COVID-

19 patients (Figures 2A, B), whereas the soluble form of the co-

inhibitory molecule B7-H3 did not display any noticeable pattern

(p = 0.3886, Figure 2C), and, if any, a reduction in its expression in

patients with severe COVID-19. While sCD40L showed similar

increased levels among severe and moderate cases, Galectin-9 was

specifically elevated in the serum of severe COVID-19 subjects

(p < 0.0001, Figure 2B). Interestingly, sCD163 did not display any

noticeable difference among the three distinct groups of disease

severity (p = 0.2282, Figure 2D).
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Next, we aimed to identify whether any of these soluble immune

checkpoint molecules may predict the disease severity. The ROC

analysis revealed that only Galectin-9 serum levels may yield an AUC

value over 0.700, with sCD40 and sCD25 giving significant but

moderate predictive values for severe COVID-19 (Supplementary

Table 2). The analysis of routinely investigated laboratory biomarkers

and clinical characteristics confirmed that proinflammatory markers

(CRP, ESR, ferritin, LDH), coagulation and fibrinolysis markers (e.g.,

fibrinogen, D-dimer), immune cells (neutrophils, eosinophils,

lymphocytes, monocytes) and Delta variant infection along with age

may predict disease severity (Supplementary Table 3). Incorporating

these parameters in the model of soluble ICP molecules notably

enhanced the AUC value (0.856, p < 0.001), and the inclusion of all

patient’s characteristic only resulted in a marginal improvement of

predicting disease severity (Supplementary Figure 1). Importantly, no
Frontiers in Immunology 05
parameter emerged as an independent predictive factor for disease

severity in the multivariate analysis (Supplementary Table 4).
3.3 Soluble immune checkpoint ligands
sCD40L, Galectin-9 and sB7-H3 distinguish
between Delta and Omicron
variant infections

Further, when comparing the Delta and Omicron infections, no

s ignificant di fferences emerged among soluble ICRs

(Supplementary Figure 2). By contrast, the soluble ICLs showed

marked changes: the Delta infections were characterized by at least

25% increase in sCD40L (Figure 3A) and Gal-9 (Figure 3B) and

50% reduction in sB7-H3 levels (Figure 3C) compared to Omicron-
FIGURE 1

Serum profile of soluble immune checkpoint receptors in mild, moderate and severe COVID-19 disease. Serum levels of (A) sCD40, (B) sCD27,
(C) sCD30, (D) s4-1BB, (E) sCD25, (F) sTIM-1 for each category of COVID-19 disease: mild, moderate or severe. The gray lines represent the mean ±
SEM (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, ns – not significant; Kruskal-Wallis with Dunn’s Multiple Comparison test).
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FIGURE 2

Serum profile of soluble immune checkpoint ligands and sCD163 in mild, moderate and severe COVID-19 disease. Serum levels of (A) sCD40L,
(B) Galectin 9, (C) sB7-H3, (D) sCD163 for each category of COVID-19 disease: mild, moderate or severe. The gray lines represent the mean ± SEM
(****p < 0.0001, *p < 0.05, ns – not significant; Kruskal-Wallis with Dunn’s Multiple Comparison test).
FIGURE 3

Serum profile of soluble immune checkpoint ligands and sCD163 in Delta and Omicron SARS-CoV-2 infections. Serum levels of (A) sCD40L,
(B) Galectin 9, (C) sB7-H3, (D) sCD163 for each category of SARS-CoV-2 infection: Delta or Omicron. The gray lines represent the mean ± SEM
(****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05; Kruskal-Wallis with Dunn’s Multiple Comparison test).
Frontiers in Immunology frontiersin.org06
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infected subjects. Interestingly, sCD163 showed a similar trend as

sB7-H3 (Figure 3D). In both Delta and Omicron variant infections,

sB7-H3 showed a moderate correlation with sCD163 (R = 0.30,

p = 0.0027 for Delta; R = 0.41, p = 0.0018 for Omicron), while only

in Omicron-infected subjects Gal-9 displayed a positive association

with both sB7-H3 (R = 0.54, p < 0.0001) and sCD163 (R = 0.37,

p = 0.0056). Some of these observations were also supported by the

ROC analysis, which identified moderate positive predictors like

sCD30, sTIM-1, sCD40L, Gal-9 and negative predictors such as

sB7-H3 and sCD163 for Delta infections (Supplementary Table 5).

Considered together, these soluble ICP molecules yielded an

improved AUC of 0.817 (p < 0.001), and, adding into the models

the general parameters which also gave significant prediction values

(Supplementary Table 6), led to an excellent AUC prediction value

of 0.925 (p < 0.001) (Figure 4A). When evaluating these parameters

in a multivariate analysis, several independent positive (Gal-9,

potassium levels, no vaccination anti-SARS-CoV-2) and negative

(sCD163, anemia) predictors for Delta infection emerged

(Supplementary Table 7).
Frontiers in Immunology 07
3.4 Artificial neural network models
identify sCD40, Galectin-9, sTIM-1 and
sCD30 as key determinants of mortality
prediction in COVID-19

When examining the impact on mortality by ROC regression

analysis, several soluble ICP molecules proved moderate predictive

capacity (sCD40, sCD30, sCD25) with Gal-9 providing the highest

AUC value of 0.773 (p < 0.001, Supplementary Table 8). Since the

highest death rate was observed for the severe group of COVID-19

patients (Supplementary Table 1), we next compared the initial

serum levels of these soluble ICPs between survivors and non-

survivors within this group. Importantly, sCD40, sCD30, sCD27,

and Gal-9 showed a significant 30%-70% increase in the non-

survivors’ cohort (Supplementary Figures 3, 4). Interestingly the

model arising from these variables yielded only a moderate

improvement in our prediction value, and only when correcting

for confounders (Supplementary Table 9), the AUC reached values

above 0.850 (Figure 4B). Among all analyzed variables, LDH proved
FIGURE 4

ROC curves resulted from the models comprising the positive determinants of Delta infection or COVID-19 mortality, and corrected for
confounders. (A) Biomarkers of Delta infection: sCD30, sTIM-1, sCD40L, Galectin-9, sB7-H3, sCD163. General confounders are described in
Supplementary Table 7, while extended confounders additionally include all patient characteristics described in Supplementary Table 6.
(B) Biomarkers of COVID-19 mortality: sCD40, sCD30, sCD25, Galectin-9. General confounders are described in Supplementary Table 10, while
extended confounders additionally include all patient characteristics described in Supplementary Table 9. The AUC values between 0.7-0.8 define a
very good discrimination, the AUC values > 0.8 denote an excellent discrimination and the AUC values > 0.9 denote an outstanding capacity
of prediction.
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to be an independent predictor for disease mortal ity

(Supplementary Table 10). While correcting for disease duration,

the univariate Cox regression analysis validated all the previous

findings, and the multivariate Cox analysis identified Gal-9 as a

positive independent predictor (Table 1). Among all predictors, the

identified cut-off values for sCD25 (1164 pg/mL) and Gal-9 (23.4

ng/mL) best discriminated between survivors and non-survivors, as

revealed by the Kaplan-Meier curves (Figure 5).

Since the linear classical statistical models provided less accurate

prediction capacity for mortality than for disease severity or Delta

variant infection, we next aimed to use artificial neural networks

(ANN) to discern complex patterns within our data and to harness

the predictive potential of our biomarkers to anticipate patient

outcomes. Unlike linear models, which assume a linear relationship

between predictors and outcomes, the non-linear models of neural

network analysis can capture intricate and non-linear relationships

inherent in biological data (24, 25). For this, we considered 70% of

patient data for training and the rest was used to test and validate the

generated models. Surprisingly, these models outreached the

predictive value of our biomarkers for fatal outcome, leading to an

AUC value of 0.937 (p < 0.001, Figure 6A). Also, the accuracy of

prediction was higher than the one in the training set, 93.8% vs.

90.5%. Interestingly sTIM-1, which has been reported as an

alternative entry receptor for SARS-CoV-2, exhibited the highest

weight in the generated models, surpassing markers identified in

previous linear models, such as Gal-9, sCD30 and sCD40. At this

point we hypothesized that the applied therapymight have influenced

the ultimate outcome, shedding unexpected light on the importance

of sTIM-1 in the neural network analysis. Indeed, the presence of a

large number of high outliers for sTIM-1 at hospital admission in the

survivors’ group was linked to the administration of anti-interleukin

therapy (AIT) during hospitalization, either using anti-IL6

monoclonal antibody therapy (Tocilizumab) or an IL-1R antagonist

(Anakinra). Importantly, no significant differences in the levels of
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investigated soluble ICP molecules were detected between the three

distinct groups of treatment options: Tocilizumab, Anakinra or non-

AIT, and thus, therapy choice was considered in our further analysis

(Supplementary Figures 5, 6). Introducing the administered therapy

in our neural network models, the importance of sTIM-1 was

markedly diminished, falling below that of Gal-9, sCD30 and

sCD40, suggesting that AIT improved the final outcome in patients

initially presented with high levels of sTIM-1 (Figure 6B).

Furthermore, incorporating additional confounders into our

analysis, such as age, gender, vaccination status, and the presence

of various comorbidities, improved even more the prediction capacity

(AUC 0.954, p < 0.001) and highlighted the significance of sCD163 in

discriminating between survivors and non-survivors (Figure 6C).
3.5 Distinct association patterns of soluble
immune checkpoints are linked to different
forms of disease severity or SARS-CoV-2
variant infections

At this point, we aimed to further investigate any potential

association between soluble immune checkpoint molecules and

previously identified pro-inflammatory biomarkers to correlate

with disease severity and/or mortality. Interestingly, sTIM-1 and

sCD40L negatively associated with the majority of the other soluble

immune checkpoint molecules and pro-inflammatory biomarkers

in mild cases, while in moderate and severe patients, those negative

associations (particularly between sTIM-1 and suPAR, sTREM-1 or

MCP-1) diminished and even reversed in the non-survivors’ group

(Figure 7 and Supplementary Figure 7). sTREM-1 and MCP-1 also

showed very good correlations with sCD40 (R = 0.58, p = 0.0118;

R = 0.59, p = 0.0091), sCD30 (R = 0.33, p = 0.1827; R = 0.49, p =

0.0379) and s4-1BB (R = 0.61, p = 0.0078; R = 0.69, p = 0.0014),

which further correlated with urea and creatinine levels in the non-
TABLE 1 Univariate and multivariate Cox regression analysis of soluble IC molecules in COVID-19 patients.

Variable Univariate analysis Multivariate analysis

HR 95% CI p-value HR 95% CI p-value

sCD40 (pg/mL) 1.000 1.000-1.001 0.001 1.000 0.999-1.001 0.896

sCD27 (ng/mL) 1.051 1.015-1.090 0.006 0.987 0.907-1.075 0.771

sCD30 (pg/mL) 1.002 1.000-1.004 0.018 1.002 0.999-1.005 0.151

s4-1BB (pg/mL) 1.002 1.000-1.005 0.098

sCD25 (pg/mL) 1.001 1.000-1.001 0.023 1.000 0.999-1.001 0.630

sTIM-1 (pg/mL) 0.999 0.996-1.002 0.509

sCD40L (ng/mL) 0.983 0.929-1.040 0.544

Galectin-9 (ng/mL) 1.075 1.037-1.114 < 0.001 1.085 1.012-1.162 0.021

sB7-H3 (ng/mL) 1.013 0.987-1.040 0.336

sCD163 (ng/mL) 1.000 1.000-1.001 0.717
sTIM-1, soluble T cell immunoglobulin domain and the mucin domain protein-1, sCD40L, soluble CD40 ligand; HR, hazard ratio; CI, confidence interval; p, statistical significance coefficient.
Significant p-values are highlighted in bold.
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survivors’ group (Supplementary Figure 8). Importantly, sTIM-1

revealed a strong association with D-dimers (R = 0.62, p = 0.0062,

Supplementary Figure 6). Moreover, strong correlations of sCD40

with sCD27, Gal-9, and suPAR were observed in Omicron

infections, while a strong association of sCD40 with sTREM-1

was noticed in Delta infections (Supplementary Figure 9). Based

on these observations and considering the prognostic values for

disease mortality of suPAR, sTREM-1 and MCP-1, we included

those biomarkers in the neural network analysis and reached an

outstanding model of mortality prediction of AUC 0.977 with

suPAR, sTREM-1, sCD30, Galectin-9 and sTIM-1 providing the

highest weight in our models (Supplementary Figure 10). These

results clearly show that neural networks reveal novel determinants

of disease severity and mortality and helps in stratifying the

importance of various clinical and paraclinical parameters from

complex data. Nevertheless, our comprehensive observations

indicate that distinct subsets of T cells, B cells and APCs are

activated and act differently across varying degrees of disease

severity (mild, moderate, severe) or SARS-CoV-2 variant

infections (Delta vs. Omicron).
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3.6 Comparison of artificial neural network
models with other machine
learning algorithms

We next aimed to compare the performance of our generated

ANN models with commonly used machine learning algorithms as

decision trees (DTs) or random forests (RFs). The RT algorithm

works by assembling multiple decision trees to generate a single,

more accurate prediction or outcome, and reduce the risk of

overfitting. The Random Forest model, developed using Python

version 13.2 and based on the initial levels of soluble immune

checkpoints, proved a strong predictive accuracy of 80.4% in

forecasting patient mortality. This model also validated the

significance of the previously identified biomarkers using ANN,

particularly Gal-9, sTIM-1, and sCD40, in the context of mortality

prediction (Figure 8A). Incorporating anti-interleukin therapy and

additional clinical data into these models, further validated the

importance of sCD163, while the significance of sTIM-1 diminished

(Figure 8B, prediction accuracy = 84.7%). This adjustment suggests

that sCD163 may play a more critical role in determining survival,
FIGURE 5

Kaplan Meier survival curves for the indicated cut-off values of the soluble immune checkpoints receptors and ligands: (A) sCD40, (B) sCD30,
(C) sCD25, (D) Galectin-9. 0 = bellow cut-off value, 1 = above cut-off value (**p < 0.01, *p < 0.05, ns – not significant; Wald test).
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whereas sTIM-1’s influence is reduced when factoring in the anti-

interleukin therapy (Tocilizumab or Anakinra). These observations

align with the results obtained from the ANN models, reinforcing

the consistency and reliability of our findings across different

predictive approaches. Generating DTs using SPSS helped
Frontiers in Immunology 10
building models of accuracy over 85%. Interestingly, the first

model revealed specific cutoff values for key soluble ICPs: 18.57

ng/mL for Gal-9, followed by 3.86 ng/mL for CD40L, 629.36 ng/mL

for sCD163 and 84.76 pg/mL for s4-1BB (Supplementary

Figure 11). Additionally, a favorable response to anti-interleukin
FIGURE 6

Neural network models of outcome prediction. (A) ROC analysis of the neural network model based on the serum levels of soluble immune
checkpoint molecules and their normalized importance. Accuracy of prediction was 93.8% compared to 90.5% in the training set. (B) ROC analysis
of the neural network model based on the serum levels of soluble immune checkpoint molecules corrected for the therapy administered during
hospitalization. Accuracy of prediction was 89.6% compared to 87.6% in the training set. (C) ROC analysis of the previous neural network models
corrected for the therapy received during hospitalization, the presence of comorbidities, vaccination status, age and gender. Accuracy of prediction
was 89.6% compared to 86.7% in the training set.
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therapy was linked to elevated levels of either Gal-9 above 35.42 ng/

mL or B7-H3 exceeding 15.7 ng/mL (Supplementary Figure 12).

Overall, these data validate and complement the ANN findings,

underscoring the critical role of soluble immune checkpoints in

determining the patient outcome in COVID-19.
4 Discussion

Immune checkpoints receptors and ligands are molecules with

stimulatory, inhibitory or dual functions in immune cells which

maintain the immune surveillance and prevent excessive activation,
Frontiers in Immunology 11
while ensuring the efficient and effective defense responses against

pathogens or cancer cells (14, 26).

Most of the soluble isoforms of immune checkpoints (sICPs)

are believed to result from the proteolytical cleavage of membrane-

bound proteins or by alternative splicing of mRNA (18) with the

role to compete with and counteract the activity of the membrane-

bound forms, detailed in Supplementary Table 11. The clinical

relevance of sICPs remains largely unknown, despite emerging

evidence on their dysregulation in patients with viral infections

(including the SARS-CoV-2 infection) (17, 20), autoimmune

diseases (27) or cancer (18, 28). Resulting from the proteolytical

shedding of their membrane bound counterparts upon
FIGURE 7

Heat map describing the association between soluble immune checkpoint molecules and previously investigated pro-inflammatory biomarkers in
mild, moderate and severe cases of SARS-CoV-2 infection. The graph from the bottom depicts the differences in various associations between
survivors and non-survivors (R = correlation coefficient).
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inflammation, sICPs function, in a first instance, as a mirror of

hyperinflammation and activity of metalloproteinases, but also

reflect the profile of distinct subsets of immune cells and their

checkpoint surface expression. Additionally, while some sICPs

maintain the biological activity of their membrane isoforms,

others act as molecular decoys or form soluble complexes by

interacting with their soluble ligands or receptors (18).

Understanding the distinct profile of sICPs associated with

various forms of infection is key in decoding the molecular

mechanisms of disease pathogenesis which can further provide

crucial insights for devising the most effective therapeutic approach.

Here we analyzed the variations in soluble checkpoints

receptors and ligands in relation to COVID-19 severity, SARS-

CoV-2 variant infection and mortality and compared them to

standardized proinflammatory molecules and additional

hematological and serological biomarkers. We included in our

analysis a list of commonly investigated sICPs (sCD40 with its

ligands sCD40L and Gal-9; sCD25; sCD27) as well as molecules

newly found and relatively less studied in the literature, such as

sCD30, s4-1BB, sTIM-1, sB7-H3 and sCD163. We will continue to

discuss the main findings of our study related to each mentioned

soluble molecule.

The CD40-CD40L interaction is crucial for immune regulation

and activation. This interaction triggers bidirectional signaling of

both antigen-presenting cells (APCs, such as dendritic cells,

macrophages, B cells) and T cells, leading to upregulation of co-

stimulatory molecules and cytokine secretion. Indeed, activation of

CD40 on dendritic cells promotes their maturation and enhances

their B7 ligands expression, while CD40 signaling in monocytes and

macrophages induces the secretion of pro-inflammatory cytokines

such as IL-1b and IL-6 (29, 30). CD40 on B cells is of paramount

importance for proper activation of B cells and the generation of

humoral immune responses. CD40L (also known as CD154) was
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initially identified on stimulated CD4+ T cells, but now it is known to

have a broader immune cell expression, including stimulated CD8+ T

cells, mast cells, basophils, and platelets (31, 32). The membrane

expression of CD40L on platelets is linked to their activation and

further stimulates leukocytes and endothelial cells, by direct

engagement of CD40L to CD40 and P selectin to its ligand PGSL-

1, to produce proinflammatory cytokines and adhesion molecules

(33). Importantly, direct binding of SARS-CoV-2 virions to platelets

initiates multiple signaling intracellular pathways, including the

AKT-PKC cascade which upregulates the platelet membrane-

bound CD40L expression and the release of soluble CD40L

molecules stored in platelet granules upon their activation (34, 35).

Both soluble isoforms of CD40 and CD40L may also be generated by

the shedding of their extracellular domains through the action of

specific metalloproteinases such as ADAM10 and ADAM17 (also

known as TNF-alpha converting enzyme, TACE) activated upon

hyperinflammation conditions (36, 37). Thus, the CD40-CD40L

interaction is believed to significantly contribute to monocyte

activation, cytokine storm and hypercoagulation associated with

severe COVID-19 (29). We here reported increasing levels of

sCD40 dependent on disease severity, from mild to moderate and

severe COVID-19. In our cohort, sCD40 showed a positive

correlation with the pro-inflammatory biomarker IL-6 in mild

cases, correlation that diminished in moderate and severe cases,

suggesting multiple intricated molecular mechanisms despite

increased levels of both biomarkers. Importantly, the non-survivors’

group presented at hospital admission a high association between

sCD40 with both MCP-1 and sTREM-1, two well-known biomarkers

of monocytes and macrophage overactivation during sepsis and

hyperinflammation (3). Interestingly, despite no significant

correlation between sCD40L and sCD40 in the non-survivor group,

sCD40L showed a high association with HGF and moderate with

platelet number and fibrinogen, possibly pointing towards a sepsis
FIGURE 8

Random forest models of mortality prediction. (A) Model 1 – only soluble immune checkpoints included. The accuracy for prediction was 80.4%,
while the accuracy for training was 97.1%. (B) Model 2 – Model 1 corrected for the therapy received during hospitalization, the presence of
comorbidities, vaccination status, age and gender. The accuracy for prediction was 84.7%, while the accuracy for training was 98.1%. Bars represent
the importance of each marker in the prediction models.
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hypercoagulable profile characterized by activated platelets releasing

higher amounts of both HGF and soluble CD40L. Indeed, this

observation is in line with the previously described role of sCD40L

as biomarker of unfavorable outcome in patients with severe sepsis or

septic shock. These associations in the non-survivors’ groupmay thus

indicate a mechanism of interaction between platelets and monocytes

that resulted in the release of high amount of soluble CD40.

Additionally, only sCD40 and not sCD40L showed a linear increase

pattern from mild to moderate and severe cases (sCD40L did not

differentiate between the moderate and severe groups), suggesting

additional mechanisms, and possibly, additional cellular contributors

in generating the pool of soluble CD40, such as fibroblasts, epithelial

and endothelial cells stimulated by hyperinflammatory cytokines

characterizing the severe patient cohort.

CD30, another member of the tumor necrosis factor receptor

superfamily, is generally strongly expressed in classical Hodgkin
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lymphoma (cHL) and anaplastic large cell lymphoma, a rare

subtype of NHL, with a variable expression observed in T-cell,

NK cell or B cell lymphomas (38, 39).

In non-malignant scenarios, CD30 is mainly expressed on a

limited subset of activated T cells, B cells, NK cells and regulatory T

cells providing pro-survival and anti-apoptotic roles (39, 40). In

inflammatory diseases, the extracellular region of the membrane-

bound CD30 is easily cleaved by protein hydrolases into soluble

fragments (sCD30) (41), thus generally being considered a marker

of a subset of activated effector T cells that produce high amount of

IFN-g and IL-5 that exhibit enhanced help activity for B cell Ig

production and maintains the Th1/Th2 balance state (42, 43). These

CD30+ CD4+ T cells are essential also for sustaining the follicular

germinal center responses with the generation of B cells with

antigen receptors of high affinity (44). In our cohort, a strong

association between sCD30 and CD40 was observed only in mild
FIGURE 9

Schematic representation of the proposed model for the dynamics of soluble immune checkpoints in COVID-19. (A) The network model based on
the serum levels of soluble immune checkpoint molecules and their interconnected associations in different forms of disease severity. Soluble
isoforms of CD40, Gal-9 and TIM-1 are key players interconnecting the soluble variants of co-stimulatory immune checkpoint receptors CD27,
CD25, CD30, 4-1BB. The profile of soluble immune checkpoint molecules in mild cases is suggestive for efficient cooperation of T and B cell
responses and proper antigen presentation cell (APC) functioning. (B) The network model based on the serum levels of soluble immune checkpoint
molecules and their interconnected associations in different forms of variant infection: Delta vs. Omicron. Soluble forms of CD40 and Gal-9 also
play central role and interconnect to soluble B7-H3 and CD163 molecules. Red lines indicate positive associations, while blue lines indicate negative
associations with dot lines designated for moderate correlations and full lines for strong correlations. The size of circles and squares reflects the
relative median values of represented soluble biomarkers for each category of patients.
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cases suggesting proper T-B cell responses, while this association

reduced in moderate cases and even more in severe patients.

However, recent studies have highlighted CD30 as a marker of

activated effector regulatory T cells, which are critical for the

regulation and/or suppression of memory T and B cells responses

(45). These observations are important since, despite a significant

increase in the serum levels of both sCD40 and sCD30, sCD30

showed a clear dissociation from sCD40 in non-survivors and a

clear association with sCD25, a soluble fragment released from the

membrane bound CD25 which is highly expressed on regulatory

CD25+ FOXP3+ Tregs, suggesting an increase in the Tregs

population within those individuals. These observations are in

line with the previous studies reporting a rising percentage of

deranged CD25+ FOXP3+ Tregs among CD4+ T cells in severe

compared to mild COVID-19 patients which returned to normal

levels only in the recovering individuals (4, 11–13, 46). However,

compared to sCD30, sCD25 significantly discriminated between

mild, moderate and severe patients, suggesting additional cellular

sources. For instance, the proinflammatory CD25+ CD8+ T cells

with lower cytotoxic activity are expanded in severe COVID-19

patients, being an important source of sCD25 and cause of delayed

clearance of virus (9, 47–49). Interestingly, the initial correlation

seen between sCD40 and sCD30 in mild cases was replaced among

non-survivors, by the association between sCD40 with s4-1BB and

sCD27, the soluble forms of the counterpart surface markers of

memory CD8+T cells. These observations taken together, indicate a

shift of the immune profile towards Tregs and pro-inflammatory

CD8+ T cells which suppress the proper T-B cell responses and

delays the virus clearance. Indeed, similar to a previous study (17),

we confirmed that both s4-1BB and sCD27 were linked to a higher

disease severity rate.

Next, we noticed that, in the non-survivors’ group, Gal-9

markedly associated with all sCD40, sCD27 and s4-1BB. Gal-9 is

expressed by a variety of immune cells including T and B cells,

Tregs, neutrophils, monocytes, macrophages, dendritic cells and are

secreted via non-classical pathways or freely released upon cell

death with multiple biological functions depending on the

interacting receptor CD40, PD-1, TIM-3, 4-1BB (50–52). In a

variety of inflammatory conditions and infectious diseases, Gal-9

suppressed the B cell receptor signaling (53) and was commonly

associated with exhausted T cells and impaired cytotoxic NK cells

(54). Furthermore, Gal-9 through interaction with PD-1 and TIM-3

inhibits T cell proliferation and induces cell-death (55, 56). We, as

others (51), found significantly higher levels of Gal-9 in patients

with severe disease (ranging from 5.4 ng/mL to 59.7 ng/mL)

compared to mild/moderate cases (ranging from 4.1 ng/mL to

23.4 ng/mL) with the highest values observed in the non-

survivors’ subgroup (ranging from 19.0 ng/mL to 59.7 ng/mL)

and positive association with pro-inflammatory/sepsis biomarkers

(sTREM-1, MCP-1, IL-6, NLR, PLR, VSH) and with neutrophils

and eosinophils numbers. This last result was expected, since

immune activation following SARS-CoV-2 infections causes Gal-9

shedding from neutrophils and eosinophils (51). Interestingly, Treg

cells also express high levels of Gal-9 and the Gal-9/Tim-3 signaling

pathway further promotes the induction of Tregs, suggesting

additional mechanisms for Gal-9 to exhibit suppressive immune
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responses (57). Additionally, Gal-9 binding to 4-1BB in a region

distinct from the binding site of its natural ligand (4-1BBL),

augments 4-1BB signaling and activity in T cells and NK cells to

produce proinflammatory molecules (TNF-a, MCP-1) Thus, the

Gal-9 induced release of TNF-a and MCP-1 activates

metalloproteinases (e.g., ADAM10, ADAM17) which further

mediates the ectodomain shedding of 4-1BB from T cells (58)

and the scavenger receptor CD163, who’s expression is induced by

the immunosuppressive IL-10 on the membrane of M2

macrophages, cells with anti-inflammatory activity (59). Indeed,

s4-1BB showed strong associations with MCP-1 and sCD163 at

baseline in the non-survivors’ group from our study. However,

shedding of 4-1BB further limits the Gal-9 pro-inflammatory

activity (58). These observations are important, since the

suppressive immune activity of both Gal-9 and sCD163 in

association with high sCD40 basal levels were mainly revealed by

the neural network models corrected for the therapeutic strategy,

age, vaccination status and the presence of comorbidities.

Further, the neural network analysis identified TIM-1 to bring

the highest contribution among the investigated checkpoint

molecules in discriminating between survivors and non-survivors.

Our analysis further revealed important correlations between

sTIM-1 with sCD40, MCP-1, Gal-9, sTREM-1 and suPAR.

Among non-immune cells, TIM-1 glycoprotein is expressed by

lung and kidney epithelial cells where it serves as a

phosphatidylserine receptor and thus, as an alternative receptor to

ACE-2 for SARS-CoV-2 (60). The soluble form is released from the

membrane bound TIM-1 by proteolytical cleavage mediated by

ADM-10 and ADAM-17 (61).

Not surprisingly, sTIM-1 and sCD40L strongly correlated in mild

cases of infections, since SARS-CoV-2 modulates their cellular

expression of infected epithelial cells and platelets (34, 35).

However, this correlation was inversed in the non-survivors’ group,

possibly indicating the existence of additional cellular sources for

sTIM-1, including immune cells such as Th2 cells, NK cells, and

regulatory B cells within these individuals (62, 63). Since sTIM-1 still

binds phosphatidylserine, it may serve as a negative regulator of

cellular TIM-1 (61). For instance, TIM-1 mediates T cell trafficking

by directly binding the adhesion receptor P-selectin during

inflammation (64). Blocking TIM-1 signaling in B cells enhances

the type 1 interferon response within these cells, leading to increased

B cell activation and antigen presentation, along with heightened co-

stimulation capabilities (62, 63). Importantly, in our patient cohort,

all the cases with initially high sTIM-1 levels (over 300 pg/mL) who

received specific anti-inflammatory therapy (Tocilizumab or

Anakinra) survived, pointing towards the beneficial effect of this

therapy in influencing the final outcome of selected patients. The

proposed ANN and Random Forest models highlighted the role of

soluble TIM-1 and Gal-9 in predicting mortality among COVID-19

patients, effect that was diminished when anti-interleukin therapy

was added into these models. This finding suggests that the

administration of Tocilizumab or Anakinra may have been

particularly beneficial for patients with initially elevated soluble

sTIM-1 and Gal-9 levels, increasing their chance of survival. This

observation becomes even more relevant when considering the strong

association between sTIM-1 and D-dimers, indicating a heightened
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risk for coagulopathy or thrombotic events in patients with initially

elevated sTIM-1 levels. Thus, high sTIM-1 and Gal-9 levels may

reflect an intensified inflammatory response, and by modulating the

immune response, this targeted therapy could help reduce

inflammation, leading to better clinical outcomes for these patients.

When comparing the Delta and Omicron variant infections, few

differences in the checkpoint ligands’ profile emerged. First, a

reduction in the sCD40L and Gal9 levels were noticed in the

Omicron variant group, which was associated with a lower

mortality rate among affected individuals. Alongside this decrease,

there was a concurrent rise in sB7-H3 levels, a newly investigated

molecule in literature. sB7-H3 is a functionally active form that is

released by the ectodomain shedding of membrane-bound CD276

(mB7-H3) from the surface of monocytes, dendritic cells and

activated T cells by various metalloproteinase (65). B7-H3 has been

described as a checkpoint molecule with dual function, serving both

as a stimulatory factor for T cell activation and IFN-g production, as
well as exhibiting inhibitory effects on T cell proliferation and Th1

differentiation (66–68). This is important since in our analysis, sB7-

H3 appeared to play a primarily inhibitory role by limiting

overactivation and/or exhaustion of T cells in individuals infected

with the Omicron-variant.

Our analysis is however limited to a relatively small sample size

and the focus on only ten distinct soluble immune checkpoint

molecules. This highlights the need for future studies to cross-

validate or ensemble these models on larger and/or different

datasets, which could further enhance prediction accuracy and

reduce the risk of overfitting. With the aim of exploring a series

of less studies ICPs, this study primarily focused on examining

stimulatory checkpoint molecules, while including only few

inhibitory ones, specifically sTIM-1 and Gal-9. Future studies

should also incorporate more well-known inhibitory molecules,

such as LAG-3, GITR, PD-1, and CTLA-4, whose alterations are

commonly associated with viral infections and COVID-19, such as

LAG-3, GITR, PD-1, or CTLA-4 (69). For instance, LAG-3

expressed primarily on exhausted CD8+ T cells, acts by inhibiting

T cell proliferation and cytokine production, thereby acting as a

compensatory mechanism to excessive immune activation. Elevated

levels of soluble LAG-3, along with sTIM-3, s-GITR, sPD1, and

sCTLA-4 were consistently higher in patients with severe and

critical COVID-19, and these levels were negatively correlated

with the absolute counts of CD4+ and CD8+ T cells (17, 19).

Importantly, Gal-9, the ligand of TIM-3 mirrored these findings,

further validating the importance of our study.
5 Conclusions

This study is of importance as it provides baseline values for a

series of soluble immune checkpoint receptors and ligands for which

only limited data exist in literature, and identify the biomarkers

associated with disease severity and mortality in COVID-19. For

instance, our study confirms the association of Gal-9 and sCD25 with

disease severity and identifies sCD40 to play a central role in defining

the distinct immune profiles characterizing the patients with mild,

moderate and severe COVID-19 at hospital admission (see the
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diagram in Figure 9). Our study also points out the differences in

the serum profiles of soluble immune checkpoint ligands between

Delta and Omicron variant infections, and identifies associations of

sCD40L and Gal-9 with sB7-H3 and sCD163 levels in subjects

infected with the Omicron variant (Figure 9). Despite the

limitation of not offering information in dynamics, our study

further provides correlations and interaction models with

previously documented hyperinflammatory molecules (suPAR,

sTREM-1, HGF, MCP-1, IL-1b, IL-6, ferritin) (3), alongside

hematological and coagulation profiles (revealed by NLR, PLR,

ESR, fibrinogen, D-dimer), markers of multiple organ injury (LDH,

creatinine, urea, AST, ALT, total bilirubin) and data regarding

therapeutic strategies, comorbidities, and vaccination status.

Nevertheless, this study also points out the importance of including

neural network models in complex data analysis for identifying the

key elements and molecular-therapeutic interactions that underlines

the overall paraclinical and clinical patient’s profile.
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