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Chronic kidney disease affects 1 in 10 people globally, with a prevalence twenty

times that of cancer. A subset of individuals will progress to end-stage renal

disease (ESRD) where renal replacement therapy is required to maintain health.

Cutaneous disease, including xerosis and pruritus, are endemic amongst patients

with ESRD. In the uraemia-associated immune deficiency of ESRD, impaired

circulating immune responses contribute to increased infection risk and poorer

vaccination response. Clinical manifestations of dysregulated adaptive immunity

within the skin have been well-described and have been posited to play a role in

cutaneous features of ESRD. However, our understanding of the mechanisms by

which adaptive immunity within the skin is affected by uraemia is relatively

limited. We provide an overview of how the cutaneous adaptive immune

system is impacted both directly and indirectly by uraemia, highlighting that

much work has been extrapolated from the circulating immune system and often

has not been directly evaluated in the skin compartment. We identify knowledge

gaps which may be addressed by future research. Ultimately, greater

understanding of these pathways may facilitate novel therapeutic approaches

to ameliorate widespread cutaneous symptomatology in ESRD.
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Introduction

Chronic kidney disease (CKD) is a major cause of non-communicable morbidity and

mortality, with approximately 850 million cases worldwide (10% of the global population)

(1). This represents a twenty-fold greater prevalence compared to cancer (2). By 2040, CKD

will be the fifth leading cause of years of life lost (3). A subset of individuals progress to end-

stage renal disease (ESRD), requiring renal replacement therapy or kidney transplantation.

Advanced CKD and its associated physiological milieu (uraemia) has been long linked

with systemic immune dysfunction. Reduced delayed-type hypersensitivity (DTH)

responses and dampened responses to vaccination indicates this extends to peripheral
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sites such as skin (4, 5). Uraemic immune dysfunction culminates in

increased infection risk and poorer outcomes (6, 7).

Skin issues are widespread in patients with advanced CKD (8).

Shared pathogenic mechanisms may cause both renal disease and

induce dermatopathology [for example, systemic lupus erythematosus

or Henoch-Schönlein Purpura (IgA vasculitis)]; exploration of these is

beyond the scope of this review. Independent of CKD aetiology, many

cutaneous symptoms are overrepresented in uraemic patients. For

example, pruritus affects at least half of patients, with increasing

prevalence as disease progresses (9–12). Other uraemic skin

manifestations include xerosis, acquired ichthyosis, altered

pigmentation, purpura, and nail/mucosal changes (8). Cutaneous

manifestations in CKD have been recently reviewed (13).

Immunopathology has been postulated to contribute to many of

these conditions.

As a barrier organ, almost every cell type in the skin is capable

of initiating and maintaining an immune response. Previous

experimental methods for studying the contribution of each to

cutaneous immunity were limited in that they could analyze only a

small number of markers simultaneously, necessitating pre-

determined hypotheses, and/or lacked the ability to perform

dynamic, functional assessments of behaviour.

New approaches, such as single-cell and spatial transcriptomic

profiling, offer the ability to examine cell behaviour and signalling

pathways across thousands of genes, often with the benefit of single-cell

resolution or preservation of spatial context (14). These have revealed

novel perspectives on cellular interactions in both skin homeostasis and

pathology (15), uncovering previously unappreciated heterogeneity

within cutaneous populations and permitting new insights into

immune-stroma-epithelial crosstalk (16), permitting deployment of

targeted therapies such as biologics targeting signalling pathways into

clinical practice (17). Cutaneous immune profiling has revealed

spatially and transcriptomically distinct leucocyte subpopulations,

allowing distinction of specialised, skin-resident subsets, those

transiently circulating through tissue, and those recruited in

inflammation (18). Taken together, a picture is emerging of an

incredibly complex immune network within the skin that acts in

concert to protect against pathogens.

Development of adaptive immune responses within the skin

require successful coordination of a series of communication

networks, often commencing with Langerhans cell (LC) or dermal

dendritic cell antigen acquisition and migration to draining lymph

nodes (enhanced by inflammatory signalling from keratinocytes,

fibroblasts and melanocytes) and culminating in recruitment of

circulating lymphocytes through chemokine and cytokine signalling

and upregulation of adhesion molecules by endothelial cells

(19–23). Resolution of inflammation is accompanied by local

retention of a small number of tissue-resident lymphocytes which

subsequently act as sentinels and first responders, promoting rapid
Abbreviations: AhR, Aryl-hydrocarbon receptor; CKD, Chronic kidney disease;

CMV, Cytomegalovirus; DTH, Delayed-type hypersensitivity; ESRD, End-stage

renal failure; IS, Indoxyl sulfate; KLRG1, Killer Cell Lectin-like Receptor

Superfamily G; LC, Langerhans cell; PCS, P-cresyl sulfate; PGE2, Prostaglandin

E2; SASP, Senescence-associated secretory phenotype; TCR, T cell receptor; TLR,

Toll-like receptor; VZV, Varicella zoster virus.
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cutaneous memory responses following antigen re-encounter (24,

25). Cellular immune responses within skin are supported and

complemented by humoral responses, with constitutive local

production of antibody which is upregulated in the setting of

inflammation (26–28). These processes are modulated by

regulatory cutaneous leucocyte populations, such as regulatory T

cells, which dampen inflammation (29). Dysregulation in any one of

these steps may lead to skin pathology.

Much remains unclear about the interaction between uraemia

and immune dysfunction, and how this extends to the skin. This

review therefore presents an overview of the field, identifying

knowledge gaps where new techniques may identify novel

pathways and therapeutic approaches to ameliorate disease.
Changes in circulating adaptive
immunity with uraemia

Kidney failure correlates with accumulation of circulating pro-

inflammatory markers, an exhausted T cell phenotype, and skewing

of T follicular helper subtypes, typically becoming more marked as

kidney impairment progresses to ESRD (30, 31). Increased

prevalence of virus-associated cancers, tuberculosis, and impaired

vaccination response to T cell-dependent antigens in ESRD patients

indicate a demonstrable impact of T cell impairment (32).

Circulating lymphopenia is common, becoming most profound

in ESRD (33–35). T-cell lymphopenia may also be driven by

increased T cell susceptibility to apoptosis (36). The mechanisms

responsible for the impaired responses of CD4+ T lymphocytes in

dialysis patients remains unclear. However, disruptions in T

lymphocyte activation may be caused by the presence of uremic

toxins and proinflammatory cytokines or may be associated with

early proliferative senescence (37).

Advanced CKD may lead to imbalanced T cell responses, with a

shift towards Th2 polarisation (38, 39). Dialysis may impair T cells’

ability to produce Th1 cytokines upon ex vivo stimulation,

potentially indicating ‘exhaustion’ (40). Accordingly, ESRD is

associated with accumulation of circulating T cells with an

exhausted phenotype (41). Exhaustion, arising as a result of

chronic antigenic stimulation and particularly described in the

setting of cancer and chronic viral infection, leads to dampened

effector function and the upregulation of inhibitory receptors (42,

43). Exhausted T cells may revert to fully functional T cells under

certain conditions, but ultimately leads to cell death and impaired

immune response if conditions persist (42–44). Other polarisation

fates also may be affected, with a shift in the Th17: Treg axis towards

Th17 responses described in CKD (45–47).

Despite a shift towards Th2 polarisation, usually associated with

antibody-mediated responses, the production of antigen-specific

effector memory CD4+ T cells after vaccination is severely impaired

in patients with ESRD (32). This is crucial for achieving an adequate

humoral response. As CKD progresses in adults, there is a reduction

in circulating B cell number, particularly driven by loss of immature

B cells and accumulation of double-negative B cells, which may play

an inhibitory role in humoral responses (48, 49). Elevated plasma

levels of IL-7 are found in uraemia, which promote the
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transformation of pre-B cells into B cells (50). B cell lymphopenia

appears to be relevant prognostically in ESRD, with lower

circulating B cell count associated with elevated all-cause

mortality risk (51).

Children with CKD exhibit notably reduced numbers of

memory type B cells, despite normal transitional B cell counts

(52). This may be due to increased B cell susceptibility to apoptosis

in uraemia, linked to reduced Bcl-2 expression (53). This suggests

that B cell deficiency may be multifactorial with enhanced

susceptibility of uraemic B cells to apoptosis and impaired

maturation in the periphery through resistance to differentiation

and survival signals.
Alterations in cutaneous immunity
in uraemia

Uraemic immune dysfunction has been particularly studied in

circulating populations, whereas understanding the effect upon

peripheral immunity, particularly the skin, is limited. However,

reduced delayed type hypersensitivity response and increased skin

allograft survival in patients with advanced CKD (54), both of

which require T cell mediated immunity, support the concept that

immune dysfunction extends to the skin in uraemia. Most research

in this area has described morphological rather than functional

shifts in cutaneous immunity, based on histological analysis rather

than dynamic evaluation.

Priming of cutaneous adaptive immune responses are likely to

be altered in uraemia. Patients with advanced CKD demonstrate

reduced LC density within the epidermis (55, 56). Whether this

represents enhanced turnover, loss of self-renewal or altered

migration remains unclear. LCs are equipped with Toll-like

receptors (TLR) that allow them to directly detect pathogen-

associated molecular patterns (PAMPs) from viruses and bacteria

(57). This capability facilitates their phenotypic maturation and

differential cytokine production, highlighting the crucial role of LCs

in regulating skin immune responses. Intrarenal TLR2 and TLR4-

mediated signalling play a role in initiating and aggravating CKD in

various settings (58); extrarenal signalling similarly mediated

through uraemic toxins may also be enhanced (59). Identifying

the key endogenous ligands for TLRs involved in renal disease will

be crucial for developing TLR blockade as a potential therapeutic

approach for these conditions.

Keratinocytes also express pattern recognition receptors,

including TLR that recognise highly conserved structures

including microbial-derived lipopolysaccharides, flagellins and

DNA sequences (60–63). Activation via TLR leads to secretion of

proinflammatory cytokines and chemokines, driving recruitment

and activation of circulating leucocytes, and upregulation of antigen

presenting capability (64–67). Uraemic toxins stimulate TLR

directly in vitro (68), and therefore may act in vivo to drive

inflammation and trigger chronic LC migration out of the skin.

Fibroblasts, present in the dermal layer, are increasingly being

recognised as active players in cutaneous immunity. Heterogeneity

in fibroblast behaviour is increasingly apparent leading to
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delineation of subsets which modulate cutaneous immunity in

health and disease (69–72). Indirect evidence, such as impaired

response to growth hormone signalling (73), and impaired wound

healing (74), suggests uraemia impacts cutaneous fibroblast

behaviour, however the effect upon modulation of immune

response remains unexplored. Shifts in both the type and

distribution of T cell populations have been described in skin

from non-diabetic patients with advanced CKD, with increased

epidermal CD8+/NK and reduced dermal CD4+T cell density

compared to non-uraemic controls (56). Changes in T cell

localisation and density support the clinical observation that

priming, and recruitment of the cutaneous adaptive immune

response is altered in CKD. Though uraemia clearly impacts

circulating B cells, it is not known whether this reflects changes

in the cutaneous compartment. Alterations in circulatory and

cutaneous immunity previously described in the setting of

advanced CKD are summarized in Figure 1.
Drivers of uraemic
immune dysregulation

Changes in the microenvironment may
drive uraemia-associated immune
dysfunction both directly and indirectly

Direct effect: microinflammation and uraemia-
associated toxicity

Uraemia is associated with chronic, low-level systemic

inflammation termed ‘microinflammation’ (75), This is driven by

oxidative stress associated with accumulation of proinflammatory

cytokines, advanced glycation end-products (AGE), metalloproteases

and overproduction of reactive oxygen species (76–79). Renal

replacement therapy (i.e. dialysis) artificially removes many of these

toxins from the body albeit in a relatively inefficient manner (80); this

means that many of these products continue to accumulate even with

treatment. Dialysis, particularly haemodialysis, may contribute to

immune dysfunction and inflammation through dialysis membrane-

driven activation of complement cascades and stimulation of

circulating granulocytes, monocytes and T cells, and has been

recently reviewed (81).

Microinflammation may directly influence cutaneous immunity

and indeed uraemic pruritus may represent a clinical manifestation of

this altered neuro-immunological interaction, though mechanistic

understanding is limited (82, 83). Up to 40% of patients report this

symptom, with pruritic individuals exhibiting increased serum

C-reactive protein, as well as dysregulated circulating Th1/Th2

lymphocyte balance, compared to non-pruritic controls. Serum

C-reactive protein and IL-6 levels are increased in pruritic uraemic

individuals, with circulating T cells demonstrating Th1 skewing,

compared to non-pruritic controls (84). There is an increase in the

cytokines produced by Th1 lymphocytes including IFN-g, IL-6, and
TNF-a (76). In contrast, levels of IL-31, a Th2 lymphocyte pruritogenic

cytokine, are increased in uraemic individuals (85). Microinflammation
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FIGURE 2

Summary of the direct and in-direct effects of uraemia upon cutaneous immunity. IS, indoxyl sulfate; PCS, p-cresyl sulfate; TCR, T cell receptor; NK
Cell, natural killer cell; DCs, dendritic cells; HCMV-gB, human cytomegalovirus glycoprotein B; LCs, langerhans cells; HBD3, human beta-defensin 3;
PGE2, prostaglandin E2; TRM T cells, tissue-resident memory T cells; Foxp3 Treg cells, forkhead box P3 regulatory T cells.
FIGURE 1

Immunity changes in circulation and cutaneous tissue. ILCs, Innate lymphoid cells; LCs, Langerhans cells; NK, Natural killer; Trm, Tissue
resident memory.
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may impact upon cutaneous immunity through other mechanisms.

For example, acute inflammatory signalling leads to upregulation of

inflammatory cytokines by local fibroblasts followed by resolution of

inflammation. However, in the setting of chronic inflammation

fibroblast behaviour changes in a heterogenous manner - some

differentiate into myofibroblasts leading to extracellular matrix

deposition, which stiffens tissue and compromises leucocyte

infiltration (86). Others differentiate into inflammatory fibroblasts

that promote tissue retention of leucocytes. Which pathway is

dominant in uraemic skin inflammation is unknown, but can be

surmised to the former given the reduction in cutaneous leucocyte

number in CKD.

Microinflammation may underpin the loss of LC seen in

uraemic skin, though promotion of LC migration to draining

lymph nodes (19). In the setting of chronic microinflammation

unchecked LC migration may deplete the normally self-renewing

cutaneous LC pool, with altered transendothelial trafficking

preventing replenishment from the circulation (87).

Over 100 uraemia-associated toxic metabolites have been described,

many of which have not been evaluated for their immunological effect

(88). Indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are two well-studied

solutes, which exemplify how uraemic toxins may directly influence skin

immunity and drive inflammation (89).

In vitro and animal models indicate IS and PCS may induce

keratinocyte and fibroblast inflammation and drive histamine-

independent itch (90–93). IS may also act directly upon skin-

resident leucocytes, leading to differentiation and activation of

proinflammatory macrophages (94–97). Ligation of the aryl-

hydrocarbon receptor (AhR) on monocytes and macrophages by

IS was shown to induce secretion of inflammatory mediators,

driving chemotaxis and recruitment of effector T cells that induce

endothelial apoptosis and promote further inflammation (98, 99).

PCS induces circulating monocyte activation but impairs antigen

processing (100). A recent study demonstrated PCS and IS

synergise in contributing to the increasing proportion of pro-

inflammatory, intermediate monocytes in CKD patients (101),

suggesting that the cocktail of uraemic solutes present in vivo

may have greater effects upon immunity than the study of

individual molecules in vitro.

Uraemia-associated toxic metabolites may modulate T and B

cell behaviour directly. IS inhibits Th2 cell differentiation, leading to

loss of IL-4 producing CD4+ T cells, in an AhR-dependent manner

in a murine model of asthma (102). This could drive Th1 skewing,

inflammation and skin pathology in uraemic individuals. Blood

PCS concentration correlates with levels of terminally differentiated

CD8+ T cells in ESRD patients, potentially suggesting a mechanistic

link between uraemic toxins and premature immune aging in

patients with ESRD (33). B cells may be similarly activated by

uraemic toxins through AhR. PCS directly leads to B cell

lymphopenia in animal models (103), whilst AhR co-stimulatory

signalling plays a critical role in driving B cell proliferation, but also

regulates class switching and plasma cell differentiation, promoting

development of a regulatory phenotype (104, 105).

Uraemia-associated microinflammation and toxin accumulation

result in vascular inflammation, leading to endothelial dysfunction,

prothrombotic changes, increased vascular permeability and
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accelerated vascular ageing (106, 107). In vitro studies have shown

that the rupture of cell-cell junctions and reduced transendothelial

electrical resistance indicated by uraemic toxins lead to structural

damage of the endothelial monolayer, which could be associated

with vascular injury and the development of chronic vascular

diseases (108–110). This may enhance uraemic toxin and circulating

inflammatory cytokine diffusion into peripheral tissues, including the

skin (111). It’s unclear how this alters adhesion and tissue migration

dynamics of circulating leucocytes, but conceivably could lead to

impaired tissue infiltration if endothelial behaviour and signalling

is dysregulated.

Ageing is associated with antigen-independent inflammation,

leading to cutaneous recruitment of monocytes. Active vitamin D3

has been demonstrated to reduce this inflammation (112). 25-

Vitamin D3 undergoes 1a hydroxylation in the kidney in order

to acquire biological activity - consequently many patients with

advanced CKD demonstrate functional vitamin D3 deficiency,

requiring use of active vitamin D3 to prevent mineral bone

disease. 25-Vitamin D3 reverses uraemia-associated inflammation

in monocytes in vitro (113), but whether uraemia-associated skin

inflammation may respond to this therapy in a clinical setting

remains to be seen.

Electrolyte disturbance, associated with impaired clearance by the

kidneys, may directly contribute to immune dysfunction. Total body

sodium is frequently increased in uraemia. Skin is a major storage

organ for sodium, where it exerts pleiotropic effects (114). Sodium

may inhibit M2 macrophage differentiation and regulatory T cell

function (115, 116), whilst simultaneously activating T cells (117).

Similarly, hyperkalaemia is a common finding in patients with

advanced CKD, with elevated potassium concentration having been

shown to inhibit CD8+ T cell effector function (118). To what extent

either of these mechanisms are active within uraemic skin are unclear

but may play a contributory role to cutaneous immune dysfunction.

AGE are covalent compounds created by spontaneous (enzyme-

independent) reaction of long-lived proteins, lipids and other

macromolecules with monosaccharides and amino acids (119).

Over time, this leads to pathophysiological cross-linked structures

which alter tissue dynamics, including in skin (79). AGE

accumulation is accelerated in the presence of oxidative stress,

such as that found in CKD. Their accumulation in uraemia can

be clinically quantified by fluorescence assessment (120) and may

associate with poorer clinical outcomes (121, 122). AGE may act as

a trigger for innate immune activation through TLR and a receptor

for AGE (RAGE) expressed on cutaneous myofibrovascular

populations, dendritic cells and monocytes (123–125), whilst

potentiating oxidative stress and microinflammation in a positive

feedback loop (126). Conversely, enhanced local fibrosis and tissue

rigidity resulting from AGE accumulation has been suggested to

prevent chemotaxis, particularly in neutrophils (127).

Taken together, uraemic patients accumulate electrolytes and

AGEs due to reduced renal clearance and oxidative stress. Electrolyte

imbalances may cause immune dysfunction by directly inhibiting the

adaptive immune system, whereas AGEs may act more via initiation

of innate immunity, exacerbating microinflammation. The latter

synergises with deficiency in functional vitamin D3, leading to

antigen-independent inflammation.
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Indirect effect: uraemia-
driven immunosenescence

A bidirectional link between chronic kidney disease and ageing

is increasingly apparent. Whilst chronological age is a major risk

factor for chronic kidney disease (128), progression of biological

ageing may itself be accelerated in the uraemic milieu and is not

reversed following kidney transplantation (129).

The immune system undergoes a progressive change in

composition and functional capacity during biological ageing, termed

immunosenescence. This manifests as increased susceptibility to

infectious diseases, reduced response to vaccination, and elevated

mortality risk in the general population (130–132). An underlying

feature is ‘inflamm-ageing’, a chronic low-level non-specific

inflammatory state with increased serum levels of C-reactive protein,

IL-6 and IL-1b (133).

Although immunosenescence affects the entire immune system,

most research has focused on the adaptive immune response,

particularly in circulating T cells. Hallmarks of immunosenescence

include thymic involution, a reduced naïve/memory ratio in

circulating T and B cells and progressive loss in the functional and

replicative capacity of lymphocytes (134–136).

T cell immunosenescence is typified by the accumulation of

terminally differentiated, effector cells, characterized by loss of

costimulatory molecules such as CD27 and CD28 and expression

of killer cell lectin-like receptor subfamily G (KLRG-1) and CD57

(137, 138). Functionally, these cells demonstrate decreased

replicative ability, increased production of proinflammatory

cytokines and impaired TCR signal transduction with increased

reliance upon killer receptor signalling (139–141).

The circulating immune landscape in uraemia shares many

similarities with immunosenescence (142, 143). An average difference

of 20 years between the immunological and chronological age in

uraemic patients has been observed, indicating a prematurely aged T

cell compartment (144). Microinflammation and oxidative stress drives

accelerated thymic involution and premature loss of naïve T cell output

(145). Accelerated peripheral T cell turnover may further contribute,

with uraemic T cells demonstrating premature alterations in age-

associated changes in TCR signalling cascades (146), and expression

of early apoptotic markers (147, 148), suggesting increased

susceptibility to activation-induced apoptosis (34). Many uraemic/

ageing-related changes seen in circulating blood are also present in

lymph nodes, albeit without accumulation of terminally differentiated

T cells (149).

Cytomegalovirus (CMV) plays a major role in driving

circulating T cell immunosenescence (150, 151). Uraemic patients

demonstrate more frequent CMV reactivation, potentially creating

a cycle of progressive immune impairment and increased CMV

turnover (152, 153). The recent discovery of CMV-driven immune

responses against senescent fibroblasts in skin by CD4+ T cells raise

the question of whether a parallel CMV infection-immune circuit

dominates cutaneous aging/uraemia (154).

Optimal responses against antigens by T cells are achieved

through a broad TCR repertoire. However, reduced/skewed

circulating TCR repertoire diversity is a hallmark of both

immunosenescence and uraemia, and may therefore contribute to

impaired responses (155, 156). Skewing occurs as accumulated
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terminally differentiated T cells are oligoclonal, often targeted

against CMV (157, 158).

Other features of premature ageing, such as decreased CD4/

CD8 ratio, are also seen and may be particularly marked in

paediatric populations with renal impairment (35, 159, 160).

Similarly, circulating B cells, NK cells, and dendritic cells

demonstrate changes in ESRD comparable to aged individuals

(50, 56, 161). Direct and in-direct effect of uraemia upon

cutaneous immunity summarised in Figure 2.

Cutaneous immunity in immunosenescence

Given the functional and phenotypical overlap between

uraemia-associated immune deficiency and immunosenescence in

blood, one may hypothesise this extends to the periphery also,

although this has not been previously explored. Studies of ageing in

skin may therefore be informative by extrapolation to uraemia and

cutaneous immunity.

Cutaneous ageing may be associated with impaired adaptive

immune priming and homing. A loss of LC and impaired lymphoid

migration is seen in older people, akin to the loss of LC described in

uraemia (162–164). Alongside impaired lymphocyte priming, this

may also reduce the epidermal pool of defensins (165). Dermal

dendritic cells also demonstrate defective trafficking, signalling and

T cell stimulation from aged skin (166).

Macrophage-derived signalling is a major source of chronic,

antigen-independent, low-level inflammation within aged skin

(167). Aged skin demonstrates an altered response to damage,

leading to enhanced recruitment of prostaglandin E2 (PGE2)-

secreting inflammatory monocytes (168). These monocytes inhibit

effector T cell activation and proliferation and induce expansion of

FOXP3+Treg, which may explain their accumulation in aged skin

(169–173). Their behaviour in uraemia is unknown.

In elderly individuals, cutaneous T cells maintain their density,

diversity, and cytokine production, representing a long-lived, highly

stable reservoir of immunity against infection and malignancy (174,

175). Decreased responses to Varicella Zoster virus (VZV) and

tumour protection in older adults have not been directly attributed

to an intrinsic defect within ageing CD4 TRMs (176). Instead,

enhanced inhibitory signalling upon T cells from other leucocytes,

particularly myeloid populations, may create an immunoregulatory

microenvironment (177). Counterintuitively, excessive non-specific

production of pro-inflammatory cytokines may cause inhibition of

antigen-specific T-cell function (178).

Fibroblast senescence plays a major role in contributing to age-

related chronic skin inflammation. Senescent fibroblasts secrete

inflammatory mediators (termed the senescence associated

secretory phenotype or SASP). This drives local inflammation, both

in an antigen-independent manner but also through direct targeting

of senescent cutaneous fibroblasts by effector T cell populations (154).

It is feasible that uraemia amplifies production or downstream effects

of SASP-related inflammation and skin ageing.

Studies on blood suggest significant overlap in ageing- and

uraemia- associated immune dysfunction. Limited available data do

provide tentative indications that this overlap may extend to skin,

though further studies are needed to evaluate the function of

cutaneous T cells in uraemia and how this mirrors biological ageing.
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Outstanding questions and future
research directions

The existing literature on the effect of uraemia upon immunity

highlights a number of areas of limited understanding. Studies to

date have typically focused on single populations, in vitromodels or

low plex, targeted gene expression or histological analyses. This has

created inconsistences and disconnects.

One such example is how uraemic micro-inflammation seems to

drive a Th1 shift in T cells, demonstrated by accumulation of cytolytic,

senescent CD4+ and CD8+ T cells. However, the literature also

suggests a shift towards a Th2 phenotype with reduced Th1 cytokine

production amongst T cells. How do we reconcile this? The classical

Th1/Th2 paradigm may be insufficiently complex to explain T cell

behaviour in the setting of uraemia, leading to dysregulated T cell

differentiation - as exemplified by impaired vaccine responses despite a

Th2-skewed state. Alternatively, findings from studies in blood may

not be reflective of the peripheral tissue microenvironment.

Deeper evaluation of cell behaviour in the setting of uraemia is

needed to understand this more clearly. Novel profiling approaches,

such as single-cell transcriptomic profiling and spatial profiling,

offer the opportunity to re-examine cutaneous cell behaviour in an

unbiased way, evaluating the whole transcriptome simultaneously

across multiple cell populations. In addition to highlighting

pathways driving intrinsic cell dysfunction, ‘stepping back’ to

evaluate the relationship between spatially-approximate cells

within tissue may reveal novel ligand-receptor interactions and

signalling networks suitable for therapeutic manipulation. Spatial

transcriptomic profiling offers the opportunity to do this using

small quantities of archived skin samples without need for specific

tissue processing prior to embedding (14).

Finally, it is unclear whether we can reverse this immune

dysfunction. The parallels between ageing and uraemia raises the

question of whether therapeutic approaches to slow or reverse tissue

senescence and improve immune function may also be effective in

CKD. ‘Senolytic’ agents, such as smal molecules like rapamycin (179),

chimeric antigen receptor-T-cell (CAR-T) and TCR therapy (180)

and immune checkpoint inhibitors (181) have shown encouraging

potential in combating cellular senescence. Limiting CMV turnover

could slow immune ageing - a small phase I study found improved

vaccination response and reduced number of senescent CD4+ T cells

in patients with vasculitis when treated with the antiviral valacyclovir

(182). Interventional studies in patients with CKD are needed to

evaluate whether these are effective approaches to improve uraemia-

associated immune dysfunction.
Conclusion

Uraemia is commonly associated with skin disease, with relatively

few specific therapies available for uraemic dermatopathology. In the

setting of advanced kidney disease, altered immunity may play a

critical contributory role in driving cutaneous symptomatology and

predisposing to poorer antigen-specific responses.
Frontiers in Immunology 07
Our understanding of these processes, outlined in this review,

indicates notable alterations in the immunity of uraemic patients,

yet the precise underlying causes of many of these changes remain

largely elusive and have focused on circulating rather than tissue-

resident leucocyte populations. While numerous studies have

described the peripheral immune response in uraemic patients,

there has been limited investigation into cutaneous immunity.

Our review highlights knowledge gaps in this field and

emphasises the need for mechanistic investigations to identify

novel therapeutic avenues to ameliorate symptoms and improve

the substantial skin-related morbidity and mortality experienced by

this cohort.
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