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Urological malignant tumors pose a significant threat to human health, with a

high incidence rate each year. Prostate cancer, bladder cancer, and renal cell

carcinoma are among the most prevalent and extensively researched urological

malignancies. Despite advancements in research, the prognosis for these tumors

remains unfavorable due to late detection, postoperative recurrence, and

treatment resistance. A thorough investigation into their pathogenesis is crucial

for early diagnosis and treatment. Recent studies have highlighted the close

association between microRNAs (miRNAs) and cancer progression. miRNAs are

small non-coding RNAs composed of 19-23 nucleotides that regulate gene

expression by binding to the 3’ untranslated region (3’UTR) of target mRNAs,

impacting key cellular processes such as proliferation, differentiation, apoptosis,

and migration. Dysregulation of miRNAs can disrupt the expression of

oncogenes and tumor suppressor genes, contributing to cancer development.

Among the various miRNAs studied, miR-152 has garnered attention for its role in

urological malignancies. Several studies have indicated that dysregulation of

miR-152 expression is significant in these cancers, warranting a comprehensive

review of the evidence. This review focuses on the expression and function of

miR-152 in prostate cancer, bladder cancer, and renal cell carcinoma, elucidating

its mechanisms in cancer progression and exploring its potential as a therapeutic

target and biomarker in urological malignancies.
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Introduction

Urological malignancies encompass prostate cancer, bladder cancer, renal cell carcinoma,

penile cancer, testicular cancer, and uroepithelial cancer. According to GLOBOCAN, there

were approximately 2.5 million new cases of urological malignancies globally in 2022,

representing 12.6% of all cancers. These cases resulted in 770,000 deaths, accounting for
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8% of all cancer-related deaths (1). The number of new cases and

deaths of urinary malignant tumors in 2022 has exceeded the number

published by GLOBOCAN in 2020 (2). Prostate cancer, bladder

cancer, and renal cell carcinoma are among the most prevalent and

extensively researched urological malignancies. Prostate cancer, the

second most common cancer in men, was responsible for 1,466,680

new cases and 396,792 deaths in 2022. The majority of patients with

prostate cancer progress to desmoplasia-resistant prostate cancer,

leading to a poor prognosis. Bladder cancer, the second most

common urological malignancy, ranked ninth in terms of incidence

in 2022 (1) Renal cell carcinoma, although less common than prostate

and bladder cancer, saw 434,419 new cases and 155,702 deaths in

2022, ranking 14th among all cancers (1). The incidence of urological

malignancies is expected to rise globally due to population growth

and aging (3). These malignancies pose a significant burden on global

health and finances, with the United States estimated to have spent

$314.7 billion in 2020 on the prevention and treatment of urological

malignancies (4).

Early urological malignancies are often treated with surgical

resection, which boasts a high success rate. However, the lack of

specific symptoms in the early stages leads to most patients being

diagnosed at an advanced stage. Additionally, some non-invasive

biomarkers, like prostate specific antigen (PSA), have limitations in

the early diagnosis of prostate cancer, such as low specificity and

overdiagnosis (5, 6). Urine cytological testing is even less sensitive for

diagnosing bladder cancer, while cystoscopic biopsy is invasive and

inconvenient (7). This highlights the urgent need for sensitive

diagnostic methods to aid in early urological tumour diagnosis. For

patients with advanced cancer, chemotherapy and radiotherapy are

commonly used to slow disease progression and improve quality of life.

Unfortunately, cancer often develops resistance to these treatments

after several courses, posing a significant challenge (8). Despite recent

advancements in immunotherapy and targeted therapies, challenges

persist due to drug-resistant gene mutations post-targeted therapies,

immune adverse effects post-immunotherapy, and limited use of

targeted drugs due to high costs. Thus, there is a pressing need to

develop new therapeutic strategies for urological tumours, necessitating

a comprehensive understanding of their pathogenesis.

In the past two decades, the study of miRNAs has sparked a

molecular revolution, with numerous studies demonstrating their

significant role in cancer. miRNAs impact essential cellular processes

like cell proliferation, differentiation, cell cycle regulation, invasion,

metastasis, and angiogenesis by modulating the expression of target
Abbreviations: PSA, prostate specific antigen; 3’ UTR, 3’untranslated region; pri-

miRNAs, primary miRNAs; pre-miRNAs, precursor miRNAs; RISC, RNA-

induced silencing complex; AGO2, assistance of argonaut 2 protein; CML,

chronic lymphocytic leukaemia; oncomiRs, oncogenic miRNAs; miRsupps,

tumor suppressor miRNAs; ATG14, autophagy-related protein 14; DNMT1,

DNA methyltransferase 1; ELF1, ETS transcription factor 1; ceRNAs, competing

endogenous RNAs; TGFa, transforming growth factor-alpha; NOL4, nucleolin 4;

TMEM97, transmembrane protein 97; KLF4, Kruppel-like factor 4; PTEN,

phosphate and tensin homolog; SNHG3, Small nucleolar RNA host gene 3;

KIF14, Kinesin family member 14; HMGA2, high mobility histone A2; RCC,

Renal cell carcinoma; HLA-G, human leukocyte antigen G; AUC, area under the

curve; siRNA, small interfering RNA.
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genes. Given the close connection between these processes and

cancer, miRNAs are intricately linked to cancer development.

Among the well-researched miRNAs in oncology, miR-152 stands

out for its consistent oncogenic role across various cancer types,

including colorectal (9, 10), gastric (11, 12), hepatocellular (13, 14),

lung (15–17), breast (18, 19), ovarian (20, 21), cervical (22, 23), and

glioma (24, 25). While studies on the relationship between miR-152

and urological tumors abound, a comprehensive review on this

subject is lacking. This paper aims to fill this gap by examining the

impact of miR-152 on biological behaviors of cancer cells in

urological tumors, such as proliferation, invasion, metastasis,

angiogenesis, and apoptosis. It also explores the potential of miR-

152 as a biomarker for early diagnosis, treatment, and prognosis of

urological tumors, as well as its therapeutic implications in miRNA-

based cancer treatments. By delving into the role of miR-152, this

review seeks to enhance our understanding of the pathogenesis and

therapeutic strategies for urological malignancies.
Overview of miRNAs

miRNAs were initially discovered in 1993 in the nematode

Caenorhabditis elegans (26), Since then, a growing number of

miRNAs have been identified and characterized, with over 28,000

miRNAs currently known across a variety of organisms (27). These

small RNAs, approximately 19-23 nucleotides in length, are

evolutionarily conserved and play a crucial role in gene expression

regulation. They typically bind to the 3’ untranslated region (3’ UTR)

of target mRNA, leading to either degradation or inhibition of

translation (28, 29). In some rare instances, miRNAs can enhance

translation of target genes, contributing to post-transcriptional gene

regulation (3, 30, 31). It is estimated that miRNAs regulate at least

one-third of all genes (32). The biogenesis of miRNA is an extremely

complex process, as shown in Figure 1.

miRNAs play a crucial role in regulating cellular processes, with

their dysregulation linked to various diseases, including cancer. The

connection between cancer and dysregulated miRNA expression

was initially observed in patients with chronic lymphocytic

leukaemia (CML), where the absence of chromosomal regions

coding for miR15 and miR16 was noted (33). Cancer-associated

miRNAs can be broadly categorized into oncogenic miRNAs

(oncomiRs) and tumor suppressor miRNAs (miRsupps) (34, 35).

OncomiRs promote cancer progression by influencing cell

proliferation, apoptosis, and other cancer-related processes,

typically exhibiting overexpression in cancers (36). Conversely,

miRsupps impede malignant behaviors in cancer cells, thus

hindering cancer progression, and are usually underexpressed in

cancer (37). The roles of specific miRNAs can vary across different

cancer types. For instance, miR-155 was found to be overexpressed

in renal cell carcinoma, promoting proliferation and metastasis

(38), while in malignant melanoma, its overexpression inhibited

cancer progression (39). In addition, miR-137 functions as a tumor

suppressor in various cancers, including lung cancer (40), gastric

cancer (41), ovarian cancer (42), endometrial cancer (42), and

nervous system tumors (43). However, some studies have

indicated that miR-137 can also act as an oncomiR, promoting
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cancer progression (44, 45). Notably, the same miRNA may exhibit

contradictory roles within the same cancer, potentially influenced

by factors such as technological variations, diverse targets, and

cancer subtypes.
Function and expression regulation of
miR-152

miR-152, a member of the miR-148/152 family along with miR-

148a and miR-148b, was initially discovered in the mouse colon

through tissue-specific cloning (46), These three members share the

same seed sequence, leading to the targeting of genes with

immediate homology. Variations in reported miRNA targets

across studies could be attributed to the focus on individual

miRNAs within the family without considering others (47).

Moreover, the 3’-terminal non-seeded sequence of miRNAs plays

a role in stabilizing their binding to target genes (48), suggesting

that the miR-148/152 family has the potential to target different

mRNAs based on their distinct non-seeded sequences.

Aberrant expression of miR-152 has been observed in various

oncological and non-oncological diseases. For instance, Nielsen et al.

identified 12 upregulated human miRNAs, including miR-152, in the

serum of patients with type 1 diabetes (49). Moreover, increased miR-

152 expression has been detected in atheromatous plaque tissue and
Frontiers in Immunology 03
classical monocytes (50). Research has shown that miR-152

overexpression promotes lipid accumulation in preadipocytes,

correlating with in vivo adipogenesis and intramuscular

adipogenesis, indicating its potential relevance in obesity and

obesity-related metabolic syndrome (51). Furthermore, up-

regulation of miR-152-5p expression was noted in the mandible of

a rat osteoporosis model, suggesting its involvement in regulating

osteogenic differentiation by targeting the autophagy-related protein

ATG14. These findings collectively demonstrate the diverse functions

of miR-152 and contribute to our understanding of its significance in

non-tumour diseases.

miR-152 has been extensively studied in various types of

tumors, showing reduced expression and potential as a tumor

suppressor miRNA. For instance, in hepatocellular carcinoma,

miR-152-3p was significantly down-regulated in tumor tissues

compared to non-tumor tissues. Overexpression of miR-152-3p

inhibited ROBO1, blocking the malignant characteristics of

hepatocellular carcinoma (14). Similarly, in gastric cancer,

reduced expression of miR-152-3p led to inhibited proliferation,

clone formation, migration, and induced apoptosis in cancer cells

(52). In cholangiocarcinoma, miR-152 targeted DNMT1, with

reduced expression in cancer cells (53). Notably, miR-152 was

also found to be down-regulated in ovarian cancer and correlated

with the malignant phenotype of ovarian cancer cells (54). Reduced

miR-152 expression was associated with poorer survival outcomes
FIGURE 1

Biogenesis and expression regulation of miRNAs. In the nucleus, primary miRNA (pri-miRNA), which possesses specific structural characteristics, is
transcribed by RNA polymerase II. These pri-miRNAs are then cleaved by a microprocessor complex, composed of Drosha and its cofactor DGCR8,
to generate precursor miRNAs (pre-miRNAs) of a defined length (120–123), The pre-miRNAs are transported to the cytoplasm via Exportin-5 (124,
125), where Dicer and TRBP further process them into double-stranded RNA molecules (126, 127). These molecules then unwind to form mature
single-stranded miRNAs, with one strand designated as ‘5p’ and the other as ‘3p’. Finally, these mature miRNAs are integrated into the RNA-induced
silencing complex (RISC) with the assistance of argonaut 2 protein (AGO2) (128). miRNAs with nucleotide sequences 2-7, known as ‘seed’ sequences,
are directed by AGO2 to recognize and bind the 3’UTR of target mRNA (129), When fully complementary, the target mRNA is degraded (130), when
not fully complementary, translation is inhibited (32).
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in endometrial plasma adenocarcinoma (55). Furthermore, in lung

cancer miR-152 targets TNS1 to regulate the Akt/mTOR/RhoA

pathway, inhibiting the progression of non-small cell lung cancer

(15). In breast cancer, miR-152 inhibits cell survival and promotes

apoptosis by targeting EPAS1, enhancing the sensitivity of breast

cancer cells to paclitaxel (56). Kong et al. found that miR-152

inhibits glioma progression and tumorigenesis by targeting FBXL7,

and increases the cytotoxicity of temozolomide-induced glioma

cells (24). Overall, miR-152 shows decreased expression in

digestive system tumors, reproductive system tumors, lung

cancer, breast cancer, and glioma, with this decreased expression

correlating with the malignant phenotype of cancer cells. Restoring

miR-152 expression inhibits cancer progression and increases the

sensitivity of cancer cells to chemotherapeutic agents, indicating its

role as a tumor-suppressor miRNA in various cancers. Therefore,

miR-152 may serve as a potential target in cancer therapy.

The expression and activity of miR-152 are tightly regulated

both temporally and spatially in normal physiological conditions.

Disruption of this regulation is closely linked to various human

diseases, such as cancer growth and metastasis (57). Several

mechanisms can lead to dysregulation of miRNAs, including

epigenetic changes, abnormal binding of transcription factors,

interference with miRNA production, post-transcriptional

modifications of RNA, and RNA degradation (37, 58). There is

growing evidence of epigenetic connections between DNA

methylation changes and miR-152 levels in cancer. miR-152 is

often silenced in different types of cancer, like prostate (59), bladder

(60), colorectal (61), breast (62) endometrial (63), and glioblastoma

(25), due to DNA hypermethylation. This hypermethylation is

driven by the increased activity of DNMT1, an enzyme

responsible for maintaining DNA methylation levels .

Interestingly, DNMT1 is a target of miR-152, and its levels are

inversely related to miR-152 in many cancers (64, 65), suggesting a

negative feedback loop between them. miR-152 expression is also

influenced by various transcription factors, such as ELF1, which can
Frontiers in Immunology 04
enhance miR-152-3p levels by directly interacting with its promoter

(17). In breast cancer, the activation of miR-152 expression is

triggered by the translocation of the b-linker protein and PKM2

complex into the nucleus in response to IGF-1 (66). Moreover, the

activity of miR-152 is regulated by competing endogenous RNAs

(ceRNAs) that bind to miR-152 and reduce its inhibitory effects on

downstream targets, primarily including certain lncRNAs,

circRNAs, and pseudogene transcripts (67, 68).
miR-152 in prostate cancer

Among the studies focusing on miR-152 and urological tumors,

prostate cancer has been the most extensively researched. Numerous

studies have demonstrated that miR-152 is downregulated in prostate

cancer tissues and cell lines, and its altered expression is intricately

linked to the development of prostate cancer (Figure 2). Restoring

miR-152 expression has been shown to impede the progression of

prostate cancer by targeting and suppressing genes and signaling

pathways that are crucial in cancer development. This inhibition

ultimately hinders the advancement of prostate cancer. The

subsequent discussion provides a detailed explanation of the role

and mechanism of miR-152 in prostate cancer.

Prostate cancer is known for its aggressive nature, with a strong

invasive ability that allows it to infiltrate and metastasize to

surrounding tissues, contributing to its poor prognosis and high

rate of postoperative recurrence. Chen et al. conducted a study on

miR-152 expression in 48 primary prostate cancers, finding a

significant down-regulation compared to non-malignant control

tissues. Specifically, patients with a Gleason score >7 showed lower

levels of miR-152, which was also associated with the pathological

stage of prostate cancer. Overexpression of miR-152 in PC-3 and

DU145 cells effectively suppressed the invasive and migratory

abilities of prostate cancer cells by targeting TGFa, a key player

in EGFR signaling (69). The activation of EGFR is crucial for cell
FIGURE 2

Roles of miR-152 and its targeted proteins and signaling cascades in the development of urologic malignancies.
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proliferation, angiogenesis, motility, and metastasis (70, 71), with

previous research linking EGFR to invasion and metastasis in

various tumors (72, 73). By inhibiting TGFa-EGFR signaling,

miR-152 also downregulated downstream genes MMP2 and

MMP9, further suppressing the invasive and migratory potential

of prostate cancer cells in vitro (69). Interestingly, the tumor-

suppressive effects of miR-152 could be counteracted by

circANKS1B, which acts as a sponge for miR-152, binding to

miR-152-3p and attenuating the inhibition of TGFa. This

mechanism promotes the invasion and metastasis of prostate

cancer cells, highlighting the intricate interplay between miR-152,

TGFa, and circANKS1B in prostate cancer progression (74). Xu

et al. reported that miR-152 targets the 3′UTR of FOXR2 in prostate

cancer, leading to downregulation of FOXR2 expression, which in

turn inhibits cell proliferation and induces apoptosis. Additionally,

lncRNA HOTAIR was observed to interact with miR-152, resulting

in upregulation of FOXR2 and further promoting prostate cancer

progression (75).

Ramalho-Carvalho et al. employed a combined approach

involving micro-RNA expression analysis and differential

methylation localization to identify novel miRNAs downregulated

by aberrant DNAmethylation in prostate cancer. They discovered a

transcription unit comprising COPZ2-miR-152-3p (76). Their

study highlighted that the downregulation of miR-152-3p is a

common characteristic of prostate cancer and plays a role in

sustaining malignant traits and tumor growth. Functional assays

conducted in vitro revealed that overexpression of miR-152-3p led

to a significant decrease in cell viability in LNCaP and PC3 cells,

along with an increase in cell accumulation in S and G2/M phases.

Moreover, the overexpression of miR-152-3p resulted in the

downregulation of several cell cycle regulators at the

transcriptional level. Additionally, miR-152-3p overexpression

suppressed the expression of epithelial-mesenchymal transition-

related genes TWIST and VIM, leading to a notable reduction in the

invasive capacity of PC3 cells. Conversely, miR-152-3p mimics

induced apoptosis in both cell lines (76). Mechanistically, NOL4

(nucleolin 4) and TMEM97 (transmembrane protein 97) were

identified as targets of miR-152-3p. TMEM97 has been found to

be up-regulated in various malignant tumors, including prostate

cancer (77, 78). miR-152-3p also down-regulates the expression of

genes involved in the MAPK/ERK, TFG-Beta, JAK-STAT3, and

EMT pathways, which are classical pathways in cancer.

Feng et al. discovered a synergistic effect of miR-148-3p and

miR-152-3p in prostate cancer. Their study revealed a reduction in

the expression of both miR-148-3p and miR-152-3p in prostate

cancer cells. Functional assays conducted in vitro showed that the

combined overexpression of miR-148-3p and miR-152-3p had a

greater inhibitory impact on cell proliferation and apoptosis

induction compared to individual overexpression. This suggests a

synergistic relationship between miR-148-3p and miR-152-3p in

inhibiting the growth of PC3 and LNCaP cells (79). Mechanistically,

miR-148-3p and miR-152-3p, being part of the same family, share a

common seed sequence and target the 3′ UTR of KLF4. By jointly

inhibiting KLF4, miR-148-3p and miR-152-3p effectively impede

the progression of prostate cancer. This synergistic effect was

further validated in prostate cancer xenograft mice (79).
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miR-152 is present in prostate cancer and is involved in a

feedback pathway with DNMT1, serving as a target gene for miR-

152. miR-152 functions by repressing DNMT1 expression post-

transcriptionally. Conversely, increased expression of DNMT1

results in widespread hypermethylation of DNA, leading to a

notable decrease in miR-152 expression (47). Theodore et al.

observed hypermethylation of the promoter region in the LNCaP

and PC-3 cell lines, resulting in the inactivation of miR-152 through

hypermethylation in prostate cancer. They proposed that miR-152,

which acts as a tumor suppressor, is inactivated by methylation,

indicating that the epigenetic regulation of miR-152/DNMT1 may

have a significant impact on the aggressiveness of prostate cancer

(59). Similarly, Gurbuz et al. found a substantial increase in

DNMT1 gene expression levels and a notable decrease in

DNMT3b and PTEN expression in patients with prostate cancer

and metastatic prostate cancer. Linear regression analysis revealed a

significant relationship between miR-152 and DNMT1/DNMT3b/

PTEN, although this study did not confirm a direct association of

miR-152 with these genes (80).

Wang et al. found that lncRNA SNHG3 expression was

markedly upregulated in prostate cancer tissues and cell lines,

correlating with poor prognosis. Functional assays revealed that

SNHG3 overexpression promoted proliferation, migration, and

invasion of prostate cancer cells while inhibiting apoptosis (81).

Mechanistically, SNHG3 acts as a molecular sponge for miR-152-

3p, competitively modulating the inhibition of miR-152-3p on its

target SLC7A11. The upregulation of SLC7A11 reduces

methionine-dependence in cancer cells, a common feature among

cancer cells (82, 83). Methionine dependence refers to the inability

of cells to grow in media containing homocysteine instead of

methionine, suggesting methionine restriction as a potential

cancer treatment strategy (84, 85). This study highlights the role

of the SNHG3/miR-152-3p/SLC7A11 axis in promoting prostate

cancer progression by influencing methionine-dependence,

underscoring the significance of miR-152-3p in inhibiting

prostate cancer (81).

In summary, miR-152 is frequently downregulated in prostate

cancer tissues and cell lines. Acting as a tumor suppressor miRNA,

miR-152 targets and suppresses pro-oncogenic factors, leading to

the inhibition of prostate cancer cell growth, movement, and

invasion. It also triggers cell cycle arrest and apoptosis, ultimately

impeding the progression and spread of prostate cancer. These

findings indicate that miR-152 holds promise as a potential target

for prostate cancer therapy.
miR-152 in bladder cancer

Bladder cancer is a prevalent malignancy among urological

tumors, with approximately 70% of patients being diagnosed with

non-muscle invasive bladder cancer. Out of these cases, 50%-70%

face recurrence, and 10%-20% progress to muscle invasive bladder

cancer with a poor prognosis (86) Despite recent advancements in

understanding the mechanisms, diagnosis, and treatment of bladder

cancer, the high recurrence rate and low survival rate of patients

with muscle-invasive bladder cancer remain unresolved issues.
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Various studies have highlighted the significance of miR-152 in

bladder cancer (Figure 2). Like in prostate cancer, miR-152 is often

under-expressed in bladder cancer tissues and cell lines, functioning

as a tumor suppressor miRNA. Zhang et al. observed significantly

lower levels of miR-152 expression in bladder cancer cell lines T24

cells and UM-UC-3 cells compared to the normal urinary tract

epithelial cell line SV-HUC-1. Moreover, miR-152 expression was

notably lower in bladder cancer tissues compared to adjacent non-

cancerous tissues. The reduced levels of miR-152 expression were

found to be associated with the stage and grade of bladder cancer,

and the overexpression of miR-152 effectively inhibited the growth

of bladder cancer cells. The methylation rate of miR-152 promoter

CpG islands was notably higher in bladder cancer cell lines and

tissues compared to normal tissues. Mechanistic studies indicated

that DNMT1-mediated hypermethylation was responsible for the

decreased expression of miR-152 (60). Furthermore, DNMT1 was

identified as a potential target of miR-152, with luciferase reporter

gene assays showing direct binding of miR-152 to DNMT1 3′UTR,
leading to its inhibition in bladder cancer cells (60). These findings

suggest a reciprocal regulatory relationship between DNMT1 and

miR-152 in bladder cancer, where increased DNMT1 levels cause

hypermethylation of miR-152, resulting in its downregulation.

Simultaneously, miR-152 suppresses DNMT1 expression by

targeting its 3′-UTR. Additionally, research by Liu et al. revealed

that DNMT1 promoted the promoter methylation of phosphatase

and tensin homologue (PTEN), inhibiting PTEN expression.

Knockdown of PTEN mitigated DNMT1’s effects on bladder

cancer cell proliferation and migration, indicating that miR-152-

3p inhibits DNMT1 expression, which in turn affects PTEN via

DNA methylation regulation. The miR-152-3p/DNMT1/PTEN

pathway plays a crucial role in bladder cancer development (65).

These studies enhance our understanding of the intricate

relationship between miR-152 and DNMT1 in bladder cancer.

Kinesin family member 14 (KIF14) plays a crucial role in various

biological processes. Studies have shown that overexpression of

KIF14 is linked to the advancement and spread of different types

of cancers (87, 88). Fang et al. reported that the overexpression of

miR-152-3p and the knockdown of KIF14 inhibited the

proliferation, migration, and invasion of bladder cancer cells

while inducing apoptosis (89). Mechanistically, miR-152-3p

directly targets KIF14, leading to a reduction in its expression,

which in turn inhibits the PI3K/AKT and FOXM1/CCNB1

pathways, thereby impeding the progression of bladder cancer.

The PI3K/AKT and FOXM1/CCNB1 pathways are well-

established pathways involved in cancer development and cell

cycle regulation (89). Moreover, miR-152-3p was found to target

high mobility histone A2 (HMGA2), further inhibiting bladder

cancer cell proliferation and invasion by suppressing HMGA2

expression (90). Additionally, Zhang et al. reported that lncRNA

CCAT1 promotes the proliferation, migration, and invasion of

bladder cancer cells. Further examination of its potential

pathways revealed that miR-152-3p is associated with these

functions. lncRNA CCAT1 may function as a sponge for miR-

152-3p by binding to it, thereby weakening the activity of miR-152-

3p and inhibiting its target genes, which in turn promotes the

progression of bladder cancer (91).
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miR-152 in renal cell carcinoma

Renal cell carcinoma (RCC) is the third most common

urological tumor with a high mortality rate. Clear renal cell

carcinoma (ccRCC) is a predominant subtype, constituting

approximately 80% of RCC cases (2). Compared with prostate

cancer, research on miR-152 in renal cell carcinoma is limited.

Several studies have highlighted the significance of miR-152 in RCC

(Figure 2). Yang et al. reported that LncRNA HCG18 is highly

expressed in clear cell renal cell carcinoma (ccRCC) cells and

tissues. Further research identified miR-152-3p as a downstream

target of HCG18. HCG18 promotes the proliferation, migration,

and growth of ccRCC by inhibiting the activity of miR-152-3p (92).

Moreover, RAB14 was identified as a downstream target of miR-

152-3p; overexpression of RAB14 mitigated the effects of HCG18

knockdown on cell viability and metastasis. This indicates that

HCG18 positively regulates the expression of RAB14 by sponging

miR-152-3p, thereby promoting the progression of ccRCC and

highlighting the inhibitory effect of miR-152-3p on ccRCC (92).

Additionally, Jasinski-Bergner et al. (93) demonstrated that miR-

152 exhibits a strong affinity for the 3′-UTR of human leukocyte

antigen G (HLA-G), a gene commonly overexpressed in RCC,

thereby shielding tumor cells from immune cell-mediated

cytotoxicity (94). This implies that miR-152 can suppress HLA-G,

enhancing immune cell-mediated killing of tumor cells and

impeding RCC progression.
The potential of miR-152 as a
biomarker for urological malignancies

Biomarkers play a crucial role in providing valuable cancer-related

information for the early screening, diagnosis, treatment, and prognosis

of cancer. The traditional prostate cancer diagnostic indicator, blood

PSA, has faced criticism in recent years due to its lack of specificity,

false positives, and potential for overdiagnosis in benign prostate

disorders (5), As PSA levels do not directly correlate with prostate

cancer staging, there is a need for biomarkers with higher specificity

and sensitivity in clinical management. Dysregulation of miRNA has

been observed in various cancers (95, 96), with miRNA signatures

proving to be more accurate than PSA in detecting different cancer

types (97–99). The expression differences of miR-152 in prostate cancer

compared to non-cancerous tissues, along with its correlation with

Gleason score and pathological staging, suggest its potential as a

diagnostic and prognostic biomarker for prostate cancer.

Liu et al. investigated the use of miR-146a and miR-152 in prostate

cancer and their association with clinicopathological parameters. They

found that the serum levels of miR-152 in prostate cancer patients were

significantly lower compared to normal levels. The expression of

miR-152 was strongly linked to clinical stage, presence of bone

metastasis, and pathological stage. The diagnostic accuracy of

prostate cancer using miR-152 was evaluated with an area under the

curve (AUC) of 0.699 and a specificity of 94.64%. Furthermore,

combined detection with miR-146a showed higher sensitivity than

individual detection, suggesting that monitoring changes in the
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expression of miR-146a and miR-152 in serum could enhance the

diagnostic precision of prostate cancer (100). Moya et al. also identified

four significantly up-regulated miRNAs in the plasma of prostate

cancer patients, including miR-152. These miRNAs exhibited high

specificity and sensitivity in diagnosing prostate cancer. The AUC

suggested that their diagnostic capability exceeded that of PSA,

indicating that miRNA-152 in plasma holds promise as a diagnostic

biomarker for prostate cancer (6, 101). Circulating miR-152 has shown

promise in early detection of postoperative recurrence of prostate

cancer. Chen et al. found that miR-152 levels in the serum of

prostate cancer patients were significantly lower compared to

controls, with even lower levels in patients experiencing

postoperative recurrence. The ROC curve analysis demonstrated an

AUC of 0.906, sensitivity of 91.4%, and specificity of 80.6%, indicating

the potential of miR-152 as a biomarker for early prediction of

postoperative recurrence (102). A MATE analysis also highlighted 14

down-regulated miRNAs, including miR-152, with diagnostic and

predictive potential in distinguishing prostate cancer from benign

prostatic hyperplasia (103). For metastasis detection, Lin et al.

identified miR-152 as a potential marker through bioinformatics

modelling, further confirming its role in prostate cancer metastasis

(104). Additionally, Lichner et al. discovered 25 differentially expressed

miRNAs associated with biochemical failure risk post-prostatectomy,

withmiR-152 interacting with ERBB3 and influencing cell proliferation

to predict biochemical failure risk. These findings suggest the utility of

miR-152 in predicting postoperative recurrence and metastatic features

of prostate cancer, as well as in guiding postoperative adjuvant therapy

decisions (105).

Early diagnosis of bladder cancer is crucial for reducing

mortality rates. While urine cytology is a simple and non-invasive

method, its sensitivity is limited. Cystoscopy-guided biopsy is the

gold standard but is invasive and inconvenient for cancer screening.

Therefore, the search for more sensitive and non-invasive

biomarkers continues. Serum miRNA has emerged as a promising

option for bladder cancer diagnosis and prognosis. A study on

genome-wide miRNA analysis identified six miRNAs, including

miR-152, in serum with high accuracy and sensitivity levels,

outperforming urinary cytology. Notably, miR-152 was linked to

NMIBC tumor recurrence, indicating its clinical significance (106).

Additionally, miR-152’s tumor suppressor role was hindered by

DNA hypermethylation, suggesting its potential as an epigenetic

biomarker for bladder cancer. Köhler et al. found that miR-152 had

low expression and hypermethylation in bladder cancer cell lines,

proposing its use as an epigenetic biomarker for the disease (107).

In a bioinformatics analysis of potential therapeutic targets for

hypertension-associated renal cell carcinoma (RCC), miR-152-3p

was identified as significantly associated with hypertension-

associated RCC (108). Furthermore, five miRNAs, including miR-

152-3p, were found to be dysregulated in the urine of RCC patients

both before and after surgery. These miRNAs exhibited a strong

correlation, indicating their potential utility as post-operative

disease status markers (109).

In summary, miR-152 in serum demonstrates high specificity

and sensitivity in diagnosing prostate cancer, aiding in early

detection. It is associated with the pathological stage and Gleason

score of prostate cancer. Furthermore, miR-152 facilitates early
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monitoring of postoperative prostate cancer recurrence and

metastasis risk, complementing the limitations of PSA. This

suggests that miR-152 holds significant promise as a biomarker

for the diagnosis, treatment, and prognosis of prostate cancer. In

bladder cancer, miR-152, alongside other miRNAs, shows high

sensitivity across various stages and offers clinical value in

predicting postoperative recurrence. Studies also link miR-152 to

renal cell carcinoma, indicating its potential as a biomarker for

postoperative follow-up, although further research is necessary to

fully understand its clinical significance.
Therapeutic strategies for tumours
based on miRNA therapy

miRNAs play a significant role in cancer regulation and can be

targeted for therapeutic purposes. Cancer-associated miRNAs,

categorized as oncogenic or tumor-suppressor miRNAs, can be

targeted through two mechanisms. For oncogenic miRNAs, miRNA

inhibitors can be administered to patients to reduce or eliminate

their activity by isolating and binding to the miRNAs (35). These

inhibitors typically consist of reverse sequences that complement

the miRNAs. Additionally, ceRNAs, such as lncRNAs, circRNAs,

and pseudogene transcripts, act as natural miRNA inhibitors by

binding to miRNAs and competing for their limited availability,

thereby reducing their function. On the other hand, for tumor-

suppressor miRNAs, miRNA mimics can be delivered to patients to

replace the downregulated miRNAs (110). miRNA therapy for

cancer may involve the use of miRNA mimics or inhibitors alone

or in combination with chemotherapy, radiotherapy, and

immunotherapy to enhance treatment efficacy (111).

Gene therapy, which involves the therapeutic delivery of nucleic

acids into cancer cells, has been regarded as a promising approach

for decades. Recently, the U.S. Food and Drug Administration

(FDA) has approved several new therapies utilizing small

interfering RNA (siRNA), signaling the onset of a new era in

targeted therapy. In 2018, the FDA approved Patisiran, the first-

ever siRNA-based drug, for the treatment of transthyretin-mediated

amyloidosis, representing a significant milestone in the history of

RNA interference (RNAi) technology (112). The following year, the

FDA approved Givlaari, the second siRNA drug, which targets

aminolevulinic acid synthase 1 (ALAS1) mRNA for the treatment of

acute hepatic porphyria (113). In 2020, Lumasiran was approved by

the FDA as a treatment for primary hyperoxaluria type 1 (PH1)

(114). Furthermore, several studies investigating miRNA-based

therapies for advanced cancers have progressed to phase II

clinical trials, including TargomiR (a miR-16 mimic-based

therapy) for mesothelioma (115), Cobomarsen (an anti-miR-155

therapy) (116, 117), and Miravirsen (an anti-miR-122 therapy) for

individuals infected with hepatitis C (118). The number of siRNA-

based drugs is anticipated to increase significantly in the future, as

siRNA-based therapies emerge as a promising treatment option that

could revolutionize the clinical management of numerous diseases

due to their capacity to selectively modulate protein expression.

Nevertheless, siRNA-based cancer treatments must still address

several challenges. One major challenge is identifying the most
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suitable miRNA candidate or target for each type of cancer (119).

Since a single miRNA can have multiple targets, including both

oncogenes and tumor suppressor genes, miRNAs may have dual

roles in cancer progression, either promoting tumor development

or inhibiting tumor progression, depending on various factors such

as the cumulative effect of all targets and the specific tumor

microenvironment. Using miRNAs as therapeutic targets requires

a delicate balance between their oncogenic and tumor-suppressing

effects to ensure their clinical efficacy. Another challenge is the lack

of tissue-specific targeting of miRNAs delivered to the body, which

may lead to unintended uptake by other tissues and subsequent

adverse reactions. To address this issue, researchers have developed

vectors, such as viral particles and nanoparticles, to facilitate

targeted delivery of miRNAs to specific tissues. Additionally, the

degradation of oligonucleotides by serum and intracellular RNA

enzymes upon entry into the body poses a problem. To mitigate

this, scientists have modified the chemical properties of

oligonucleotides by adding phosphorothioate groups to the

nucleotide or RNA backbone, thereby preventing degradation.

These delivery vectors not only aid in targeting but also provide

protection by encapsulating the miRNA. Furthermore, the potential

toxicity, immune response, and off-target effects of miRNAs and

vectors post-administration into the body are important

considerations that must be addressed.

Despite the existing challenges associated with miRNA therapy

for cancer treatment, addressing these issues could lead to

significant breakthroughs in the management of various diseases,

including cancer. Notably, miR-152 has demonstrated considerable

promise in the treatment of cancer, particularly in relation to

urinary malignancies. Studies indicate that miR-152 functions as

a tumor-suppressor miRNA with decreased expression in prostate,

bladder, and renal cell carcinomas. In vitro experiments have shown

that overexpression of miR-152 can inhibit cancer cell proliferation,

migration, invasion, angiogenesis, and promote apoptosis. This

tumor-suppressor effect has also been validated in vivo through

tumor xenografts (76, 81). Consequently, miR-152 emerges as a
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strong candidate for miRNA-based therapy in urological

malignancies, with in vivo delivery of miR-152 mimics presenting

a viable therapeutic approach. Ongoing advancements in miRNA

carriers and chemical modifications hold promise for addressing

targeting and stability issues associated with miR-152 treatment.

However, further preclinical studies are necessary to assess the

safety and efficacy of this approach.
Conclusion and prospects

This review provides a comprehensive summary of the

relationship between miR-152 and urological tumors (Table 1).

Current research indicates that miR-152 acts as a tumor-suppressor

miRNA in prostate, bladder, and renal cell carcinomas. By targeting

downstream genes and signaling pathways associated with the

biological behaviors of cancer cells, miR-152 inhibits tumor

progression. Furthermore, studies demonstrate that miR-152

interacts with multiple genes and signaling cascades, forming a

protein-protein interaction network that plays a role in the

pathophysiological process of urological malignancies. These

findings suggest that miR-152 could be a promising gene target

for the treatment of urological malignancies. In the realm of

urological malignancies, the expression of miR-152 exhibits

notable variations and is closely linked to key pathological

parameters such as cancer stage, grading, and metastasis. This

suggests that miR-152 holds promise as a biomarker for the

detection, treatment, and prognosis of urological malignancies.

For instance, in prostate cancer, serum miR-152 demonstrates

high sensitivity and specificity in diagnosing the disease, as well

as in monitoring metastasis and postoperative recurrence. Similarly,

in bladder cancer, serum miR-152 exhibits high sensitivity across

different stages of the disease, surpassing the sensitivity of

urocytology. This indicates that miR-152 could serve as a non-

invasive biomarker with significant potential in the realm of

urological malignancies. However, there are certain limitations in
TABLE 1 miR-152 and its targets in urological malignancies.

Tumour type Expression Upstream Targets Downstream Targets References

Prostate cancer

Down NA KLF4 (79)

Down circANKS1B TGFa (69, 74)

Down NA TMEM97 (74)

Down HOTAIR FOXR2 (75)

Down LncRNA SNHG3 SLC7A11 (81)

Down NA HMGA2 (90)

Bladder cancer

Down NA DNMT1 (60)

Down NA DNMT1 (65)

NA lncRNA CCAT1 NA (91)

Down NA KIF14 (89)

Renal cell carcinoma
Down LncRNA HCG18 RAB14 (92)

NA NA HLA-G (93)
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1464327
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1464327
the current research on miR-152 in urological malignancies. Firstly,

miR-152 remains relatively understudied in the urinary system,

particularly in renal cell carcinoma, and the precise mechanism of

miR-152 in urological malignancies remains poorly understood.

Secondly, there is a lack of information on the stability of miR-152

and its targeting of tissues in vivo in current studies on miR-152 and

urinary malignancies. Lastly, existing studies are predominantly

focused on cellular and animal models, with a scarcity of clinical

research. Numerous challenges need to be addressed before miR-

152 can be effectively utilized in clinical settings. Once these

challenges are overcome, miR-152 has the potential to emerge as

an innovative therapeutic avenue for urological malignancies.

In conclusion, miR-152 has demonstrated significant promise as

both a therapeutic target and biomarker for urological malignancies.

However, there are unresolved issues that must be addressed before

miR-152 can realize its full potential in the treatment of urological

malignancies and other types of tumors. Further research is essential

to expand our understanding in this field.
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