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Exploring potential therapeutic
targets for small cell lung cancer
based on transcriptomics
combined with Mendelian
randomization analysis
Zhicheng Liao, Pengcheng Jia, Yifan Li, Zhihui Zheng
and Jizhou Zhang*

Department of Medical Oncology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University,
Wenzhou, China
Objective: The main objective of this study was to explore and identify new

genetic targets in small-cell lung cancer (SCLC) through transcriptomics analysis

and Mendelian randomization (MR) analysis, which will help in the subsequent

development of new therapeutic interventions.

Methods: In this study, we extracted the SCLC dataset from the Gene Expression

Omnibus (GEO) database, processed the data, and screened out differentially

expressed genes (DEGs) using R software. Based on expression quantitative trait

loci data and the genome-wide association study data of SCLC, MR analysis was

used to screen the genes closely related to SCLC disease, which intersect with

DEGs to obtain co-expressed genes (CEGs), and the biological functions and

pathways of CEGs were further explored by enrichment analysis. In addition, the

CIBERSORT algorithm was applied to assess the level of immune cell infiltration

in SCLC and to analyze the correlation between CEGs and immune cells.

Meanwhile, we performed a survival analysis on these five CEGs using an

independent cohort of SCLC patients. Finally, the results for the target genes

were validated.

Results: In this study, 857 DEGs were identified, including 443 up-regulated and

414 down-regulated genes, and 5 CEGs (PSAT1, PSRC1, COLEC12, PLLP, HP) that

were significantly associated with SCLC were identified through further

intersecting. The results of enrichment analyses indicated that CEGs play

important roles in several key functions and pathways. Immune-cell-related

analysis revealed the unique distribution of immune cell infiltration in SCLC

and the mechanism of immune cell regulation by CEGs. Survival analysis results

indicated that PSRC1 was significantly correlated with the overall survival of

SCLC, and the survival rate of the high-expression group was markedly lower

than that of the low-expression group. Finally, the consistency of the results

between the validation group analyses and MR analysis confirmed that the results

of this study is reliable.
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Conclusion: The CEGs and their associated functions and pathways screened in

this study may be potential targets of therapeutic intervention in SCLC by

targeting specific molecular pathways.
KEYWORDS

small cell lung cancer, differentially expressed genes, expression quantitative trait loci,
Mendelian randomization analysis, co-expressed genes, immune cell infiltration
1 Introduction

Small-cell lung cancer (SCLC) is a high-grade neuroendocrine

cancer with extremely high mortality and poor prognosis,

accounting for about 13-15% of all lung cancer cases, with a high

tendency to metastasize early, aggressive proliferation and easy to

recur, and can be divided into two types: limited-stage and

extensive-stage, of which 80-85% of SCLC patients are diagnosed

with extensive-stage small-cell lung cancer (ES-SCLC) (1, 2).

Currently chemoradiation is the key intervention in the

therapeutic management of SCLC. SCLC has a good initial

sensitivity to chemoradiation compared to other treatments,

however, this response is mostly short-lived and patients are

prone to recurrent diseases (1, 3). Whereas the emergence of

immune checkpoint inhibitors in recent years has altered the

clinical outcome of ES-SCLC patients to some extent, and the

regimen of platinum-based chemotherapy in combination with

anti-programmed cell death protein 1 and its ligand 1 has

increased the survival of ES-SCLC patients and represents the

current standard of first-line therapy, the overall survival of ES-

SCLC patients is still very limited (4, 5). More research is urgently

needed to explore effective therapeutic alternatives for SCLC.

However, the complex and unclear mechanisms of SCLC

development pose a serious challenge to studying therapeutic

options. Therefore, an in-depth understanding of the molecular

basis of SCLC, exploration of the complex mechanisms of SCLC,

and identification of potential therapeutic targets are of great

importance for the subsequent treatment of SCLC.

Mendelian randomization (MR) analysis is a method that uses

genetic variation as instrumental variables (IVs) to analyze the

causal relationship between exposure factors and disease, which can

circumvent the reverse causality and environmental confounding

inherent in traditional epidemiological methods (6, 7). In this study,
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we extracted SCLC microarray datasets from the Gene Expression

Omnibus (GEO) database and screened out differentially expressed

genes (DEGs) between SCLC and normal tissue samples. Based on

the expression quantitative trait loci data and genome-wide

association study (GWAS) data of SCLC, we used MR analysis to

screen out the genes closely related to SCLC disease and intersected

them with DEGs to obtain co-expressed genes (CEGs). Gene

Ontology (GO)/Kyoto Encyclopedia of Genes and Genome

(KEGG) enrichment analyses were further applied to explore the

biological functions and pathways of CEGs. In addition, the

CIBERSORT algorithm was performed to assess the level of

immune cell infiltration in SCLC and to analyze the correlation

between CEGs and immune cells. We further explored the activity

levels of relevant functions and pathways in specific gene expression

groups by Gene Set Enrichment Analysis (GSEA). Finally,

validation group analysis was performed to increase the reliability

of the results of this study.
2 Materials and methods

2.1 GEO data collection

The inclusion criteria for the SCLCmicroarray datasets were (1)

the datasets contained at least 8 samples (at least 4 SCLC samples

and 4 normal tissue samples) (2); the datasets did not contain any

chemically treated or genetically modified samples (3); the raw data

or array gene expression profiling data must be available. In this

study, three SCLC microarray datasets were extracted according to

the inclusion criteria (GSE43346, GSE73160 and GSE149507,

respectively), which contained a total of 107 SCLC samples and

66 control samples (detailed information can be accessed from

Table 1), and all the gene expression matrices and corresponding

platform probe annotations were available from GEO database

(https://www.ncbi.nlm.nih.gov/geo/).
2.2 Methodology

2.2.1 Identification of DEGs
The three datasets were read, preprocessed, and calibrated

individually using the R software (version 4.3.3), then combined
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into one total dataset and batch-corrected, and normalized and

standardized using gene expression matrices and annotation files

from the GEO database. To eliminate the batch effect, principal

component analysis was performed on the total processed dataset

using the “prcomp” function, and the results were visualized. DEGs

were identified using the classical Bayesian data analysis method in

the “limma” package (7). The filtering conditions were set to

corrected P-value < 0.05 and LogFoldChange (LogFC) > 1, and

heatmaps and volcano maps of DEGs were generated using the

“peatmap” package.

2.2.2 Exposure factors and outcome variables
In this study, we extracted the expression quantitative trait loci

data of the Võsa U team’s study from the IEU open GWAS database

(https://gwas.mrcieu.ac.uk/) as an exposure factor (8). Then we

screened for single nucleotide polymorphisms (SNPs) that met the

following criteria (1): strong correlation with the exposure factor

(P < 5e-08) (2), no linkage disequilibrium (parameters set to r2 <

0.001, kb=10000) (3), To exclude the SNPs with weak associations

or insufficient explanation of phenotypic variance, the F-value of

each SNP needs to be >10 [F= b2/SE2 (b stands for the allelic effect

value and SE stands for standard error)]. Screened SNPs will be

analyzed by MR as IVs representing exposure factors.

We extracted the GWAS data of the McKay team’s study from

the GWAS catalog database (https://www.ebi.ac.uk/gwas/home,

accession number GCST004746), containing a total of 2,664

SCLC samples with 21,444 control samples, which will be

analyzed as an outcome variable for MR (9).

2.2.3 MR analysis
In this study, MR analyses were conducted between IVs and

outcome variables using the “TwoSampleMR” package in R

software. Inverse variance weighting (IVW) was used as the

primary analytical method, and MR Egger, weighted median,

simple mode and weighted mode were used as secondary

analytical methods (7). Genes that met the following criteria were

screened based on the MR analysis results (1): IVW results showed

P-value <0.05 (2); the results of the above five analysis methods met

the criterion of directional consistency [Odds ratios (ORs) were

directionally consistent] (3); the IVW results were corrected using

the false discovery rate method (the adjusted P-value was <0.05) (4);

the pleiotropic analysis results showed no pleiotropic tendency

(P>0.05). According to the direction of OR value, the screened

genes were respectively intersected and identified with DEGs

thereby obtaining CEGs, including up-regulated and down-
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regulated genes. In addition, heterogeneity tests, pleiotropic and

sensitivity analyses were performed to determine the reliability of

the MR results. Funnel, scatter and leave-one-out plots were

developed to visualize and support the MR results.

2.2.4 GO/KEGG enrichment analysis
To further explore the potential biological functions and

pathways of CEGs, we performed GO functional annotation and

KEGG pathway enrichment analyses of the CEGs using the

“clusterProfiler” package with a filter of P<0.05.

2.2.5 Analysis of immune cell infiltration
In this study, the “CIBERSORT” package was performed to

analyze and assess the differences in the infiltration of 22 immune

cells between SCLC and normal tissue samples, and to further

analyze the correlation between CEGs and immune cells for

exploring the mechanism of CEGs on immune cells (10).

2.2.6 GSEA
GSEA can sort all genes from largest to smallest according to the

multiplicity of differences after treatment, and if there is a trend of

up-regulation or down-regulation of functions and pathways

associated with gene expression then it will show top or bottom

enrichment in the gene list (11). Therefore, in this study, we further

used the GSEA method to explore the activity levels of the relevant

functions and pathways in a specific gene set with a statistical

significance criterion of P<0.05.
2.2.7 Survival analysis
This study retrieved the overall survival data of SCLC from the

George team (12). After excluding the missing values, the data was

calibrated and processed. Subsequently, the “survival” package was

utilized to perform survival analysis on CEGs, thereby obtaining

genes associated with SCLC overall survival (with a significance

criterion of P < 0.05).
2.2.8 Validation group analysis
In this study, the GSE40275 dataset, which met the inclusion

criteria, was selected from the GEO database as the validation group

(15 SCLC and 43 normal tissue samples), and was processed and

analyzed using the same methodology as described above, as well as

the results of the analyses were compared with the results of the MR

analyses, to verify whether there were differences in the CEGs

between the SCLC and normal tissue samples.
TABLE 1 The information of the three GEO datasets.

ID N cases N controls Platforms Experiment type Last update date

GSE43346 25 43 GPL570 Array Mar 25, 2019

GSE73160 64 5 GPL11028 Array Jul 07, 2020

GSE149507 18 18 GPL23270 Array Mar 30, 2021
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3 Results

3.1 Identification of DEGs

We performed a series of pre-processing on each of the three

datasets and corrected the expression of each gene in the data, and

finally merged them into one total dataset and removed the batch

effect by principal component analysis. The data before and after

batch correction are shown in Figures 1A, B. In this study, 857

DEGs were identified from the three GEO datasets, including 443

up-regulated genes and 414 down-regulated genes (specific

information can be obtained from Supplementary Table S1). The

heatmap shows the expression status of the top 50 up-regulated

DEGs and the top 50 down-regulated DEGs, as shown in Figure 2.
Frontiers in Immunology 04
The volcano plot shows the expression pattern of DEGs in the total

dataset, as shown in Figure 3.
3.2 MR analysis

Based on the three main hypothesis criteria of MR analysis and

the F-value filtering criteria (7, 13), we finally filtered 26,512 SNPs

as instrumental variables (specific information can be obtained

from Supplementary Table S2). MR analysis was performed

between IVs and outcome variables. According to the filtering

criteria, we filtered out 102 genes with OR-value <1 and 100

genes with OR-value >1 (specific information can be obtained

from Supplementary Table S3), further intersected with DEGs,
FIGURE 1

Principal component analysis of principal component analysis of three small cell lung cancer datasets. (A) represents that there are clear batch
effects in the three datasets before batch correction. (B) represents, after batch correction, all samples in the dataset achieved acceptable
homogeneity following PCA analysis.
FIGURE 2

Differential gene expression heatmap. Treat: small-cell lung cancer tissue samples, control: normal tissue samples.
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and finally obtained 2 co-expression up-regulated genes (PSAT1,

PSRC1) and 3 co-expression down-regulated genes (PLLP,

COLEC12, HP), as shown in Figure 4.

The IVW results showed that PSAT1 and PSRC1 all had

significant positive correlation with SCLC, PSAT1 [P=0.007,

OR=1.156, 95% confidence interval (CI): 1.041-1.283], PSRC1

(P=0.031, OR=1.131, 95% CI: 1.011-1.264); whereas COLEC12,

PLLP, and HP all had significant negative correlation with SCLC,

COLEC12 (P=0.005, OR=0.798, 95% CI: 0.682-0.933), PLLP (P=0.008,

OR=0.606, 95% CI: 0.420-0.875), HP (P=0.011, OR=0.885, 95% CI:

0.805-0.972), as shown in Figure 5. In the results of the analysis of

multiplicity all P-values were >0.05, indicating that there was no effect

of multiplicity. In the test for heterogeneity all p-values were >0.05,

indicating that there was no effect of heterogeneity. Results of leave-

one-out sensitivity analyses showed that the effect value of each IV

were close to the overall effect size. Forest, scatter, funnel, and leave-

one-out plots can be obtained from Supplementary Figure S1. In

addition, we localized the CEGs on chromosomes and visualized them

as shown in Figure 6.
Frontiers in Immunology 05
3.3 GO/KEGG enrichment analysis

GO enrichment analysis showed that these genes mainly affect

the biological functions of endocytic vesicle, haptoglobin-

hemoglobin complex, compact myelin, myelin sheath, structural

constituent of myelin sheath, as shown in Figure 7. KEGG

enrichment analysis showed that these genes mainly affect

glycine, serine, and threonine metabolism; cysteine and

methionine metabolism; biosynthesis of amino acids; carbon

metabolism, biosynthesis of cofactors, and phagosome, as shown

in Figure 8. Specific information can be obtained from the

Supplementary Table S7.
3.4 Immune cell infiltration analysis

The results of GO/KEGG enrichment analysis showed that the

functions and pathways of CEGs may be related to immune

infiltration; therefore, in this study, we used the CIBERSORT

algorithm to assess the differences in the levels of immune cell

infiltration between SCLC and control samples and further explored

the correlation between CEGs and immune cell infiltration. We

observed significant differences between SCLC and control samples

on T cells CD4 memory resting, T cells CD4 memory activated, T

cells follicular helper, T cells regulatory, NK cells activated, and

Macrophage M2, as shown in Figure 9A. Specifically, the proportion

of T cell CD4 memory resting and T cell CD4 memory activated

were significantly lower. T cell follicular helper, T cells regulatory,

NK cell activated, and Macrophages M2 were significantly higher in

SCLC compared with control, as shown in Figure 9B.

Correlation analysis of CEGs with 22 immune cells showed that

PSRC1 was positively correlated with T cells follicular helper, NK

cells activated, Macrophages M1, and negatively correlated with NK

cells resting, Monocytes, Macrophages M2, Eosinophils, and

Neutrophils; PSAT1 was positively correlated with Macrophages

M0, and negatively correlated with Monocytes; COLEC12 was

positively correlated with Monocytes, Macrophages M2 and

Neutrophils, and negatively correlated with T cells follicular

helper and Macrophages M1; PLLP was positively correlated with

Neutrophils and negatively correlated with T cell CD4 memory
FIGURE 4

Venn plots. Two circles respectively represent the differential expression analysis results and Mendelian randomization analysis results of small cell
lung cancer. The overlapping part represents the co-expressed genes. (A) 2 up-regulated co-expressed genes. (B) 3 down-regulated co-
expressed genes.
FIGURE 3

The volcano plot of DEGs with the three datasets. If the log fold
change (logFC) is greater than 1, it represents an up-regulated
differentially expressed gene, which is the red part; if the logFC is
less than -1, it represents a down-regulated differentially expressed
gene, which is the blue part.
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activated and Macrophages M1; HP was negatively correlated with

B cells native, as shown in Figure 9C.
3.5 GSEA

Based on the results of differential gene expression status,

immune cell infiltration assessment, and correlation analysis, we

found that PSRC1 and COLEC12 were associated with significantly

differential infiltrating immune cells. Therefore, this study further

explored the activity levels of the relevant functions and pathways of

PSRC1 and COLEC12 in SCLC using GSEA. GSEA results showed
Frontiers in Immunology 06
that, in the PSRC1 high expression group, the top five active

biological functions were chromosome segregation, mitotic sister

chromatid segregation, nuclear chromosome segregation,

regulation of chromosome segregation, and sister chromatid

segregation; the top five active pathways were cell cycle, DNA

replication, mismatch repair, oocyte meiosis, and P53 signaling

pathway. In the PSRC1 low-expression group, the top five active

biological functions were adaptive immune response based on

somatic recombination of immune receptors built from

immunoglobulin superfamily domains, phagocytosis, T cell-

mediated immunity, specific granule, and immune receptor

activity; the top five active pathways were the complement and

coagulation cascades, cytokine-cytokine receptor interaction, and

drug-metabolism cytochrome P450, hematopoietic cell lineage, and

metabolism of xenobiotic by cytochrome P450.

In the COLEC12 high expression group, the top five active

biological functions were humoral immune response, phagocytosis,

positive regulation of Extracellular-regulated kinase 1 and

Extracellular-regulated kinase 2 cascade, response to chemokine, and

immune receptor activity; the top five active pathways were chemokine

signaling pathway, complement and coagulation cascades, cytokine-

cytokine receptor interaction, hematopoietic cell lineage, and vascular

smooth muscle contraction; In the COLEC12 low-expression, the top

five active biological functions group were cell cycle checkpoint

signaling, mitotic sister chromatid separation, chromosome region,

chromosome centromeric region, and condensed chromosome; the top

five active pathways are aminoacyl tRNA biosynthesis, cell cycle, DNA

replication, protein export, and spliceosome. Details can be obtained

from Supplementary Figure S2.
3.6 Survival analysis

This study extracted and sorted out the survival data of 66

patients with SCLC. Specific information can be obtained from the

Supplementary Table S8. The results demonstrated that PSRC1 was

significantly associated with the overall survival time of SCLC

patients (P = 0.015). The survival rate in the group with high
FIGURE 6

Circos plot of co-expressed genes. The figure shows a circular
chromosome diagram. The regions of different colors in the diagram
represent different chromosomes, and the locations of five co-
expressed genes on the chromosomes are labeled.
FIGURE 5

MR forest plot of co-expressed genes. The results of MR analysis between co-expressed genes and SCLC disease. OR, odds ratio; CI, confidence
interval; snp, single-nucleotide polymorphism.
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expression of PSRC1 was significantly lower than that in the group

with low expression of PSRC1, as shown in Figure 10.
3.7 Validation group analysis

The results of the validation group analysis showed a significant

increase (P<0.001) in the expression of PSAT1 and PSRC1, and

showed a significant decrease (P<0.001) in the expression of

COLEC12, PLLP, and HP in SCLC group, as shown in Figure 11.

The expression levels of CEGs in the validation group were

consistent with the results of this study, which increased the

reliability and robust of the results of MR analysis.
4 Discussion

In the early stage of our research, we attempted to search for the

information of each patient through the source literature of the

datasets, so as to conduct a stratified analysis of factors such as age,

gender, and disease stage. However, only a small portion of the

datasets had information in this regard. Considering this limitation,

we were worried that the research results could not fully cover every

patient in the datasets. Therefore, we have not taken this aspect as

the main objective of our research for the time being.

In our study, three SCLC microarray datasets were extracted

from the GEO database, including 107 SCLC samples and 66
Frontiers in Immunology 07
normal tissue samples. Through in-depth analysis of the datasets,

we successfully identified 857 DEGs (442 up-regulated genes and

407 down-regulatedgenes) that may be critically involved in the

pathophysiology of SCLC. DEGs further intersect with the closely

related genes of SCLC from the results of MR analysis, we obtained

two up-regulated CEGs (PSAT1, PSRC1) and three down-regulated

CEGs (COLEC12, PLLP, HP), and MR analysis confirmed that

increased expression of PSAT1 and PSRC1 were associated with

increased risk of SCLC, while decreased expression of COLEC12,

PLLP, and HP were associated with increased risk of SCLC,

suggesting that they may play a key role in the pathogenesis of

SCLC. Furthermore, an independent cohort of patients with SCLC

was employed to investigate the correlation between CEGs and

overall survival duration. The findings indicated that PSRC1 was

significantly related to the overall survival of SCLC patients and the

survival rate in the high-expression group was markedly lower

compared to that in the low-expression group, with a P-value of

0.015, suggesting a potential prognostic role of PSRC1 expression

levels in SCLC survival.
4.1 Up-regulated genes

PSAT1 (Phosphoserine aminotransferase 1), located on

chromosomal locus 9q21.2, is involved in the serine synthesis

pathway and is a member of the class V pyridoxal phosphate-

dependent aminotransferase family (14). The critical role of PSAT1
FIGURE 7

GO enrichment analysis of co-expressed genes. The figure illustrates the functional enrichment status of co-expressed genes within the GO
enrichment analysis, covering biological process (BP), cellular component (CC), and molecular function (MF). Each segment showcases the top ten
functions. A deeper red color in “p.adjust” indicates a higher level of significance. The white circles signify the quantity of genes where genes are
concentrated within a particular function. Larger circles denote a greater number of enriched genes.
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as a key enzyme in the synthesis of serine and glycine has been

verified and the overactivation of the serine/glycine metabolic

pathway may promote tumorigenesis by facilitating the cell cycle

process (15). Previous studies have confirmed that PSAT1 is an

oncogene that is usually over-expressed in malignant tumors,

especially in non-small cell lung cancer (NSCLC) (16). Many

studies have suggested that PSAT1 may be play a key role in

NSCLC, Yang et al. concluded that over-expressed PSAT1

promoted cell cycle protein D1 activity and inhibited its

degradation, thereby promoting the proliferation of NSCLC cells;

Chan et al. found that over-expressed PSAT1 promoted lung

adenocarcinoma (LUAD) metastasis and led to poor prognosis by

inhibiting several biological factors; Luo et al. suggested that over-

expressed PSAT1 promoted LUAD metastasis and was also

responsible for resistance to epidermal growth factor receptor

inhibitors in LUAD patients (15, 17, 18). The results of this study

showed that PSAT1 expression was significantly up-regulated in

SCLC consistent with most malignant tumors and the results of

enrichment analysis also indicated that PSAT1 is involved in

multiple pathways in the cell cycle process, such as glycine, serine

and threonine metabolism. However, there are limited studies

related to PSAT1 in SCLC, our results may reveal a new research

direction for an in-depth exploration of the pathogenesis of SCLC.

PSRC1 (Proline and serine rich coiled-coil 1), located at

chromosomal locus 1p13.3, is a novel microtubule-associated

protein encoding proline-and serine-rich proteins and is a down-
Frontiers in Immunology 08
regulated target of p53 and is responsible for p53-mediated gene

repression with oncogenic features (19). It has been confirmed that

PSRC1 promotes cell growth through multiple pathways, such as

enhancing b-catenin dependent transactivation and cyclin D1

production by binding to adenomatous polyposis coli 2 (20).

Previous studies have confirmed that PSRC1 plays an important

role in a variety of cancers, Liu et al. suggested that over-expression

of PSRC1 in patients with low-grade gliomas was an independent

risk factor for shortening their overall survival; Long et al.

concluded that PSRC1 is a novel biomarker for the diagnosis and

treatment of pancreatic cancer; Han et al. observed that PSRC1 was

highly expressed in LUAD and Lung squamous cell carcinoma and

they concluded that high expression of PSRC1 was an independent

risk factor for overall survival and progression-free survival in

patients with LUAD (21–23). The outcomes of this research have

verified that PSRC1 exhibits high expression levels in SCLC. Based

on these findings, we speculate that its elevated expression may

promote cell cycle progression, thereby accelerating the

development of small cell lung cancer. Moreover, the survival

analysis has demonstrated that the elevated expression of PSRC1

correlates with a lower survival rate in SCLC, which aligns with the

circumstances observed in non-small cell lung cancer. In view of

these findings, we believe that PSRC1may be a potential therapeutic

target for SCLC.

Interestingly, a potential link between PSAT1 and PSRC1 has

been found in previous studies of non-small cell lung cancer, in
FIGURE 8

KEGG enrichment analysis of co-expressed genes. This figure presents the pathway enrichment status of co-expressed genes in KEGG enrichment
analysis, showing the top ten pathways. A deeper red color in “p.adjust” indicates a higher level of significance. The white circles represent the
number of genes where differentially expressed genes (DEG) are concentrated in a specific pathway. Larger circles imply a greater number of
enriched genes.
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which increased PSAT1 expression inhibits the degradation of the

cell cycle protein d1, while elevated PSRC1 expression promotes the

production of this protein (17, 20). Because of the limited research

on these two genes in SCLC currently, it is still uncertain whether

such a combined action exists in SCLC, yet our research may offer a

new research direction.
4.2 Down-regulated genes

COLEC12 (Collectin subfamily member 12), located at

chromosomal locus 18p11.32, is a transmembrane scavenger

receptor C-type lectin that recognizes certain bacteria and fungi,

leading to phagocytosis (24). COLEC12 has been shown to be

aberrantly expressed and play an important role in a variety of

cancers, Kong et al. found that the expression level of COLEC12 was

significantly elevated in a group of gastric cancer cells by controlled

analysis; Sun et al. et al. found that COLEC12 was highly expressed

in patients with advanced gastric cancer and suggested that it has

the ability to promote the proliferation, migration and invasion of

gastric cancer cells and inhibit gastric cancer cell and inhibit

apoptosis of gastric cancer cells; Wang et al. found that

COLEC12, a cancer stemness-related gene, could predict the

prognosis of colon adenocarcinoma patients (25–27). The results

of this study revealed that COLEC12 expression was down-

regulated in SCLC. Moreover, the enrichment analysis revealed

that it is involved in biological functions and pathways such as
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endocytic vesicle, scavenger receptor activity, and phagosome. The

protein encoded by COLEC12 is a scavenger receptor, which is

expressed on various types of cells, like macrophages. It can

recognize the microbial antigens of pathogens invading cells,

initiate phagocytosis and activate downstream immune responses

to combat and eliminate the pathogens (28). This is in line with the

results of our enrichment analysis, underlining its crucial role in

host defense. Based on these findings, we presume that a decrease in

the expression of COLEC12 may lead to a weakened ability to resist

pathogens, subsequently influencing the development of SCLC.

However, the research on the role of COLEC12 in SCLC is

relatively scarce at present. Our findings may offer a new

perspective for understanding the cellular biology of SCLC.

HP, located on chromosomal locus 16q22.2, can encode a

preproprotein, which is processed to produce haptoglobin.

Haptoglobin is an acute phase response protein with anti-

inflammatory and antioxidant properties, which is synthesized

mainly by the liver, but can also be synthesized by the lungs,

spleen, kidneys, skin and adipose tissue (29). The protein

produced by the HP gene has been shown to play an important

role in lung cancer. In NSCLC, several studies have found

significantly elevated levels of haptoglobin in tumor tissues as well

as in patient serum compared to normal controls, and suggested

that high levels of haptoglobin correlate with TNM staging, lymph

node metastasis, and distant metastasis (29, 30). In SCLC, Shah

et al. found that the mean level of a- haptoglobin and b-
haptoglobin in SCLC serum was increased (31). However, our
FIGURE 9

Analysis of Immune Cell Infiltration in small-cell lung cancer. Treat: small-cell lung cancer group, control: normal tissue group. (A) Stacked
histogram of the ratio of immune cells in the treat and control groups. (B) Box plots comparing the levels of 22 types of immune cell infiltration in
the treat group versus the control group. *P<0.05, **P<0.01. (C) Heatmap of the correlation between co-expressed genes and 22 types of
immune cell.
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study found that HP gene expression was down-regulated in SCLC

tissues. The outcomes of GO enrichment analysis demonstrated its

involvement in biological functions such as endocytic vesicle,

endocytic vesicle lumen, haptoglobin-hemoglobin complex,

tertiary granule lumen, specific granule lumen, and antioxidant

activity. Free hemoglobin exhibits toxicity on account of nitric oxide

scavenging and its direct pro-oxidative and pro-inflammatory

activities. Previous research has indicated that the initial step in

the classical pathway for the clearance of free hemoglobin hinges

upon the formation of the hemoglobin-haptoglobin complex, and

subsequently, the free hemoglobin is broken down within

macrophages via endocytosis (32). This is consistent with the

results of our enrichment analysis, indicating the importance of

HP in the antioxidant and anti-inflammatory responses. We

presume that the decreased expression of HP in tumor tissues

may inhibit this regulatory pathway, thereby weakening the

antioxidant and anti-inflammatory effects and promoting the

development of SCLC. However, the research on the role of HP

in SCLC is relatively scarce at present. Our findings may offer a new

perspective for understanding the cellular biology of SCLC.

PLLP (Plasmolipin), located at chromosomal locus 16q13, is a

component of synaptic plasma membranes, myelin sheaths and

endocytic vesicles, and is involved in myelin formation (33, 34).

This is consistent with the results of our enrichment analysis.

Previous studies have found a significant increase in PLLP

expression in mouse models of breast cancer and melanoma brain

metastasis, and speculated that it may play a role in brain metastasis

of these two malignant tumors (35, 36). In glioblastoma, Luo et al.
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found that the expression of PLLP in the cells of peritumoral brain

zone was lower than that in the cells of the core zone of the tumor

(37). Recent study have reported a significant correlation between

PLLP and renal smoky cell carcinoma, renal clear cell carcinoma,

and endometrial carcinoma of the uterine corpus (34). In this study,

we found that the expression of PLLP is down-regulated in small

cell lung cancer and the results of enrichment analysis indicated its

involvement in biological functions such as compact myelin, myelin

sheath, and structural constituent of myelin sheath. As the main

component of myelin, PLLP promotes myelin formation by

inducing myelin precursor domains in the Golgi apparatus after

phosphorylation (38).Based on our findings, we speculate that the

reason why the decreased expression of PLLP can promote the

development of SCLC might be related to the neuroendocrine

characteristics of SCLC. However, there are limited studies related

to the role of PLLP in SCLC and further studies are still needed to

explore its specific mechanism of action in SCLC.

In addition to exploring gene-specific effects on SCLC, we

expanded our study to the immunological level of SCLC. We

performed an analysis of immune cell infiltration levels by the

CIBERSORT algorithm. We found significantly different immune

cell infiltration levels between SCLC and normal tissue samples,

which is broadly in line with previous findings (39, 40). Based on

the results of differential expression analysis, we further analyzed

the correlations between the five co-expressed genes and 22

immune cell subpopulations, and the results showed that all five

co-expressed genes were correlated with some immune cells,

especially PSRC1 and COLEC12. Specifically, we found that in the
FIGURE 10

Survival analysis of co-expressed genes. The figure shows the relationship between five CEGs (PSRC1, PSAT1, PLLP, COLEC12, HP) and the overall
survival of patients with SCLC. The red represents the group with high gene expression, and the blue represents the group with low gene expression.
The horizontal axis represents overall survival time, and the vertical axis represents survival probability. The table beneath it enumerates the number
of patients who remain alive at different time points spanning from 0 to 15 years.
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FIGURE 11

Validation group differential analysis. Box plots comparing the expression status of co-expressed genes between the treat group and control group
in the validation set. Treat: small cell lung cancer group, control: normal tissue group. ***P<0.001.
FIGURE 12

Graphic abstract. The left part illustrates the pathogenesis model of small cell lung cancer suggested by five co-expressed genes. The right part
shows the infiltration of immune cells in small cell lung cancer as well as the relationships between PSRC1, COLEC12 and the infiltration of
immune cells.
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up-regulated cancer-enriched genes (CEGs), PSRC1 was positively

correlated with T cells follicular helper and activated NK cells.

Moreover, in the down-regulated CEGs, COLEC12 was negatively

correlated with T cells follicular helper. Compared with the control

group, the proportion of T cells follicular helper in SCLC was

significantly increased. Therefore we further explored the activity

levels of PSRC1 and COLEC12 in SCLC by GSEA method, and the

results showed that PSRC1 and COLEC12 play a multifaceted and

complex role in the pathogenesis of SCLC. The expression levels of

PSRC1 may be associated with changes in biological functional

activities related to immune responses, chromosome segregation,

and others. The active pathways in the PSRC1 high-expression

group indicated the possible presence of cell division process which

is mediated by the regulatory role of PSRC1 in SCLC, and the active

pathways in the PSRC1 low-expression group indicated the possible

presence of humoral immune responses and the metabolic

processes of cytochrome P450 which are mediated by the

regulatory role of PSRC1 in SCLC. While the expression levels of

COLEC12 may be associated with changes in biological functional

activities related to cell cycle, immune response, and others. The

active pathways in the COLEC12 high-expression group indicated

the possible presence of immune response which is mediated by the

regulatory role of COLEC12 in SCLC, and the active pathways in the

COLEC12 low-expression group indicated the possible presence of

process of cell division which is mediated by the regulatory role of

COLEC12 in SCLC.

Finally, we used a validation group for difference expression

analysis, and the results were consistent with those of the MR

analysis, which confirmed the reliability of our findings. The

elevated expression of PSRC1 may promote the development of

SCLC by influencing the cell cycle process and immune cell

infiltration, while the increased expression of PSAT1 may

contribute to the development of SCLC by affecting the cell cycle

process. The decreased expression of COLEC12 may suppress the

host defense function and immune cell infiltration, thereby

promoting the development of SCLC; The decreased expression

of HP may inhibit the clearance pathway of free hemoglobin,

leading to the enhancement of oxidative stress and inflammatory

response, thereby promoting the development of SCLC; and the

decreased expression of PLLP may promote the development of

SCLC by influencing the neuroendocrine characteristics. A

graphical summary is visible in Figure 12. However, all these

possibilities need to be verified by further experiments to

elucidate the specific roles of these genes in SCLC. Certainly, the

potential therapeutic targets identified in the latest research merit

further attention. For instance, the research team found that the

expression of Three prime repair exonuclease 1 (TREX1) is up-

regulated in SCLC. Through fundamental experiments, it was

discovered that suppressing its expression can enhance anti-

tumor immunity and augment the efficacy of chemotherapy and/

or immunotherapy for chemotherapy-resistant SCLC (41). The

other research team analyzed the genome-wide loss-of-function

screening database to look for vulnerabilities in SCLC and they

believed that S-phase kinase-associated protein 2 (SKP2) could be
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regarded as a new therapeutic target for SCLC, regardless of

whether it is RB1 wild-type or mutant SCLC (42).

In summary, this study performed a detailed analysis of SCLC

using bioinformatics as well as statistical methods to identify key

genes and pathways, focusing on the association between co-

expressed genes (PSAT1, PSRC1, COLEC12, PLLP, and HP) and

SCLC. These genes and their associated functions and pathways

may be potential targets for targeting specific molecular pathways

for the treatment of SCLC, which lays a theoretical foundation for

the subsequent development of new therapeutic interventions.

There are some limitations in this study. First, only a single

bioinformatics analysis was performed, lack of biological

experiments for validation. Second, due to the incomplete

information in the original datasets, at present, this study has not

yet carried out hierarchical analyses on factors such as age, gender,

and disease stage. In the future, we will conduct deeper clinical

studies and laboratory validation.
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