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RNA modifications are epigenetic changes that alter the structure and function of

RNA molecules, playing a crucial role in the onset, progression, and treatment of

cancer. Immune checkpoint inhibitor (ICI) therapies, particularly PD-1 blockade and

anti-CTLA-4 treatments, have changed the treatment landscape of virous cancers,

showing great potential in the treatment of different cancer patients, but sensitivity to

these therapies is limited to certain individuals. This review offers a comprehensive

survey of the functions and therapeutic implications of the four principal RNA

modifications, particularly highlighting the significance of m6A in the realms of

immune cells in tumor and immunotherapy. This review starts by providing a

foundational summary of the roles RNA modifications assume within the immune

cell community, focusing on T cells, NK cells, macrophages, and dendritic cells. We

then discuss how RNA modifications influence the intricate regulatory mechanisms

governing immune checkpoint expression, modulation of ICI efficacy, and

prediction of ICI treatment outcomes, and review drug therapies targeting genes

regulated by RNAmodifications. Finally, we explore the role of RNAmodifications in

gene editing, cancer vaccines, and adoptive T cell therapies, offering valuable insights

into the use of RNA modifications in cancer immunotherapy.
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Introduction

RNA modification is an epigenetic change that alters the structure and function of RNA

molecules by inserting, deleting, or substituting nucleotides at specific locations, playing a key

role in cellular physiology and pathology. Currently, the roster of RNA modifications that

have been pinpointed has extended to over 170 distinct subtypes (1), including methylation,

acetylation, pseudouridinization, among others.
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RNA methylation modifications are regulated by specific

proteins, including methyltransferase “writers” that add marks,

demethylase “erasers” that remove them, and “readers” that

recognize these modifications. Among RNA modifications, N1-

methyladenosine (m1A) (2), 5-methylcytosine (m5C) (3), N6-

methyladenosine (m6A) (4), and 7-methylguanosine (m7G) have

been the focus of comprehensive studies regarding their oncogenic

properties and are viewed as key determinants in the occurrence (5),

development, and treatment of tumors.

Immune cells within tumors play a key role in clearing the

tumor. Activating immune cells, especially the tumor-clearing

functions of T cells, can suppress tumor growth. However,

immune cells in the tumor microenvironment are typically in a

state of suppression, leading to immune evasion. We have found

that RNA modifications are involved in the regulation of immune

cell suppression in tumors. Immunotherapy, such as anti-PD-1/PD-

L1 therapy, has been widely applied in clinical practice, but only a

subset of patients is sensitive to immunotherapy. The efficacy of

cancer immunotherapy is contingent upon a multitude of factors,

including the type of tumor, tumor’s mutational burden, the

stability of microsatellites, and the combined use of chemotherapy

drugs. Notably, the presence of immune cell infiltration within the

tumor microenvironment and the expression of immune

checkpoints on the tumor’s surface play pivotal roles in the

therapy’s success. We have found that RNA modifications,

primarily the m6A modification, have a complex regulatory effect

on the tumor infiltration of immune cells and the expression of PD-

L1. By targeting the m6A regulators in tumors or immune cells, it is

possible to increase immune cell infiltration, regulate the expression

of PD-L1, sensitize patients to immunotherapy, inhibit tumor

growth, and ultimately improve patient prognosis.

We have compiled a summary of the regulatory roles of four

types of RNA methylation modifications, mainly m6A

modification, in immune cells, as well as their regulatory effects

on the expression of PD-L1 in tumor cells and the research progress

on m6A regulators as therapeutic targets. We also reported on the

predictive role of methylation modification-related genes in the

efficacy of immunotherapy.
Overview of RNA modifications

m6A, representing N6-adenosine methylation, is recognized as

the most frequent and plentiful type of post-transcriptional RNA

modification, predominantly occurring within mRNA in the

nucleus (6). This modification contributes to essential life

processes such as hematopoiesis, central nervous system

development, and germ cell differentiation (4). Common

regulatory enzymes include “writers” METTL3, METTL14,

METTL16, “readers” YTHDF1, YTHDF2, YTHDF3, LRPPRC,

IGF2BP1 and IGF2BP3, among others, and “erasers” FTO,

ALKBH5. METTL3 is the most critical ‘writer’ enzyme for m6A

modification, serving as the catalyt ic subunit of the

methyltransferase complex that mediates N6-methyladenosine

(m6A) methylation on mRNA. It commonly forms a heterodimer

with METTL14, facilitating the process (7). Wilms Tumor 1
Frontiers in Immunology 02
Associated Protein (Wtap), a regulatory subunit of the complex,

enhances the binding affinity of METTL3 for mRNA (8). METTL3

and METTL14 are primarily located in the nucleus, while

METTL16 is mainly found in the cytoplasm. Although METTL16

also mediates the m6A modification, its role in promoting

tumorigenesis in various cancers is more noteworthy, which is

related to the acceleration of mRNA translation by METTL16

binding to eIF3a/b in the cytoplasm (9). YTHDFs recognize

mRNAs modified with m6A; YTHDF1 promotes the translation

of these mRNAs, while YTHDF2 accelerates their degradation (10).

YTHDF3 interacts with YTHDF1 to augment translation of m6A-

modified mRNA and influences the RNA binding activity of

YTHDF2 (11). And IGF2BPs enhance the stability of mRNA after

recognizing m6Amodification (12). FTO and ALKBH5 are the only

two demethylases identified for m6A demethylation, which remove

the m6A modification from RNA (Figure 1). The role of m6A

regulatory enzymes in cancer has been widely reported. Several

preclinical experiments have demonstrated that the use of drugs

targeting m6A regulators can inhibit tumor growth or enhance the

therapeutic efficacy of immunotherapy (Table 1).

m1A and m5C modifications predominantly occur in mRNA,

tRNA, and rRNA. The m1A modification is mainly found in tRNA

and shares some similarities with m6A modification in mRNA,

although it occurs at a much lower frequency. The similarities

between m1A and m6A modifications are also reflected in their

shared binding proteins YTHDF1, YTHDF2, YTHDF3, and the

demethylase FTO (2). m5C plays an important role in maintaining

the structure and stability of tRNA and rRNA. m5C modification

can occur in mRNA and can regulate the stability of mRNA, but the

research on m5C in mRNA is not sufficiently in-depth and

comprehensive (3). m7G is widely present in mRNA and is

crucial in the translation process and is involved in many

important physiological processes (5).

The emergence of new sequencing technologies and bioinformatics

tools has facilitated the detection and in-depth understanding of RNA

modifications. However, there are still many RNA modifications that

have not yet been discovered, and research on many that have been

confirmed is far from adequate. We have primarily focused on the

function of m6A modification, as it is the most prevalent and well-

studied modification in mRNA, but it is important to recognize that

other RNA modifications also hold significant potential. The

relationship between RNA modifications and the occurrence and

development of tumors, as well as their therapy, is currently a

hotbed of research. Multiple regulators of RNA modifications are

considered oncogenes and have shown potential therapeutic value.

The exploration of gene editing technology to enhance RNA

modifications that combat tumors and reduce those that promote

tumor growth also presents a valuable research avenue.
RNA modifications in immune cells

T cells

T cells have been pivotal in the ongoing oversight and

extermination of tumors (33), and their function within tumors is
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regulated by RNA modifications (Figure 2). The m6A methylation

catalyzed by METTL3 is essential for preserving T cell stability and

directing their differentiation, with influence over the growth and

specialization of naive T cells through the IL-7/STAT5/SOCS axis.

Removal of METTL3 from T cells leads to a contraction of the Th17

and Th1 lineages and an escalation in the Th2 cell presence among

naive T cells, contrasting with the METTL14 knockout, which

impedes T cell maturation beyond the naive stage (34). The m6A/

ALKBH5 mechanism is instrumental in controlling the equilibrium

of gd T cell development. ALKBH5 modulates the signaling of

Jagged1/Notch2 by removing m6A modifications on them, thereby

imposing a restraint on the developmental progression and the

lineage specification of gd T cells (35). Moreover, METTL3 dictates

the progression and role of iNKT cells through the METTL3/m6A/

Creb1 axis. Deletion of METTL3 impairs the proliferation,

differentiation, and cytokine secretion of iNKT cells, leading to a

deficiency in tumor resistance (36).

In CD4+ T cells, the m1A modification (tRNA-m1A58) at the

58th nucleotide position within the tRNA sequence, mediated by

the “writer” protein TRMT61A, ensures the efficient translation of

Myc mRNA, thereby supporting the propagation and the functional

diversification of CD4+ T cells (37). The expression levels of m5C

“writer” NSUN3 and NSUN4 are positively correlated with CD8+ T

cell infiltration, and NSUN4 expression levels are positively

associated with the presence of CD4+ T cells (38). The expression

level of NSUN2 is also related to CD4+ T cells and may be involved

in the regulation of CD4 memory T cells (39). Regulatory T cells
Frontiers in Immunology 03
(Treg), a specialized subset of CD4+ T lymphocytes, are pivotal in

sustaining immune tolerance and averting autoimmune responses.

In tumors, Treg cells can suppress immune responses within the

tumor, leading to immune evasion (40). Mettl3 contributes to the

upregulation of the IL-2/STAT5 pathway via its capacity to catalyze

m6A modifications, regulating members of the SOCS family,

thereby maintaining the function and stability of Treg cells and

promoting T cell suppression (41). YTHDF1 reads the m6A-

modified c-Myc mRNA, thereby regulating the translation and

expression of c-Myc in Treg cells, and thus coordinating Treg

homeostasis (42). YTHDF2 is involved in the regulation of Treg

cells in the tumor microenvironment (TME), maintaining the

survival and function of Treg cells by controlling the TNF-NF-kB
signaling pathway within Treg cells. The absence of YTHDF2 in

Treg cells of the tumor microenvironment leads to an increase in

CD8+ T cell infiltration and the expansion of the antitumor CD4+

TH1 subset (43). In squamous cell carcinoma of the head and neck,

METTL1 deletion leads to a substantial reduction in Treg cells and

the amelioration of CD4+ T cell exhaustion. This indicates that

METTL1-mediated m7G modulates immune infiltration by

regulating the levels of Treg cells (44, 45). Follicular helper T

(Tfh) cells, a specialized subset of CD4+ T cells, are instrumental

in the orchestration of humoral immune responses. METTL3

regulates the Tcf7 transcript through m6A modification, ensuring

proper differentiation and development of TFH (46). As an

indispensable element of the heterodimeric methyltransferase

complex, Wtap also participats in the regulation of T cells. The
FIGURE 1

The process of m6A modification: m6A modification is catalyzed by “writers” in the nucleus and regulates the stability, translation, and degradation
of RNA after being recognized by “readers” in the cytoplasm. The m6A modification is removed by “erasers”.
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knockout of WTAP leads to a reduction in the abundance and

spontaneous activation of peripheral CD4+ and CD8+ T cells and

eliminates the expansion effect induced by the T cell receptor

(TCR). Additionally, Wtap is essential for the regulatory control

of apoptosis in CD4+ T cells, impacting their survival upon TCR

engagement (47).

The absence of YTHDF2 in tumors impairs tumor glycolytic

metabolism, therefore enhancing the mitochondrial respiration of
Frontiers in Immunology 04
CD8+ T cells to strengthen antitumor capabilities (23). A pan-

cancer examination has shown that METTL1, an enzyme

responsible for m7G methylation, is positively correlated with

Treg cell numbers in diverse cancer subtypes. The m7G

methyltransferase WBSCR22 has been shown to regulate the

Zac1/p53 pathway to exert a pro-tumorigenic effect and is highly

expressed in activated CD8+ T cells, indicating that WBSCR22 may

participate in the regulation of CD8+ T cells (48, 49). The m5C
TABLE 1 Drugs targeting m6A and their mechanisms.

Drugs Targeting
Regulators

Cancer type Function References

STM2457 METTL3 myeloid leukemia decrease acute myeloid leukemia growth, increase its
differentiation and apoptosis

(13)

miR-4429 gastric cancer inhibit GC cells proliferation and induce apoptosis (14)

Metformin breast cancer inhibit the miR-483-3p/METTL3/m6A/p21 pathway to
suppress proliferation of breast cancer cells

(15)

BTYNB IGF2BP1 melanoma and ovarian cancer inhibit the binding of IMP1 to c-Myc mRNA suppresses
the proliferation of ovarian cancer and melanoma cells

(16)

Triptonide nasopharyngeal carcinoma disrupt Lnc-THOR-IGF2BP1 signaling and inhibit
tumor growth

(17)

Ucurbitacin B HCC induce tumor cell apoptosis and increase immune cell
infiltration by allosterically blocking the interaction
between IGF2BP1 and m6A through the KH1–2 domain

(18)

CWI1-2 IGF2BP2 acute myeloid leukemia(AML) inhibited glutamine absorption and impair mitochondrial
function in AML cells, suppress AML progression

(19)

ABCF1 mRNA IGF2BP3 Ewing’s sarcoma bind and inhibit IGF2BP3, suppress the growth of Ewing’s
sarcoma cells

(20)

Berberine colorectal cancer downregulate IGF2BP3 and inhibit PI3K/AKT pathway to
inhibit the proliferation of colorectal cancer cells

(21)

LNP-iYthdf1 YTHDF1 nonalcoholic steatohepatitis-related
hepatocellular carcinoma

enhance the efficacy of PD-1 blockade therapy (22)

DF-A7 YTHDF2 colon adenocarcinoma and melanoma promote the infiltration and M2 polarization of CX3CR1+

macrophages, inhibit glycolysis in tumor cells, and
enhance the effector functions of CD8+ T cells

(23)

JX5 T-cell acute lymphoblastic leukemia bind to the IGF2BP2 KH3-4 domain and inhibit
proliferation of tumor cells

(24)

CS1 and CS2 FTO AML inhibit FTO activity and signaling thereby suppresses the
viability of AML cells

(25)

Saikosaponin D inhibit proliferation of AML cells, promote cells apoptosis
and cycle arrest

(26)

R-2HG target the FTO/m6A/MYC/CEBPA signaling to inhibit
proliferation of AML cells

(27)

FB23-2 inhibit proliferation of AML cells (28)

Dac51 melanoma increase infiltration and cytotoxicity of CD4+T cells,
inhibit tumor growth, and have a synergistic effect with
anti-PD-L1 blockade

(29)

MV1035 ALKBH5 Glioblastoma inhibit ALKBH5, thereby suppress the migration and
invasiveness of tumor cells

(30)

ALK-04 melanoma inhibit Mct4/Slc16a3 expression, lactate content, Treg cells
MDSC in TME and enhance the efficacy of GVAX/anti-
PD-1 therapy

(31)

Hiram TRMT6/TRMT61A HCC inhibit the growth of HCC (32)
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methylation reader YBX1 is positively correlated with CD4+

memory T cells, CD8+ T cells, type 1 and type 2 T helper cells in

panc r e a t i c duc t a l adenoca r c inoma (50 ) . The m5C

methyltransferase NSUN2 mediates m5C modification of TREX2

transcripts after being activated by glucose, inhibiting the activation

of cGAS/STING, thus inhibiting the infiltration of CD8+ T cells

(51). Inhibition of METTL3 leads to an increase in dsRNA

formation, which in turn enhances interferon signaling and

augments the capacity of T cells to eliminate cancer cells (52).

Similarly, the knockout of Mettl14 leads to a significant reduction in

iNKT cells mediated by the p53 apoptosis pathway (53).

Additionally, m6A modification mediated by Mettl3 in T cells

regulates the migration of T cells in an acidic tumor

microenvironment. By inducing Mettl3-mediated m6A

modification in T cells, the expression of integrin a subunit

ITGB1 can be upregulated, thereby enhancing T cell tumor

infiltration and antitumor activity, and relieving the suppression

of T cells by the acidic microenvironment (54).
Natural killer cells

As part of the innate immune response, NK cells are essential

for monitoring and eliminating cancerous cells, and they represent

a key target for cancer immunotherapy (55). The m6A modification

plays an indispensable role in maintaining the tumor infiltration

and cytotoxicity of NK cells, primarily regulated by METTL3,

METTL14, and YTHDF2. METTL3-mediated m6A methylation

promotes the maturation, expansion, and functionality of NK cells

through the modulation of IL-15 signaling within the AKT-mTOR/

MAPK-ERK pathway. Similarly, YTHDF2 in NK cells regulates the
Frontiers in Immunology 05
proliferation or survival of NK cells after reading the m6A

modification of Tardbp, and modulates the expression of

cytotoxicity-related molecules through the STAT5-YTHDF2

positive feedback axis, which participates in the survival,

proliferation, and terminal maturation of IL-15-mediated NK

cells (56). When METTL3 is knocked out in NK cells, the tumor

infiltration and the ability to secrete immune factors such as GzmB

and INF-g are significantly decreased, cytotoxicity is markedly

reduced, and an increase in expression levels of the inhibitory

receptor TIGIT is observed in the TME (57). m6A contributes to

mRNA stability and promotes the early activation and effector

functions of NK cells by directly modifying important mRNAs such

as Prf1 and Gzmb. The mTORC1 supports m6A methylation in NK

cells through the c-MYC-MAT2A axis to promote SAM synthesis

(58). The expression level of the m5C methyltransferase NSUN2 is

associated with the level of resting NK cells and may takes part in

the regulation of NK cells (39). The m5C methylation reader YBX1

is found to be positively related to the presence of NK cells in cases

of pancreatic ductal adenocarcinoma (50).
Macrophages

Macrophages are innate immune cells that play a crucial and

complex role in tumor immunity, with the antitumor M1

polarization and the pro-tumor M2 polarization being two

common differentiations of macrophages in tumor immunity.

Tumor-infiltrating macrophages (TAMs) typically acquire the

immunosuppressive M2 polarization (59, 60). RNA modifications

participate in the regulation of macrophages in various aspects.

Tumor-associated macrophages constitute a major part of the
FIGURE 2

RNA modification regulates the development of Naive T cells and can exert regulatory effects in various T cell subsets.
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cellular composition within the TME. METTL3 promotes the

degradation of Irakm mRNA by adding m6A modification,

enhancing TLR4 signaling, activating macrophages, and inducing

M1 polarization in TAMs, thereby increasing their tumor-killing

ability (61). The METTL3 in macrophages increases the stability of

STAT1 mRNA transcripts by adding m6A modifications,

promoting the M1 polarization of macrophages (62). In myeloid

cells, METTL3 activates the NF-kB pathway and STAT3 signaling,

leading to M1 and M2-like polarization of macrophages, and fosters

the proliferation and spread of cancer cells, contingent upon the

infiltration of M1 and M2 phenotype-like TAMs (63), and

maintains YTHDF1-mediated SPRED2. Additionally, the FTO

demethylase influences the NF-kB pathway, stabilizing STAT1

and PPAR-g mRNAs, crucial for activating M1 and M2

macrophages. YTHDF2 is involved in this process and

antagonizes FTO in regulating the stability of PPAR-g mRNA

(64). IL-4 stimulates an increase in IGF2BP2, which then binds to

the m6A-modified TSC1. This binding modulates the signaling

through the TSC1/mTORC1 and TSC1/2/MEK/ERK axes,

orchestrating the balance between M2 and M1 macrophage states,

and driving a transition toward the M2 phenotype within

macrophage populations (65). In the tumor lactoacidotic

environment, H3K178ac induces the acetylation and upregulation

of METTL3 expression. METTL3 mediates m6A modification of

the Jack1 mRNA transcript in TIM, which is then read by YTHDF1

to enhance the translation efficiency of JAK1 and the

phosphory l a t ion o f STAT3 , thereby enhanc ing the

immunosuppressive function of TIM (66). The high-risk score of

m5C-lncRNA is associated with the high expression of M0 and M2

phenotype macrophages in pancreatic cancer, suggesting that m5C-

related lncRNAs may regulate the polarization of macrophages in

pancreatic cancer (67). The m7G methyltransferase METTL1 is

negatively correlated with M2 and M0 macrophages in tenosynovial

giant cell tumors, suggesting that METTL1 may induce M1

polarization of macrophages in tenosynovial giant cell tumors.

However, in prostate cancer, METTL1-mediated m7G

modification induces M2 polarization of macrophages, indicating

the heterogeneity of METTL1 functions in different tumors (44, 68).

Additionally, tumor-associated macrophages regulate the

expression of CD8+ T cells through m6A-associated mechanisms.

C1q+TAMs specifically express METTL14 and YTHDF2, and

maintain the level of tumor infiltration and cytotoxicity of CD8+

T cells in a METTL14-dependent manner (69).
Dendritic cells

Dendritic cells, pivotal in the immune response, function as

essential antigen-presenting entities that engage in the acquisition,

modification, and conveyance of tumor antigens, as well as in the

stimulation of T cell responses (70). In tumor immunity, RNA

modifications regulate the antigen cross-presentation of dendritic

cells and their subsequent function in activating T cells, as well as the

migration of dendritic cells. YTHDF1 boosts the synthesis of

lysosomal proteases by recognizing the m6A mark on their mRNA,
Frontiers in Immunology 06
potentially accelerating the breakdown of tumor antigens internalized

by dendritic cells. This action may consequently suppress the

dendritic cells’ capacity to initiate a cross-priming response in T

cells (61, 71). In studies on gastric cancer, YTHDF1 was shown to not

only suppress the recruitment of mature DC cells and T cell

activation but also inhibit the expression of MHC II and IL-12

(72). METTL3 facilitates the development and maturation of

dendritic cells, as well as the subsequent activation of T cells,

through its role in m6A methylation. It boosts the translation

efficiency of mRNAs encoding CD40, CD80, and the TLR4-

associated signaling molecule Tirap. Additionally, METTL3

amplifies the activity of the TLR4/NF-kB signaling cascade and

stimulates the synthesis of cytokines that drive an inflammatory

response (73). m6A modification is also involved in the migration of

dendritic cells; after being read by YTHDF2, it reduces the expression

level of lnc-Dpf3, whose expression negatively regulates the induction

of CC-chemokine receptor 7 (CCR7) and the migration of dendritic

cells to the draining lymph nodes. Moreover, lnc-Dpf3 forms a

complex with HIF-1a, impeding the expression of glycolysis-driven

genes under HIF-1a’s control, like Ldha. This interaction curtails the

glycolytic activity and the movement potential of DCs (74). The m5C

methylation reader YBX1 is related to activated dendritic cells in

pancreatic ductal adenocarcinoma (50).

Research on the specific regulators of m1A/m5C/m7G and their

relationship with immune cells is limited, but growing evidence

suggests that these RNA modifications are involved in the

regulation of immune cells in various types of cancer. For instance,

in clear cell renal cell carcinoma(ccRCC), the score of m7G-related

genes is positively correlated with CD4+, CD8+ T cells, and Treg cells,

M0 macrophages, and negatively correlated with dendritic cells, M2

macrophages, and other immune cells (75). In diffuse large B-cell

lymphoma, m5C-related genes regulate the infiltration of eosinophils,

Treg cells, and M2 macrophages, and control the activation of T cells

by modulating immune checkpoints such as PD-L1 and CTLA-4

(76). In prostate cancer, there are significant expression differences in

CD8+ T cells, M1macrophages, andM2macrophages among the two

m5C immune subtypes. In colon cancer, a lowm1A score is related to

the proliferation of CD8+ T effector cells (77). In lung

adenocarcinoma, the m1A score is related to all immune cells (78).

We have summarized the effects of m6A modification on immune

cells that have not been previously mentioned (Table 2).

We have reviewed the important role of RNA modifications,

especially m6A modification, in regulating immune cells. m6A

modification has a profound impact on tumor immune

surveillance and the response to immunotherapy by affecting the

maturation, differentiation, and function of T cells, NK cells,

macrophages, and dendritic cells. These findings not only reveal

new regulatory mechanisms of immune cells in the tumor

microenvironment but also provide potential targets for the

development of new cancer treatment strategies.

Despite significant progress in existing research, there are still

some limitations. For example, most studies focus on specific types

of cancer, and the universality of RNA modifications across

different cancer types and their roles at various stages of tumor

development are not yet fully understood. Future research needs to
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TABLE 2 Regulation of immune cells by m6A modification.

Regulators Cancer type Function References

Writers METTL3 colorectal carcinoma reduce infiltration of CD8+ T cells (79)

increase recruitment of M2 macrophages (80)

colorectal cancer inhibit CD4+ T cells and CD8+ T cells by promoting the
accumulation of MDSCs

(81)

facilitate M2 macrophage polarization (82)

HCC reduce infiltration of GZMB+ IFN-g +CD8+ T cells (83)

promote macrophages recruitment and M2 polarization (84)

melanoma reduce infiltration of CD8+ T cells (79)

NSCLC reduce infiltration of CD8+ T cells (85)

thyroid cancer reduce M2 macrophages and infiltration of Tregs (86)

METTL14 colorectal carcinoma reduce infiltration of CD8+ T cells (79)

melanoma reduce infiltration of CD8+ T cells (79)

colorectal cancer maintain the function of CD8+ T cells (69)

cervical cancer increase the proportion of PD-1+ TAMs, inhibit the
phagocytic function of macrophages

(87)

lung cancer inhibit activation and infiltration of CD8+ T cells (88)

METTL16 HCC promote macrophages recruitment and M2 polarization (84)

pancreatic ductal aenocarcinoma increase infiltration of CD8+ T cells and B cells (89)

Readers YTHDF1 HCC inhibit CD8+ T cells by promoting the accumulation
of MDSCs

(22)

prostate cancer inhibit the cytotoxicity of CD8+ T cells (90)

colorectal cancer inhibit CD8+ T cells by promoting the migration
of MDSCs

(91)

YTHDF2 bladder cancer inhibit recruitment of CD8+ T cells (92)

melanoma reduce infiltration of CD8+ T cells and reduce CD4+

Th1 subset
(43)

colon carcinoma

triple-negative breast cancer promote the pro-tumoral phenotype polarization
of macrophages

(93)

YTHDF3 ccRCC increase infiltration of CD8+ T cells (94)

melanoma inhibit recruitment and antitumoral polarization of
macrophages and activation and cytotoxicity of CD8+

T cells

(23)

colon adenocarcinoma

thyroid cancer increase infiltration of CD4+ T cells and macrophages (95)

IGF2BP1 colon cancer inhibit the cytotoxicity of CD8+ T cells (96)

HCC increase infiltration of CD4+, CD8+T cells, CD56+NK cells
and F4/80+ macrophages

(18)

IGF2BP3 HCC promote infiltration and M2 polarization of macrophages,
inhibit activation of CD8+T cells

(97)

LRPPRC HCC reduce infiltration of CD4+ and CD8+ T cells as well as
CD56+ NK cells and F4/80+ macrophages

(18, 98)

Erasers FTO melanoma restrict activation and function of CD8+ T cells (29)

HCC inhibit recruitment and activation of CD8+ T cells (99)

ALKBH5 colorectal cancer (100)

(Continued)
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more comprehensively and deeply explore the regulatory effects of

RNA modifications on immune cells in different cancer types and

assess their potential as biomarkers and therapeutic targets.
RNA modifications and
immune checkpoint

RNA modifications have been shown to be associated with the

expression of various immune checkpoints, such as the upregulation

of PDCD1 and KIR3DL1 and the downregulation of TIGIT, IDO1,

and BTLA in the high-risk group established based on m6A scoring

in diffuse large B-cell lymphoma (109). In breast cancer, the groups

differentiated by m1A scoring exhibit differential expression of

immune checkpoints, for example, TIGIT, IDO1, LAG3, and ICOS

(110). We mainly summarize and introduce the research findings

related to RNA modifications and PD-1/PD-L1 and CTLA-4.
PD-L1

PD-L1 is mainly expressed on the surface of tumor cells and

suppresses the functions of cytotoxic T cells by binding to PD-1 on

the surface of T cells. PD-1/PD-L1 blockade therapy has improved

the prognosis of many cancers, yet only a subset of patients are

sensitive to anti-PD-1 or PD-L1 treatment, and resistance may

occur (111). Across a range of malignancies, the metrics derived

from the analysis of m6A, m1A, m5C, and m7G regulatory factors

exhibit a substantial association with the levels of PD-L1 protein

expression (50, 75, 77, 78, 112–121). Firstly, regulators of m6A

modification can directly or indirectly regulate the stability and

activation of PD-L1 mRNA. In Non-Small Cell Lung Carcinoma

(NSCLC), METTL3-mediated m6A modification destabilizes PD-

L1 mRNA, resulting in a reduction of PD-L1 expression (122).

Furthermore, METTL3 can also regulate the ubiquitination of PD-

L1 by controlling LINC02418 in NSCLC, thereby downregulating
Frontiers in Immunology 08
the expression of PD-L1 (85). Additionally, METTL3 mediates

m6A modification of circIGF2BP3, upregulating the expression of

PKP3, which enhances the stability of OTUB1 mRNA and increases

the abundance of PD-L1 by reducing the ubiquitination of PD-L1

(123). Conversely, within the context of breast cancer, the m6A

modification catalyzed by METTL3 not only bolsters the longevity

of PD-L1 mRNA transcripts but also facilitates their transcriptional

activation, a process that hinges on the recognition of the m6A

mark by the IGF2BP3 protein (124). YTHDF3 reads and destroys

m6A-modified CBX1 mRNA in nasopharyngeal carcinoma,

inhibiting the upregulation of PD-L1 mediated by the IFN-g/
STAT1 signal (125). In HNSCC, TRMT61A-mediated tRNA-

m1A modification upregulates the expression of PD-L1, which

may be accomplished by regulating INFg (126). m5C methylation

reader YBX1 is related to PD-L1 expression levels in pancreatic

ductal adenocarcinoma (50). In colorectal cancer, m6A-modified

IFIT1 upregulates the expression of PD-L1 by reducing the

ubiquitination and degradation of PD-L1 (127). Similarly, in

cholangiocarcinoma, METTL14 mediates m6A modification of

Siah2 and promotes the degradation of Siah2 upon reading by

YTHDF2, inhibiting the ubiquitination of PD-L1 mediated by

Siah2, ultimately leading to an increase in PD-L1 expression

levels (128). It is worth mentioning that in colorectal cancer, the

metabolite S-adenosylmethionine of methionine promotes the

occurrence of m6A modification in cancer cells and enhances

the translation of PD-L1 (129). m6A-regulated lncRNA has been

proven to be associated with PD-L1 expression in various tumors

(130–133). In pancreatic cancer, METTL3 increases the expression

of PD-L1 by upregulating the expression of lncRNA MALAT1 in

cancer cells (134). In hepatocellular carcinoma(HCC), intestinal

bacterial lipopolysaccharide regulates the expression of PD-L1 on

the surface of cancer cells by upregulating METTL14 and

METTL14-mediated m6A modification of MIR155HG,

modulating the miR-223/STAT1 axis (135). We present a

summary of the effects of m6A modifications on PD-1/PD-L1

that have not been previously mentioned in this review (Table 3).
TABLE 2 Continued

Regulators Cancer type Function References

inhibit CD8+ T cells and NK cells by promoting the
accumulation of MDSCs

promote M2 macrophage polarization (101)

intrahepatic cholangiocarcinoma inhibit the expansion and cytotoxicity of CD8+ T cells (102)

HCC increase recruitment of PD-L1+ macrophages (103)

gioblastoma mltiforme increase recruitment of tumor-associated macrophages,
reduce infiltration of CD3+, CD4+, CD8+ T cells

(104, 105)

ovarian cancer promote M2 polarization of macrophages (106)

NSCLC recruit PD-L1+ TAMs, promote M2
macrophage polarization

(107)

lung adenocarcinoma regulate the polarization of M1/M2 macrophages (108)
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CTLA-4

CTLA-4, like PD-1, is a non-redundant checkpoint that inhibits

the proliferation and activation of T cells. Therapy targeting the

CTLA-4 pathway has been implemented in the field of

immunotherapy and may be synergistically combined with PD-1

inhibitory therapy for specific cancer types (111). There are no

definitive research results regarding how RNA modifications

regulate CTLA-4, but we have found that RNA modifications are

associated with the expression levels of CTLA-4 and can predict the

outcomes of CTLA-4 blockade immunotherapy. The m6A-

modified reader YTHDF2 has been proven to be positively

correlated with the expression of CTLA-4 in low-grade glioma

(140). In the high-risk group related to m5C-lncRNA, CTLA-4 is

highly expressed (143). In tumors such as pancreatic

adenocarcinoma, hepatocellular carcinoma, and pancreatic cancer,

the scores of m6A-modified regulatory genes are significantly

correlated with the expression of CTLA-4 and can be used to

predict prognosis and response to immunotherapy (144–146). A

study of m5C in diffuse large B-cell lymphoma has identified a

correlation between m5C-affected genes and the modulation of
Frontiers in Immunology 09
immune checkpoint genes, specifically CTLA-4 and PD-L1. In

prostate cancer, CTLA-4 is also found to be differentially

expressed in two m5C immune subtypes and is related to the

degree of immune cell infiltration (76). Similarly, in the

immunological model calculated based on the regulatory genes of

m7G such as CDK1, ANO1, and PDGFRA, CTLA-4 is highly

expressed in the high-risk group (147). Another similar study

shows that m7G is not only related to immune checkpoints such

as CTLA-4 but also can predict the effects of immunotherapy (148).

In addition, a low score based on the methylation enzyme scoring

established by m6A/m5C/m1A/m7G regulatory genes is related to

the positive expression of CTLA4 (149).

In this section, we have summarized the regulatory effects of

RNA modifications on the immune checkpoint PD-L1, as well as

the correlation with CTLA-4 expression and its predictive role in

therapeutic efficacy. It provides new insights into the understanding

of tumor immune evasion mechanisms. The research indicates that

RNA modifications influence the expression of PD-L1 and CTLA-4

through various mechanisms, including the regulation of mRNA

stability, transcriptional activation, and interactions with specific

proteins. These findings offer new perspectives for anti-PD-1/PD-

L1 therapy and reveal the research value of RNA modifications in

anti-CTLA-4 therapy.
The regulatory role of RNA
modification in ICI therapy

RNAmodifications exhibit differential impacts on PD-1 blockade

therapy across various tumors. Targeting specific RNA modification

regulators can enhance the efficacy of PD-1 blockade therapy

(Figure 3). In NSCLC, METTL3-driven m6A methylation leads to

the destabilization of PD-L1 mRNA, which reduces the therapeutic

efficacy of anti-PD-1/PD-L1 interventions; however, the knockout of

METTL3 increases immune cell infiltration and enhances the

therapeutic efficacy of anti-PD-1/PD-L1 (122). Similarly, the

deletion of METTL3 or METTL14 in immune-resistant melanoma

tumor cells makes the tumor sensitive to immunotherapy (79).

Targeting METTL3 in NAFLD-HCC and NSCLC can improve the

effectiveness of PD-1 therapy. In the NAFLD-HCCmouse model, the

knockout of METTL3 in conjunction with anti-PD-1 therapy

synergistically suppressed tumor growth, resulting in a reduction of

over 90% in both tumor volume and weight (83). In NSCLC, the

suppression ofMETTL3 can enhance the sensitivity of tumor-bearing

mice to anti-PD-1 treatment, and patients with NSCLC exhibiting

low METTL3 expression have a more favorable prognosis with

immunotherapy (122). In thyroid cancer, high expression of

METTL3 in tumor cells inhibits the demethylation of CD70mRNA,

maintains the degradation of transcripts mediated by YTHDF2,

thereby releasing T cells from suppression and enhancing the

efficacy of PD-1 blockade (86). Similar observations have been

made in melanoma and lung cancer, where high expression of

METTL3 in macrophages is beneficial for immunotherapy (63).

Targeting the YY1-CDK9 transcription elongation complex in

glioblastoma results in lowered METTL3 expression, which in turn,
TABLE 3 Regulation of PD-L1 by m6A modification.

Regulators Cancer type Function References

METTL16 colorectal cancer reduce PD-
L1 expression

(136)

pancreatic
ductal
adenocarcinoma

reduce PD-
L1 expression

(89)

METTL3 ccRCC increase PD-
L1 expression

(137)

IGF2BP1 colon cancer increase PD-
L1 expression

(96)

HCC increase PD-
L1 expression

(18)

IGF2BP3 bladder cancer increase PD-
L1 expression

(138)

YTHDF1 NSCLC reduce PD-
L1 expression

(139)

YTHDF2 NSCLC reduce PD-
L1 expression

(139)

lower-grade glioma increase PD-
1 expression

(140)

ALKBH5 gioblastoma
mltiforme

increase PD-
L1 expression

(105)

intrahepatic
cholangiocarcinoma

promote the
expression of
PD-L1 on
monocytes/
macrophages

(141)

HCC recruit PD-L1
+ macrophages

(103)

FTO OSCC increase PD-
L1 expression

(142)
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enhances the therapeutic impact of PD-1 blockade (150). Abrine

treatment inhibits IFN-g-induced m6A modification, thereby

regulating JAK1/STAT1 and suppressing the expression of PD-L1.

Combined therapy with PD-1 blockade can inhibit tumor growth

(151). Targeting YTHDF1 in colorectal cancer can relieve the

inhibition of CD8+ T cells and enhance the efficacy of anti-PD-1.

Targeting YTHDF1 significantly reduced the resistance to anti-PD-1

therapy in the MC38 tumor model, leading to better prognosis for

tumor-bearingmice. Similar observations weremade inmice with the

CT26 tumor model, which is insensitive to PD-1 therapy; the deletion

of YTHDF1 in CT26 cells followed by anti-PD-1 treatment markedly

inhibited tumor growth (91). Knocking out ALKBH5 in glioma or

targeting it with IOX1 reduces the expression of the PD-L1 protein,

inhibits tumor growth, extends the survival of mice, and enhances

these effects of PD-1 blockade therapy (105). Similarly, inhibiting

ALKBH5 in melanoma enhances the efficacy of PD-1 blockade,

patients with low expression of ALKBH5 are more likely to benefit
Frontiers in Immunology 10
from PD-1 blockade therapy (31). The use of FTO inhibitors in HCC

and melanoma can enhance immune activation and sensitivity to

anti-PD-1 treatment (99, 152). Targeting circular RNA circRHBDD1

can block its m6A-dependent mediated rapid translation of PIK3R1

and improve the efficacy of anti-PD-1 therapy (153). NSUN2-

mediated m5C methylation modulates TREX2 expression, thereby

suppressing the cGAS/STING pathway and contributing to resistance

against PD-1 checkpoint blockade (51).

In this part, we have explored the regulatory role of RNA

modifications on PD-1 blockade therapy across different types of

tumors. By affecting the expression of genes involved in immune

activation and suppression, RNA modifications have significantly

impacted the therapeutic efficacy of immune checkpoint blockade

and have provided ideas for specific treatment plans: by targeting

specific RNA modification regulators, we may be able to increase

the response rate to immunotherapy and overcome patient

resistance to existing treatments.
FIGURE 3

Targeting regulators with m6A modifications can enhance T cell infiltration and tumor-killing effects in various types of cancer. It also regulates the
expression of PD-L1 and the therapeutic effects of anti-PD-L1 treatment, while inhibiting tumor growth.
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RNA modification and prediction of
immunotherapy efficacy

Genes related to the RNA modifications m6A, m1A, m5C, and

m7G can predict tumor sensitivity to immunotherapy, either

individually or in combination. By conducting bioinformatics

analysis on many samples in databases, key genes are screened,

and corresponding scores are established. For instance, in HCC, an

m6A score derived from m6A-associated feature genes categorizes

patients into distinct risk groups. The high-risk cohort

demonstrates increased immune evasion and immune system

dysregulation, correlating with heightened responsiveness to anti-

CTLA-4 and anti-PD-1 therapies (154). The m6A score has been

studied in multiple tumors but varies depending on the analysis

method and selected genes. Patients with oral squamous cell

carcinoma exhibiting a high m6A score are more likely to

experience enhanced efficacy from treatments targeting the PD-1

and CTLA-4 pathways (155), lung squamous cell carcinoma (156),

soft tissue sarcoma (157), gastric cancer (102), and hepatocellular

carcinoma (158), while a low m6A score suggests greater sensitivity

to immunotherapy in thyroid cancer (159), NSCLC (160), follicular

lymphoma (161), breast cancer (162), and head and neck squamous

cell carcinoma (163). Additionally, the score of m6A

methyltransferase regulators can effectively predict the efficacy of

immunotherapy in urothelial cancer patients (164).

A prognostic model established using m6A-related lncRNA

suggests that esophageal cancer in the low-risk group responds

better to immunotherapy (165). Similarly, a model established using

m5C-related genes can also evaluate prognosis and immune therapy

efficacy, with liver and pancreatic cancers with lower m5C scores

being more sensitive to anti-CTLA-4 therapy, and pancreatic cancer

also being sensitive to anti-PD-1 therapy (166). A score based on

m7G indicates that colorectal cancer and rectal cancer in the low-

scoring group are more sensitive to anti-PD-1 therapy (119, 121).

Lung adenocarcinoma with a low score has a higher immune

prognostic score (120). Interestingly, in low-grade glioma, the

high m7G score group is sensitive to anti-PD-1 treatment, while

the low m7G score group is more sensitive to anti-PD-L1 (167). In

colorectal cancer, a low m1A score suggests a better prognosis with

anti-PD-L1 treatment (77). Lung adenocarcinoma with a low m1A

score has a lower TIDE score, indicating greater sensitivity to

immunotherapy (78).

In addition to establishing models based on the scores of single

RNA modifications, analyzing multiple RNA modification genes

simultaneously can also establish effective predictive models. In

cervical cancer, a prognostic model established using m6A/m5C/

m1A indicates that the high-risk group is more sensitive to anti-

CTLA-4 treatment (168). In colon cancer, the low-risk group is

more sensitive to anti-CTLA-4 and anti-PD-1 treatments (169). In

HCC, a methylation score composed of m1A/m5C/m3C/m6A

suggests that a low score is sensitive to anti-PD-L1 therapy (170).

The Writer-Score established according to m1A and m6A RNA

modification enzymes indicates that a low score is associated with

better outcomes in immunotherapy (171).
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Through bioinformatics analysis of large-sample databases, we

have been able to screen for key genes and establish corresponding

scoring systems. These scoring systems have demonstrated the

potential to predict responses to immunotherapy across various

types of tumors, offering new tools for personalized medicine.

However, many scoring systems still require further validation

and research to explore their applicability in oncology and

immunotherapy strategies.
RNA modification regulators as
therapeutic targets

Therapeutic interventions targeting RNA modification-related

genes or proteins have been extensively studied, and numerous

effective drugs have been developed. For instance, metformin can

specifically inhibit FTO and block its demethylation effect on m6A

modification (172). Targeting specific regulatory genes or proteins

of RNA modification can enhance the therapeutic efficacy of

immunotherapy in certain types of cancer. For example, targeting

ALKBH5 in melanoma can enhance the effectiveness of PD-1

blockade (31). Lower levels of METTL3 in NSCLC are also

associated with better outcomes from anti-PD-1 therapy (122).

Moreover, targeting specific RNA modification regulators’ genes or

proteins can directly exert tumor-suppressive effects. For example,

miR-4429, which targets METTL3 in gastric cancer, can inhibit the

proliferation of GC cells and induce apoptosis (14). Although the

vast majority of drug treatments target m6A regulatory genes or

proteins, we found that targeting the m1A methyltransferase

complex TRMT6/TRMT61A in HCC with Hiram can effectively

inhibit the progression of HCC (32), indicating that targeting other

RNA modification regulatory genes or proteins also has therapeutic

significance. We have summarized the specific targeted drugs and

their mechanisms of action (Table 1).

This section of our study extensively explores therapeutic

interventions targeting genes or proteins associated with RNA

modifications and outlines the development of a series of effective

drugs. Targeting regulators such as METTL3, METTL14, IGF2BP3,

or YTHDF1 can alleviate T-cell suppression in melanoma, colorectal

cancer, non-small cell lung cancer (NSCLC), and breast cancer.

Targeting regulators like METTL3, METTL14, the IGF2BP family,

ALKBH5, or FTO can enhance the efficacy of PD-1 blockade therapy

in renal clear cell carcinoma, colorectal cancer, melanoma, NSCLC,

breast cancer, hepatocellular carcinoma, and intrahepatic

cholangiocarcinoma. Inhibition of tumor cell proliferation can be

achieved by blocking METTL3, TRMT6/TRMT61A, the IGF2BP

family, YTHDF2, or ALKBH5. Targeting “writers” such as

METTL3 or METTL14 blocks the formation of m6A and thus can

play a role in multiple tumor-suppressing or immune therapy-

enhancing effects; however, this may also greatly impact normal

physiological functions and lead to severe side effects. RNA

modifications have a considerable number of “readers,” so targeting

specific “readers” in specific tumors may achieve precise therapeutic

effects with lower side effects, but it may need to be specific to certain
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tumors and may not be universally applicable. Targeting “erasers,”

mainly FTO and ALKBH5, seems to primarily enhance PD-1

blockade therapy and inhibit tumor cells, being key to combined

immunotherapy. However, targeting FTO and ALKBH5 results in the

inability to remove m6A, which may also lead to severe side effects.
Discussion

In this review, we primarily discuss the relationship between m6A,

m1A, m5C, and m7G modifications and tumor immunity and

immunotherapy, and summarized the regulation of immune cells

and immune checkpoints, as well as drug treatment targeting RNA

modification regulators and immune prediction based on the four

RNA modifications. Research related to RNA modifications has the

following limitations: m6A is the most abundant modification in

mRNA and has been extensively studied; however, the physiological

processes in which m6A is involved are not fully understood, and there

may be undiscovered regulatory proteins related to m6A modification.

The specific roles of m1A, m5C, and m7G in tumors have been

insufficiently studied, possibly due to variations in modification sites

and abundance. There are also limitations and challenges in tumor

therapy related to RNA modifications: some proteins among RNA

modification-related proteins have dual identities, and the same

regulatory factor may have multiple roles, possessing both oncogenic

and tumor-suppressive effects, requiring specific research to provide

solutions. For example, knocking out METTL3 in melanoma can

inhibit tumor development and increase the infiltration of CD8+ T

cells (79), but another study has shown that the absence of METTL3

expression in macrophages can promote the growth and metastasis of

melanoma and weaken the efficacy of PD-1 blockade (63).

Additionally, RNA modifications are widely involved in physiological

activities, and it is challenging to target RNA modifications in the

tumor microenvironment without affecting normal physiological

processes. Researchers have obtained drugs with high specificity

through complex drug design and optimization, but this issue has

not been resolved. Moreover, although many RNA modification

regulators have been identified, only a few can be used as therapeutic

targets for cancer treatment. Finally, current research is mainly focused

on mouse models, and there may be differences in the physiological

activities and tumor therapy based on mRNA between mice and

humans, requiring more research to clarify the specific situation.

Despite certain achievements of drugs targeting RNA

modifications in preclinical models, no related drugs have yet

entered the clinical research phase. Future research in the following

areas may be helpful: designing drugs to specifically target RNA

modification regulators, especially in the tumor microenvironment,

to reduce the impact on normal tissues; exploring appropriate drug

dosages to balance efficacy and side effects; continuing drug safety

research to assess the side effects of different targeted drugs; developing

new therapeutic targets or drugs to improve treatment safety; and

exploring the combined application of RNA modification-targeting

drugs with other drugs in tumor therapy. In addition, tumor vaccines

are also related to RNA modifications such as m6A and have

therapeutic potential. Introducing encoded mRNA molecules into

the bodies of tumor patients, translating them into proteins with anti-
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tumor effects in the body to trigger anti-tumor immune responses is a

new treatment method (173). RNA modifications play a key role in

cancer vaccines. Through RNA modifications, the immunogenicity of

RNA vaccines can be eliminated, and the rapid translation of anti-

tumor proteins may be promoted, improving anti-tumor effects. This

direction has considerable potential for development. Furthermore,

lifting the immune suppression caused by RNA modifications may

help improve the efficacy of adoptive immunotherapy. By lifting the

toxicity suppression and infiltration suppression of T and NK cells

caused by RNAmodifications, the corresponding tumor-killing ability

can be restored, which can be used for ex vivo expansion and then re-

introduced into the patient’s body to play an anti-tumor role. Lifting

the immune suppression of the tumor microenvironment is beneficial

for adoptive immune cells to clear the tumor. This could greatly

enhance adoptive immunotherapy and holds value for research.
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