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Introduction: Thyroid cancer (THCA) is the most common endocrine tumor.

Coagulation may be associated with the development of cancer, but its role in

THCA patients is not yet clear.

Methods: In this study, we determined the predictive value of coagulation

biomarker D-dimer for THCA patient lateral lymph node metastasis (LLNM)

through receiver operating characteristics (ROC) analysis and logistic

regression analysis. Subsequently, this study used the TCGA database to

identify coagulation-related molecular subtypes through consensus clustering

analysis and compared their prognosis. We identified coagulation-related genes

(CRGs) associated with prognosis in thyroid cancer through gene expression data

and clinical information, and constructed a prognostic model by selecting the

prognostic CRGs using LASSO regression. Patients were divided into high-risk

and low-risk groups based on themedian score. Subsequently, prognosis, clinical

characteristics, gene mutation occurrence, immune infiltration, function, and

drug sensitivity of the two groups were analyzed. We also constructed a

nomogram combining the model and clinical features. Finally, the expression

of the prognostic CRGs was validated by RT-qPCR.

Results:D-dimers had better performance in predicting LLNM(the area under the

curve was 0.656 (95%CI 0.580-0.733), with a cut-off value of 0.065mg/l), and D-

dimer>0.065mg/l was an independent predictor of LLNM. Then, we selected 8

prognostic CRGs to construct a predictive model. The prognosis of low-risk

group patients was significantly better than that of high-risk group (P<0.001). The

results showed significant differences in clinical characteristics, gene mutation

occurrence, immune infiltration, function, and drug sensitivity between the high-

risk and low-risk groups. We validated by qPCR that these 8 prognostic CRGs

were overexpressed in THCA cell lines.
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Discussion: Overall, this study provided an in-depth exploration of the potential

role of the coagulation in thyroid cancer and its clinical significance, offering a

new theoretical basis and research direction for personalized therapy and

prognostic evaluation.
KEYWORDS

thyroid cancer, coagulation, prognosis signature, immune infiltration, clinical relevance,
drug sensitivity
Introduction

Thyroid carcinoma (THCA) is the most prevalent endocrine

tumor (1), and the incidence rate of THCA in China has significantly

increased since 2000, with an estimated 22,000 new cases reported in

2022 (2). THCA is classified into three pathological types:

differentiated thyroid cancer (DTC), medullary thyroid cancer

(MTC), and anaplastic thyroid cancer (ATC) (3). Despite the

generally good prognosis for most thyroid cancer patients, 10%-

15% of patients experience recurrence, and 5% develop distant

metastases (4). To further improve the prognosis of THCA

patients, it is important to identify suitable prognostic biomarkers.

Coagulation, one of the hallmarks of tumor, could be a

consequence of increasing plasma extravasation and vascular

permeability which leads to extravascular coagulation, or be

activated by disruption of vessels which leads to intravascular

coagulation (5). A study has shown that tumor cells can release

procoagulant factors, such as tissue factor, which may trigger the

coagulation cascade both in vitro and in vivo (6). On the other hand,

tumor coagulum, a cancer-driven network of molecular effectors

favoring bleeding or thrombosis, could interact with the tumor

microenvironment (TME) to orchestrate cancer inhibition or

progression (7). Additionally, thyroid hormones directly regulate

the transcription of genes encoding coagulation proteins in

hepatocytes and endothelial cells (8). Therefore, the coagulation

pathway may interact with the occurrence and development of

THCA, but the role of coagulation in THCA patients

remains unclear.

In this study, using The Cancer Genome Atlas (TCGA) cohort,

we identified coagulation-related molecular subtypes via consensus

clustering analysis and compared their prognoses. We used gene

expression data and clinical information from TCGA’s THCA to

identify differentially expressed Coagulation-related genes (CRGs)

in THCA and analyzed their correlation with prognosis. Through

LASSO regression, we further filtered out 8 prognostic CRGs to

construct a prognostic model and examined the relationships

between risk scores and clinicopathological features, molecular

functions, pathways, outcomes, immune infiltration, and

immunotherapy. Additionally, we assessed the predictive

performance of coagulation indicators for LLNM.
02
Methods

Patient selection and data collection

We gathered and screened data from patients admitted to the

First Affiliated Hospital of Zhengzhou University from March 1,

2024, to May 1, 2024. The inclusion criteria were: (1) first-time

thyroid surgery; (2) histologically confirmed papillary thyroid

cancer (PTC); (3) age >18 years. The exclusion criteria were: (1)

presence of other malignancies; (2) incomplete clinical data; (3)

presence of diseases related to abnormal coagulation levels

(including venous thromboembolism, disseminated intravascular

coagulation, etc.). Finally, 408 patients were involved in our

research. Age, gender, presence of Hashimoto’s thyroiditis (HT),

presence of extrathyroidal extension (ETE), multifocality of PTC,

primary tumor size, and presence of lymph node metastasis (N

stage, including central lymph node metastasis (CLNM) and

lateral lymph node metastasis (LLNM)) were extracted from

medical records. All patients underwent coagulation marker

tests within two weeks before surgery. The antibody positivity

often precedes clinical manifestations of thyroid dysfunction or

sonographic changes in patients with HT. Studies have shown that

elevated anti-TPO or anti-Tg antibodies can be present for years

before the development of overt hypothyroidism or characteristic

ultrasound changes, making antibody testing a valuable early

diagnostic tool (9). HT was diagnosed by postoperative

sectioning and examination of paraffin-embedded thyroid tissue

specimens. Additionally, Serum antithyroglobulin and antithyroid

peroxidase levels were measured within 30 days before surgery

using the immuno-electrochemiluminescence method, and the

patients were diagnosed with HT when these levels exceeded 115

IU/ml and 34 IU/ml, respectively. ETE referred to breaking

through the thyroid capsule and invading adjacent soft tissues,

muscles, trachea, oesophagus, nerves or blood vessels. Bilateral

disease and multifocal disease were considered together for

statistical analysis. Multifocality was defined as the presence of

more than one lesion observed (10). Primary tumor size greater

than 2 cm has been identified as an important risk factor for

recurrence and lymph node metastasis in papillary thyroid

carcinoma (3).
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Data download and organization

The flow chart is shown in Figure 1. The RNA-seq data, clinical

information and mutation data of THCA were acquired from the

TCGA-THCA. After removing data with missing or less than 30

days of follow-up, missing outcome time occurrence status, and

duplicates, the TCGA-THCA set remained 500 THCA samples.

Based on the GeneCards website (https://www.genecards.org/), we

retrieved 378 coagulation-related genes (CRGs, Relevance Score≥3)

via searching the term “coagulation” (7, 11).
Collection of differentially expressed CRGs

The “limma” R package was conducted to figure out

differentially expressed genes (DEGs) between normal and tumor

tissues (FDR < 0.05 and log2FC >=1) in TCGA-THCA sets. Then,

we took the intersection of these DEGs and CRGs to obtain

differentially expressed CRGs (DECRGs). To explore the

prognostic value of DECRGs in THCA, univariate Cox analysis

was conducted in TCGA-THCA set (p < 0.05). Te co-expression
Frontiers in Immunology 03
network of the prognostic DECRGs was explored by the “igraph” R

package. Using the STRING (https://string-db.database, the

protein-protein interaction (PPI) network org/) of proteins coded

by the mitochondrial dynamic prognostic DECRGs was constructed

and visualized. Finally, we validated these prognostic DECRGs

using survival analyses and log-rank tests.
Identification of coagulation subtypes and
survival analysis

Based on these prognostic DECRGs, we used the

“ConsensusClusterPlus” package to perform consensus clustering on

THCA samples from the TCGA-THCA dataset. To determine the

optimal number of clusters, we used the Consensus Cumulative

Distribution Function (CDF) to depict the CDF distribution patterns

at different cluster numbers (k), and by plotting the Delta area plot to

visually show the rate of change in the area under the CDF curve as the

number of clusters increases from k to k+1, using this as a basis to select

the optimal number of clusters and further subdivide TC patients into

different subtypes. Then, we used the “survminer” package to plot
FIGURE 1

Flow chart of analysis.
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Kaplan-Meier survival curves to analyze the differences in progression-

free interval (PFI) between different subtypes.
Construction of prognostic model

We randomly split the samples from the whole set into a train set

and a test set according to a 6:4 ratio using the R package “caret”. To

further compress these prognostic DECRGs, we performed LASSO

analysis using 10-fold cross-validation (12). Finally, we constructed a

prognostic model using stepwise multivariate Cox regression analysis.

The scores for each sample were calculated according to the following

formula: Risk score = coefficient1 * gene 1 expression +…+

coefficientN * gene N expression, and the samples were classified

into high or low risk groups based on the median score.
Validation of prognostic signature

Kaplan-Meier analysis with chi-squared test was applied to

estimate survival differences between risk groups in the model.

The test set, and whole set were applied to validate the internal

stability of the model. The time-dependent receiver operating

characteristic (ROC) curves were employed to analyze the

predictive performance of the model and clinical characteristics

through the R package “timeROC” (13). To assess the applicability

of the model to patients with diverse clinical characteristics, we

compared the survival differences between different risk score

groups within each subgroup. To assess whether the model was

an independent predictor for predicting patient prognosis, we

performed univariate and multivariate Cox analyses including risk

scores and clinical characteristics. To assess the clinical relevance of

the model, the study examined the relationship between groups and

clinical features. To better apply the model to clinical work, we

constructed a nomogram combining the model and clinical features

to predict the 3-, 5-, and 7-year survival probabilities of patients.
Enrichment analysis and somatic mutations

To explore the differences in somatic mutations between

different risk groups, we performed analysis and visualization

using the R package “maftools” (14). To find differences in

molecular mechanisms and relevant pathways between risk

groups, we recognized differentially expressed risk genes (DERGs)

between risk groups (|logFC > 1| and FDR < 0.05) and conducted

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses (p < 0.05) (15–18).
Immune microenvironment
and immunotherapy

Furthermore, we employed the EPIC, MCP-COUNTER, TIMER,

XCELL, QUANTISEQ, CIBERSORT, and CIBERSORT-ABS

algorithms to examine immune cell infiltration (19–25). Subsequently,
Frontiers in Immunology 04
we scored the immune function of different risk groups using single-

sample gene set enrichment analysis (ssGSEA) and compared the scores

using the Wilcoxon test (26, 27). We also explored the differences in

immune checkpoint gene expression levels between groups using the

wilcox test. To predict the response to immunotherapy in each risk

group, we calculated the tumor immune dysfunction and exclusion

(TIDE) scores for each group and compared them (28). Finally, we used

ESTIMATE to compare TME scores (StromalScore, ImmuneScore, and

EstimateScore) across different risk groups.
Development of individualized anti-tumor
treatment protocols

In this study, the calcPhenotype function in the “oncoPredict” R

package was utilized to predict drug sensitivity in the Genomics of

Drug Sensitivity in Cancer (GDSC) database (29).
Reverse transcription−qPCR (RT−qPCR)

Using qPCR technology to detect the differential expression of

genes used to construct a prognostic model in human papillary

thyroid carcinoma cell lines (IHH4, KTC-1, TPC-1) and normal

thyroid cell lines (Nthy ori-3-1). First, TRIzol reagent (Invitrogen,

USA) was used to extract total RNA from the cells. Subsequently,

the extracted RNA was reverse-transcribed into cDNA using the

Prime Script RT reagent kit (Takara, Japan). After obtaining the

cDNA template, quantitative PCR was carried out according to the

instructions of the SYBR Green Quantitative PCR Detection Kit

(Takara, Japan). All the reactions were repeated for at least 3 times.

GAPDH was used as an internal control gene, and the 2−△△Ct

method was used for the relative quantification of the target genes.

The primer sequences used in this study were: AZU1, Forward: 5′-
AGAACCTGAACGACCTGATGC-3′ and Reverse: 5′-CCTGG
GAAAACGGGAGAGA-3′; COL3A1, Forward: 5′-TTGCT

GTGGTGGTGTTGGAG-3′ and Reverse: 5′-TTCTAGCG

GGGTTTTTACGA-3 ′ ; CP , Forward : 5 ′ -AGGAGATT

CGGTCGTGTGGT-3′and Reverse: 5′-TTGAGGGAAGAG

GTTTGCTG-3′; CSF2, Forward: 5′-AGAGACACTGCTGCT
GAGATG-3′and Reverse: 5′-CAGGAAGTTTCCGGGGTT-3′;
F12, Forward: 5′-AGGACCAGCGATGGGGATA-3′ and Reverse:

5′-TGTGGAAAAACCGGAGAAGC-3′; GNA14, Forward: 5′-
TGTTACGACAGGAGGAGGGA-3′ and Reverse: 5′-CGAAG
CACATCTTGTTGGGT-3′; IL1RN, 5′-AACAGAAAGCAG

GACAAGCG-3′ and Reverse: 5′-CCTTCGTCAGGCATAT

TGGT-3′ ; SERPIND1, Forward: 5′-ATGGGTATGATTT

CCTTAGGTCTG-3′ and Reverse: 5′-GGAAGAGATTATGA
ATGGTCGTG-3′; GAPDH, Forward: 5′-GGCAAATTCCATG
GCACCG -3′ and Reverse: 5′-TCGCCCCACTTGATTTTGGA-3′.
Statistical analysis

All data analyses were completed using R software (version

4.3.9) and GraphPad Prism (version 8.0.2). ROC curves were
frontiersin.org
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applied to evaluate the area under the curve (AUC) for each

coagulation index. We used univariate and multivariate logistic

regression analyses to determine the association between clinical

characteristics and LLNM. Spearman correlation analysis was used

to evaluate the correlation between two continuous variables. The

Wilcoxon rank-sum test or Student’s T-test was used for the

statistical analysis of two groups of continuous variables. Kaplan-

Meier survival curves and log-rank tests were used to assess

differences in DFS between different groups. P values less than

0.05 were considered to indicate statistical significance. ns indicates

P>0.5, * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001.
Results

Predictive performance of
coagulation indexes

We col lec ted 408 cases of adul t PTC, and the ir

clinicopathological characteristics are shown in Figure 2A. The

mean of coagulation profiles between LLNM and non-LLNM
Frontiers in Immunology 05
patients was compared in Figure 2B. The ROC curves revealed

that D-dimer had superior predictive performance compared to

prothrombin time (PT), prothrombin activity (PTA), international

normalized ratio (INR), activated partial thromboplastin time

(APTT), fibrinogen, and thrombin time (TT). The area under the

curve (AUC) was 0.656 (95% CI 0.580-0.733), with a cut-off value of

0.065 mg/l (Figure 2C). The cut-off value for PT was 11.15s; for

PTA, it was 130%; for INR, the cut-off value was 1.025; for APTT, it

was 35.8s; for fibrinogen, the cut-off value was 3.175g/l; and for TT,

it was 14.95s. Subsequently, through univariate and multivariate

analyses, we identified the factors affecting LLNM, including

extrathyroidal extension, multifocality, and D-dimer>0.065mg/

l (Figure 2D).
Dysregulated CRGs in THCA and
their prognosis

By comparing gene expression levels in tumor and normal

tissue samples, we identified 1374 differentially expressed genes.

The heatmap displaying differentially expressed genes is shown in
FIGURE 2

(A) Cohort Demographic and Clinical Characteristics. (B) The mean of coagulation profiles between LLNM and non-LLNM patients. (C) ROC curves
of preoperative PT, PTA, INR, APTT, fibrinogen, TT, and D-dimer to predict LLNM in PTC patients. (D) Analysis of factors influencing LLNM in
PTC patients.
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Figure 3A. For deeper analysis, we obtained 377 CRGs from the

Genecards website (https://www.genecards.org), and 64 of these

CRGs were differentially expressed between THCA tissues and

normal controls as shown in the Venn plot (Figure 3B). We used

univariate COX regression analysis to assess the relationship
Frontiers in Immunology 06
between the 64 CRGs and PFI, identifying 23 prognostic CRGs

(Figure 3C). The correlations of these genes are shown in Figure 3D.

Additionally, we constructed a PPI network of the 23 prognostic

CRGs (Figure 3E). The Kaplan-Meier survival curves of 23

prognostic CRGs in THCA are shown in Figure 4.
FIGURE 3

Coagulation-related differentially expressed genes. (A) The heatmap diagram for differential gene expression between THCA and normal tissues.
(B) The Venn plot displaying the overlap of differentially expressed coagulation-related genes (DE-CRGs). (C) Univariate Cox regression analysis.
(D) Correlation of the 23 prognostic crg. (E) A PPI network indicating the interactions among the 23 prognostic CRGs.
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Identification of coagulation-
related subtypes

We obtained transcriptomic data and corresponding clinical

characteristics of patients from the TCGA-THCA cohort. Based on

the 23 prognostic CRGs, we classified THCA patients into two

subtypes using the unsupervised clustering method, including

coagulation-related cluster 1 and cluster 2 (Figures 5A, B). We

conducted K-M survival analysis on the TCGA-THCA cohort, and

the results indicated that cluster 1 had a better prognosis than

cluster 2 (p=0.014) (Figure 5C).
Prognostic model construction
and validation

We divided the patients in the TCGA-THCA dataset into

training and validation sets in a 6:4 ratio. In the training cohort of
Frontiers in Immunology 07
TCGA-THCA, we conducted LASSO regression analysis (Figures 6A,

B), screening out 8 key genes (AZU1, COL3A1, CP, CSF2, F12,

GNA14, IL1RN, and SERPIND1). Using stepwise multivariate Cox

regression analysis, we determined the coefficients associated with

each gene (Figure 6C): Riskscore = 0.23947 * AZU1 + 0.00155 *

COL3A1 + 0.08232 * CP + 0.03633 * CSF2 + 0.61566 * F12 + 0.09073

* GNA14 + 0.03401 * IL1RN + 0.03270 * SERPIND1.

We classified THCA patients in the training and validation sets into

high-risk and low-risk groups based on the median risk score.

Figures 6G–I provide detailed information on the risk score

distribution and survival status of each THCA patient. Kaplan-Meier

survival analysis curves were drawn to compare PFI differences between

high- and low-risk groups in the training, validation, and overall sets.

The results indicated that PFI was shorter in high-risk patients compared

to low-risk patients (all P<0.05, Figures 6D–F), suggesting that the

prognostic model has clinical utility in predicting THCA prognosis. Our

study found that AZU1, COL3A1, CP, CSF2, F12, GNA14, IL1RN, and

SERPIND1 were overexpressed in the high-risk group (Figures 6J–L).
FIGURE 4

The Kaplan-Meier survival curves of 23 prognostic CRGs in THCA.
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Validation of the 8-Gene signature

The ROC curves further showcased the excellent performance of

the prognostic model in predicting PFI. We found that the AUC for

the prognostic features in the training set reached 1.000, 0.901, and

0.924 at 1, 3, and 5 years, respectively. Likewise, in the test set, the

AUC were 0.790, 0.777, and 0.828, respectively. For the entire cohort,

the AUC reached 0.865, 0.860, and 0.877, respectively (Figures 7A, C,

E). Figures 7B, D, F illustrate the ROC curves for the risk score and

different clinical characteristics predicting 5-year PFI.

To assess the applicability of the model for patients with various

clinical characteristics, we compared survival differences between

different risk score groups within each subgroup (Figure 8). We

found that the prognostic model exhibited good performance in
Frontiers in Immunology 08
predicting PFI across subgroups including male, female, N0, N1,

Stage II-IV, M0, T1-2, and T3-4 (Figure 8).

A heatmap illustrated the distribution of clinical characteristics

and gene expression in the high-risk and low-risk groups

(Figure 9B). To assess the independence of the risk score as a

prognostic indicator for THCA, univariate and multivariate Cox

regression analyses were conducted in the TCGA-THCA cohort.

The analyses consistently affirmed the risk score’s status as an

independent prognostic predictor (all p < 0.05) (Figure 9A). We

created a nomogram that integrates the risk score and clinical

characteristics to enhance the clinical application of our results

(Figure 9C). Figures 10A, B depict the gene mutation occurrences in

the low-risk and high-risk groups, respectively. In the low-risk

group, the somatic mutation frequency rankings were BRAF (75%),
FIGURE 5

(A) The CDF curves of the consensus cluster. (B) The heatmap of consensus matrices for TCGA-THCA patients(k=2). (C) The Kaplan–Meier (K–M)
survival curves for TCGA-thca patients, which were stratified by the coagulation-related subtypes.
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NRAS (4%), TG (4%), with mutation frequencies of other genes

below 4%. In the high-risk group, the somatic mutation frequency

rankings were BRAF (43%), NRAS (13%), HRAS (6%), TG (4%),

with mutation frequencies of other genes below 4%. It is noteworthy
Frontiers in Immunology 09
that the primary type of somatic mutation in both high- and low-

risk groups was missense mutation, indicating that missense

mutations may play a crucial role in the common mechanisms of

tumorigenesis across different risk levels.
FIGURE 6

LASSO regression model. (A) Coefficient screening was performed based to LASSO analysis. (B) Parameters were adjusted by ten cross-validation.
(C) stepwise multivariate Cox regression analysis. (D-F) Survival curve for high and low risk groups in the training set (D), the validation set (E) and
whole set (F). (G-I) Distribution of risk scores and survival status of each THCA patient in the training set (G), validation set (H) and whole set (I).
(J-L) Expression levels of the gene of each THCA patient in the training set (J), validation se t (K) and whole set (L).
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Functional, immune infiltration analyses
and drug sensitivity analysis in different
risk groups

We examined the biological functions and pathways of the high-

risk and low-risk groups using GO and KEGG pathway analyses. GO

analysis indicated that the Biological process, cellular component, and
Frontiers in Immunology 10
Molecular Function affected in the low-risk group mainly included

antimicrobial peptide production, extracellular matrix disassembly,

lamellar body, neuron to neuron synapse, hippocampal mossy fiber

to CA3 synapse, serine-type endopeptidase activity, and serine-type

peptidase activity (Figure 10C). KEGG analysis revealed that the

significantly enriched pathways in the low-risk group were the Ras

signaling pathway, Taste transduction, Pancreatic secretion, and
FIGURE 7

(A, C, E) ROC curves for the training set, validation set, and total set based on risk score versus survival state. (B, D, F) ROC curves of risk score and
each clinical feature for predicting 5-year PFI in the training set, the validation set and whole set.
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Neuroactive ligand-receptor interaction (Figure 10D). GO analysis

indicated that the Biological process, cellular component, and

Molecular Function affected in the high-risk group mainly included

ossification, osteoblast differentiation, collagen-containing

extracellular matrix, collagen trimer, extracellular matrix structural

constituent, and extracellular matrix structural constituent conferring

tensile strength (Figure 10E). KEGG analysis revealed that the

significantly enriched pathways in the high-risk group were Protein
Frontiers in Immunology 11
digestion and absorption, Cytoskeleton in muscle cells, and ECM-

receptor interaction (Figure 10F).

We further analyzed the differences in immune infiltration levels

between the high-risk and low-risk groups. The results indicated that

the risk score was negatively correlated with the infiltration levels of

macrophage M1 and M2 subtypes, CD8+ T cells, and NK cells, with

correlation coefficients all below -0.2 (Figure 11A), suggesting that the

role of these cells may weaken as the risk score increases. The
FIGURE 8

Kaplan-Meier survival analysis based on the grouping of each clinical feature and risk score.
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immune function analysis of different risk groups is depicted in

Figure 11B. The differential expression analysis of immune

checkpoints between different risk groups showed that immune

checkpoints significantly expressed in the low-risk group compared

to the high-risk group included CD274, TMIGD2, and TNFRSF18,

while immune checkpoints significantly expressed in the high-risk

group compared to the low-risk group included CD27, IDO2, and

NRP1 (Figure 12A). We also calculated the Tumor Immune

Dysfunction and Exclusion (TIDE) score for each group and

compared them. The results indicated that the high-risk group had
Frontiers in Immunology 12
higher TIDE scores, and higher TIDE scores were associated with

poorer prognosis. The group with high TIDE scores and high-risk

scores had a relatively worse prognosis compared to other groups

(Figures 12B–D). TME scores also suggested better prognosis for the

low-risk group (Figure 12E).

Drug sensitivity analysis results indicated that drugs such as

Cisplatin, Dactinomycin.1, Docetaxel, Erlotinib, and Fludarabine had

higher sensitivity in the high-risk group, implying they might have

greater potential in the treatment of patients in the high-risk

group (Figure 13).
FIGURE 9

(A) Univariate and multivariate Cox analyses for the risk score and other clinical features in TCGA cohort. (B) Distribution of clinical features and gene
expression in the high-and low-risk groups. (C) The nomogram for predicting the survival probability of THCA patients.
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Validation of the genes expression

The expression levels of 10 SHMRGs were detected in human

PTC cell lines (IHH4, KTC-1, TPC-1) and human normal thyroid

cell line (Nthy ori-3-1) using qPCR technology (Figure 14).
Frontiers in Immunology 13
Discussion

THCA accounts for 3% of all cancers. While it is mostly regarded

as an indolent disease, its recurrence rate remains at 10%-15% (4).

Generally, cancer is associated with an imbalance in the hemostatic
FIGURE 10

(A, B) Tumor mutation profile in the high-risk (B) and low-risk (A) groups. (C, D) Gene Ontology (GO) (C) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (D) enrichment analysis in the low-risk group. (E, F) Gene Ontology (GO) (E) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (F) enrichment analysis in the high-risk group.
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system, but the pathogenesis of cancer-related coagulation disorders is

complex (30). However, there is limited research on the relationship

between THCA and coagulation. This study aims to clarify the

correlation between coagulation and prognosis in THCA patients.

Several studies have indicated that PTC patients with LLNM have

a higher risk of recurrence compared to those without LLNM (31, 32).

Generally, prophylactic central lymph node dissection is deemed

necessary. However, prophylactic dissection of negative lateral

lymph nodes is not recommended because it may lead to numerous

surgical complications. Therefore, it is important to determine the

presence of LLNMpreoperatively. This study analyzed the influence of

coagulation markers (PT, PTA, INR, APTT, fibrinogen, TT, and D-

dimer) on LLNM. The ROC curve showed that D-dimer has a good

predictive performance for LLNM.Multivariate analysis indicated that
Frontiers in Immunology 14
extrathyroidal extension, multifocality, and D-dimer >0.065mg/l are

independent predictors of LLNM. The effects of extrathyroidal

extension and multifocality on LLNM have been confirmed in

numerous studies (33, 34). The research has shown that elevated D-

dimer is significantly associated with cancer recurrence, metastasis,

and worse survival outcomes (35). This study suggests that D-dimer

>0.065mg/l is significantly associated with LLNM in PTC.

In this study, we divided THCA patients into two distinct subtypes

based on the expression of prognostically valuable CRGs. K-M

survival analysis indicated that cluster1 had better outcomes than

cluster2 (p=0.014), offering a reference for refining the classification

and management of THCA patients in clinical practice. Subsequently,

we used LASSO regression to screen 8 genes (AZU1, COL3A1, CP,

CSF2, F12, GNA14, IL1RN, and SERPIND1) to construct the
FIGURE 11

(A) Correlation analysis of risk score with immune cells. (B) The immune function of different risk groups. ns indicates P>0.5, * indicates P<0.05, **
indicates P<0.01, *** indicates P<0.001.
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prognostic model. ROC results from both the training and validation

sets suggested that the constructed model had high predictive efficacy,

and the high-risk group had poorer outcomes. We further used

univariate and multivariate Cox regression analyses to validate the

effectiveness of the prognostic model. We also developed a nomogram

integrating risk scores and clinical features to facilitate the clinical

application of our research findings.

The tumor immune microenvironment (TME) plays an

important role in tumor development. Recently, a pan-cancer

analysis of the human tumor coagulome revealed that coagulation

links to the TME (36). In our study results, the high-risk group had

lower infiltration levels of macrophage M1 and M2 subtypes, CD8+
Frontiers in Immunology 15
T cells, and NK cells, which may be related to poorer prognosis.

Macrophages may combat cancer progression by directly engulfing

cancer cells or activating antitumor immune responses, and CD8+

T cells and NK cells also have strong antitumor functions (37). To

explore the biological functional differences between high and low-

risk groups, we conducted GO and KEGG analyses. The results

indicated significant differences in biological functions between the

two groups, but the underlying mechanisms remain to be clarified.

Finally, we investigated the intrinsic connection between drug

sensitivity and risk groups by correlating THCA patients’

prognostic risk scores with the half-maximal inhibitory

concentration (IC50) values of chemotherapeutic drugs.
FIGURE 12

(A) Expression levels of immune checkpoint molecules between different risk groups. (B) The tumor immune dysfunction and exclusion (TIDE) score
for each group. (C, D) Kaplan-Meier survival analysis based on the TIDE score and risk score. (E) TME score (StromalScore, ImmuneScore, and
EstimateScore) across different risk groups. ns indicates P>0.5, * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001.
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FIGURE 13

Drug sensitivity analysis for the different risk groups.
FIGURE 14

Expression of 8 genes in IHH 4, KTC-1, TPC-1 human papillary thyroid carcinoma cell line and human normal thyroid cell line Nthy ori-3-1. ns
indicates P>0.5, * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001.
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Research has indicated that these genes are involved in cancer

development. In gastric cancer, AZU1 was upregulated (38).

COL3A1 could be an oncogene and promote drug resistance in

lung cancer (39). The product expressed by CP, cancer

procoagulant, is a biomarker for cancer. Elevated CP activity has

been detected in pancreatic, breast, lung, digestive system, and

urinary system cancers (40). In breast cancer, CSF2 could activate

the Stat3 pathway in CAA via paracrine or autocrine mechanisms,

leading to increased expression and secretion of CXCL3. CXCL3

binds to CXCR2, a receptor on breast cancer cells, and activates

FAK, which promotes a mesenchymal phenotype, invasion, and

metastasis of breast cancer cells (41) F12 expression might affect the

OS of PTC patients by regulating metabolic pathways (42). GNA14

might accelerate colorectal cancer cell proliferation and malignant

tumor progression through ERK and b-catenin pathways (43).

IL1RN was a good prognostic and diagnostic biomarker for PTC

and might promote thyroid cancer progression through immune-

related pathways (44). SERPIND1 promoted the proliferation,

migration, invasion, G1-to-S phase transition, and epithelial-

mesenchymal transition of ovarian cancer cells and inhibited their

apoptosis by promoting phosphorylation in the phosphoinositide 3-

kinase/protein kinase B (PI3K/AKT) pathway (36). We also

validated the high expression of these 8 genes in PTC by qRT-PCR.

There are some limitations in this study. Firstly, the TCGA-

THCA cohort has a limited number of cases, and more datasets are

needed to validate these findings. Otherwise, the selected genes were

only validated by qRT-PCR in PTC, lacking comprehensive

experimental validation. Moreover, although we found that the

coagulation pathway affects the prognosis and immune

microenvironment of THCA patients, its underlying mechanisms

need further investigation.
Conclusion

Our study demonstrated that coagulation is related to immune

infiltration and prognosis in THCA. Our study suggested the

possibility of D-dimer predicting LLNM. Subsequently, we used

the TCGA cohort to construct a new coagulation-related THCA

risk scoring model for prognosis assessment and risk stratification

in THCA patients. This risk model could provide a robust

prognostic tool and promote clinical guidance for THCA patients.

We also constructed a nomogram combining the model and clinical

features to predict the 3-, 5-, and 7-year survival probabilities of

patients. We analyzed and compared high- and low-risk groups

regarding immune infiltration, somatic mutations, and other

aspects, offering some guidance for treatment strategy selection.

In summary, our research will aid in understanding the role and

significance of the coagulation in THCA.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Materials. Further inquiries can be

directed to the corresponding author/s.
Frontiers in Immunology 17
Ethics statement

The studies involving humans were approved by The First Affiliated

Hospital of Zhengzhou University Ethics Review Committee. The

studies were conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study. Written informed

consent was obtained from the individual(s) for the publication of

any potentially identifiable images or data included in this article.
Author contributions

YS: Conceptualization, Data curation, Formal analysis, Writing

– original draft. YZ: Conceptualization, Data curation, Writing –

review & editing. YY: Data curation, Writing – review & editing.

WL: Writing – review & editing. DY: Conceptualization, Funding

acquisition, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This research was

supported by the Henan Provincial Natural Science Foundation General

Project (No.222300420568); the Major Plan Project for Medical Science

and Technology Research in Henan Province (No. SBGJ202101014); the

Henan Province Major Special Project for Traditional Chinese Medicine

Research (No.20-21ZYZD14); the Henan Province Youth Medical

Technology Innovation Leading Talent Project (No. YXKC2020015).
Acknowledgments

We express our gratitude to ChatGPT for its exceptional

support in English language editing.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1462755/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1462755/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1462755/full#supplementary-material
https://doi.org/10.3389/fimmu.2024.1462755
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2024.1462755
References
1. Vaccarella S, Dal Maso L, Laversanne M, Bray F, Plummer M, Franceschi S. The
impact of diagnostic changes on the rise in thyroid cancer incidence: A population-
based study in selected high-resource countries. Thyroid. (2015) 25:1127–36.
doi: 10.1089/thy.2015.0116

2. Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and
United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). (2022)
135:584–90. doi: 10.1097/cm9.0000000000002108

3. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE,
et al. 2015 American thyroid association management guidelines for adult patients with
thyroid nodules and differentiated thyroid cancer: the american thyroid association
guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid.
(2016) 26:1–133. doi: 10.1089/thy.2015.0020

4. Laha D, Nilubol N, Boufraqech M. New therapies for advanced thyroid cancer.
Front Endocrinol (Lausanne). (2020) 11:82. doi: 10.3389/fendo.2020.00082

5. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. (2008)
359:938–49. doi: 10.1056/NEJMra0801082

6. Kocatürk B, Versteeg HH. Tissue factor isoforms in cancer and coagulation: may
the best isoform win. Thromb Res. (2012) 129 Suppl 1:S69–75. doi: 10.1016/s0049-3848
(12)70020-8

7. Yang J, Wang C, Zhang Y, Cheng S, Wu M, Gu S, et al. Clinical significance and
immune infiltration analyses of a novel coagulation-related signature in ovarian cancer.
Cancer Cell Int. (2023) 23:232. doi: 10.1186/s12935-023-03040-3

8. Bano A, Chaker L, de Maat MPM, Atiq F, Kavousi M, Franco OH, et al. Thyroid
function and cardiovascular disease: the mediating role of coagulation factors. J Clin
Endocrinol Metab. (2019) 104:3203–12. doi: 10.1210/jc.2019-00072

9. Vanderpump MP, Tunbridge WM, French JM, Appleton D, Bates D, Clark F,
et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of
the Whickham Survey. Clin Endocrinol (Oxf). (1995) 43:55–68. doi: 10.1111/j.1365-
2265.1995.tb01894.x

10. Sun Y, Liu Y, Li H, Tang Y, Liu W, Zhang Y, et al. The significance and
prognostic value of multifocal papillary thyroid carcinoma in children and adolescents.
BMC Cancer. (2024) 24:690. doi: 10.1186/s12885-024-12403-6

11. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The
geneCards suite: from gene data mining to disease genome sequence analyses. Curr
Protoc Bioinf. (2016) 54:1. doi: 10.1002/cpbi.5

12. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear
models via coordinate descent. J Stat Software. (2010) 33:1–22. doi: 10.18637/
jss.v033.i01

13. Blanche P, Dartigues JF, Jacqmin-Gadda H. Estimating and comparing time-
dependent areas under receiver operating characteristic curves for censored event times
with competing risks. Stat Med. (2013) 32:5381–97. doi: 10.1002/sim.5958

14. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res. (2018) 28:1747–56.
doi: 10.1101/gr.239244.118

15. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

16. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innovation (Camb). (2021) 2:100141.
doi: 10.1016/j.xinn.2021.100141

17. Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize Implements and enhances
circular visualization in R. Bioinformatics. (2014) 30:2811–2. doi: 10.1093/
bioinformatics/btu393

18. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in
multidimensional genomic data. Bioinformatics. (2016) 32:2847–9. doi: 10.1093/
bioinformatics/btw313

19. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods. (2015)
12:453–7. doi: 10.1038/nmeth.3337

20. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: A web server for
comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. (2017) 77:
e108–10. doi: 10.1158/0008-5472.Can-17-0307

21. Dienstmann R, Villacampa G, Sveen A, Mason MJ, Niedzwiecki D, Nesbakken A,
et al. Relative contribution of clinicopathological variables, genomic markers,
transcriptomic subtyping and microenvironment features for outcome prediction in
stage II/III colorectal cancer. Ann Oncol. (2019) 30:1622–9. doi: 10.1093/annonc/mdz287

22. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. (2017) 18:220. doi: 10.1186/s13059-017-1349-1
Frontiers in Immunology 18
23. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al.
Molecular and pharmacological modulators of the tumor immune contexture
revealed by deconvolution of RNA-seq data. Genome Med. (2019) 11:34.
doi: 10.1186/s13073-019-0638-6

24. Schenk E, Boland J, Mansfield A, Aubry MC, Dietz A. Local and systemic
immunity predict survival in patients with pulmonary sarcomatoid carcinoma. Med
Oncol. (2017) 34:140. doi: 10.1007/s12032-017-1000-8

25. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous
enumeration of cancer and immune cell types from bulk tumor gene expression data.
Elife. (2017) 6:1–25. doi: 10.7554/eLife.26476

26. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf. (2013) 14:7. doi: 10.1186/1471-2105-14-7

27. Zhang Z. Reshaping and aggregating data: an introduction to reshape package.
Ann Transl Med. (2016) 4:78. doi: 10.3978/j.issn.2305-5839.2016.01.33

28. Fu J, Li K, Zhang W, Wan C, Zhang J, Jiang P, et al. Large-scale public data reuse
to model immunotherapy response and resistance. Genome Med. (2020) 12:21.
doi: 10.1186/s13073-020-0721-z

29. Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for predicting in
vivo or cancer patient drug response and biomarkers from cell line screening data. Brief
Bioinform. (2021) 22:1943–54. doi: 10.1093/bib/bbab260

30. Ordookhani A, Motazedi A, Burman KD. Thrombosis in thyroid cancer. Int J
Endocrinol Metab. (2018) 16:e57897. doi: 10.5812/ijem.57897

31. Kim SK, Park I, Hur N, Rayzah M, Lee JH, Choe JH, et al. Patterns, predictive
factors, and prognostic impact of contralateral lateral lymph node metastasis in N1b
papillary thyroid carcinoma. Ann Surg Oncol. (2017) 24:1943–50. doi: 10.1245/s10434-
016-5761-7
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