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Genomic instability is a driver and accelerator of tumorigenesis and influences

disease outcomes across cancer types. Although genomic instability has been

associated with immune evasion and worsened disease prognosis, emerging

evidence shows that genomic instability instigates pro-inflammatory signaling

and enhances the immunogenicity of tumor cells, making themmore susceptible

to immune recognition. While this paradoxical role of genomic instability in

cancer is complex and likely context-dependent, understanding it is essential for

improving the success rates of cancer immunotherapy. In this review, we provide

an overview of the underlying mechanisms that link genomic instability to pro-

inflammatory signaling and increased immune surveillance in the context of

cancer, as well as discuss how genomically unstable tumors evade the immune

system. A better understanding of the molecular crosstalk between genomic

instability, inflammatory signaling, and immune surveillance could guide the

exploitation of immunotherapeutic vulnerabilities in cancer.
KEYWORDS

genomic instability, MMRd, chromosomal instability, cGAS-STING, tumor-infiltrating
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1 Introduction

Genomic instability, defined as an increased tendency of genomic alterations during

subsequent cell divisions, is a hallmark of cancer and plays key roles in malignant

transformation, cancer progression, and response to treatment (1, 2). The accumulation

of mutations and genomic alterations can result in the activation of oncogenes, the

inactivation of tumor suppressor genes, and the dysregulation of key cellular pathways,

ultimately leading to transformation and uncontrolled cell proliferation. Through the

acquisition of genetic diversity, genomic instability fuels tumor evolution and endows

tumor cells with a survival advantage, enabling them to adapt to changing conditions and

upon selective pressure (1, 2).
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Nevertheless, genomic instability can have detrimental effects

on cell viability. In addition to reducing tumor cell fitness through

several cell-intrinsic mechanisms, genomic instability triggers a

cascade of cell and non-cell autonomous inflammatory signaling

pathways (3). This leads to the release of cytokines and chemokines

to attract immune cells and the expression of immune-activating

signals for the rapid elimination of DNA-damaged cells (4–6).

Moreover, alterations in the DNA sequence or genomic

rearrangements can lead to the generation of mutated proteins

that will eventually be presented as neoantigens and activate T cells

(7). Hence, immune surveillance is a critical barrier to

tumorigenesis, especially in the context of genomic instability. As

a result, cancer cells need to evolve and activate mechanisms to

reduce immunogenicity and therefore avoid detection and

elimination by the immune system.

Over the last few decades, our understanding of the

mechanisms of immune evasion exploited by cancer has led to

the development of effective immunotherapies, particularly

immune checkpoint blockade (ICB) (8, 9). Even though pro-

inflammatory signaling and genetic alterations have been

correlated with response to ICB (8), durable response rates in

genomically unstable tumors remain paradoxically low (10–14),

limiting the use of those drugs and highlighting the need to develop

novel complementary approaches. To do so, a thorough molecular

understanding of the specific mechanisms of immune recognition

and immune evasion of tumors with high genomic instability is

crucial. This review focuses on the complex interplay between

genomic instability and the immune system in the context of

cancer. We summarize the main inflammatory consequences

triggered by genomic instability, primarily through cGAS/STING

activation, and how the different types of immune cells can

recognize genomically unstable tumors. Finally, we discuss the

main mechanisms of immune evasion exploited by tumors with

defects in DNA repair and tumors displaying high levels of

chromosomal instability (CIN) and resulting aneuploidy and their

implications for cancer immunotherapy.
2 Cellular mechanisms of genomic
instability in cancer

Genome stability is tightly monitored by several mechanisms,

which include the DNA damage checkpoints, the DNA repair

machinery, and mitotic checkpoints. Defects at any of these steps

can result in genomic instability. Thus, genomic instability can

present itself in multiple different levels ranging from single

nucleotide point mutations to complex structural and numerical

chromosomal abnormalities.
2.1 Defects in DNA repair

The DNA damage response (DDR) is a complex network of

highly conserved pathways that have evolved to sense and repair

various forms of DNA damage (3). The DDR comprises a number
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of mechanisms to repair various forms of damage including base

excision repair (BER), single-strand break repair (SSBR), nucleotide

excision repair (NER), mismatch repair (MMR), homologous

recombination (HR), and nonhomologous end-joining (NHEJ).

While deficiencies in any of those pathways can give rise to

genomic damage and contribute to tumorigenesis (3, 15), here,

we focus the role of MMR and HR on genomic instability.

2.1.1 Defects in mismatch repair
The MMR pathway recognizes and repairs base pair

mismatches and small insertions and deletions loops (indels) that

occurred during DNA replication (16). Mismatched base pairs and

small indels up to 3 nucleotides can be recognized by the MSH2/

MSH6 heterodimer whereas larger indels are recognized by the

MSH2/MSH3 complex (17, 18). Once these heterodimers recognize

the error, a second complex formed by MLH1/PMS2 is recruited

and forms a tetrameric complex. Subsequently, exonuclease 1

(EXO1) is recruited, activated, and removes the newly synthesized

DNA strand, leaving a DNA excision gap and a region with a single-

stranded DNA (ssDNA). DNA polymerases and ligases

subsequently synthesize and seal the new correct DNA strand,

repairing the damage (16). Although the mutation rate during

DNA replication is low and DNA polymerases have proofreading

activity and can correct some of these errors, others escape

proofreading and require the MMR system for repair

(16) (Figure 1A).

Individuals with germline mutations in one or more MMR

proteins (i.e. MLH1, MSH2, MSH6, PMS2), known as Lynch

Syndrome (LS) patients, have a higher risk for developing early-onset

cancers in multiple tissues (19–21). This indicates that loss of MMR

functionality renders cells susceptible to malignant transformation

(22, 23). In addition to LS patients, MMR is also frequently affected

in sporadic (non-hereditary) cancers due to somatic mutations or loss

of expression of one or more MMR proteins (24). The most common

cause of MMR deficiency in human cancers is epigenetic silencing of

the MLH1 promoter (24–27). Sporadic MMR-deficient (MMRd)

tumors are most commonly colorectal carcinoma (CRC) [15% of all

CRC (24)] and endometrial carcinoma (EC) [30% of all EC (28)] but

can also arise in several other tissue types including stomach, brain

(mainly glioblastoma), ovarian, and pancreas, among others (29–31).

The reasons why certain tissues develop MMRd tumors more

frequently than others are yet unknown.

Loss of function of one or more proteins of the MMR system

results in failure to repair replication errors and thus persistence of

mutations throughout the genome, particularly in regions of

repetitive DNA sequences, known as microsatellite (MS) regions

(32, 33). Errors inMS regions most commonly arise from polymerase

slippage. This phenomenon is known as microsatellite instability

(MSI) and is a hallmark of MMRd tumors. When MSI occurs in

coding regions, it can lead to alterations in open reading frames,

yielding functionally inactive proteins, including proto-oncogenes

and tumor suppressor genes (31, 34). In addition to MSI, MMRd

results in a high rate of single nucleotide variation (SNVs) and large

numbers of frameshifts that result in indels. Therefore, MMRd

cancers are typically considered hypermutated tumors that display
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FIGURE 1

The cGAS/STING pathway and its inflammatory consequences in genomically unstable tumors. (A-C) Genomic instability can lead to the accumulation
of dsDNA and other acid nucleic structures in the cytoplasm, which can activate cGAS. (D) Activation of cGAS either by nuclear DNA, micronuclei or
other acid nucleic results in inflammatory signalling and expression of type I IFNs, ISG and NF-kB target genes. (E) In MMRd tumor, activation of cGAS
results in increased CXCL10 and CCL5 production, which increase the number of tumor-infiltrating CD8+ T and NK cells as well as increased expression
of IFN-b, which enhances DC-T cell interactions. (F) In HRD tumors, or tumors treated with DNA damaging agents such as PARP-inhibitors, activation of
the cGAS pathways results in expression of the chemokines and cytokines, leading to a more inflamed TME with higher number of cytotoxic immune
cells. (G) The cGAS/STING pathway in CIN/aneuploid cells has both pro and anti-tumor effects. The activation of the IRF3-type I IFN signalling axis results
in immune surveillance and apoptotic signals, whereas NF-kB signalling mainly promotes IL-6/STAT3 pro-survival signals and enhance metastatic potential.
MMRd, mismatch-repair deficient; MMRp, mismatch-repair proficient; MSH, mutS homolog; MLH1, mutL homolog 1; PMS1, PMS1 Homolog 2; SNV, single-
nucleotide variations; indels, insertions-deletions; TMB, tumor-mutational burden; HRD, homologous-recombination deficiency; DSB, double-strand break;
BRCA, breast cancer gene; CNAs, copy number alterations; CIN, chromosomal instability; mtDNA, mitochondrial DNA; cGAS, cyclic GMP-AMP synthase;
STING, stimulator of interferon genes; TBK1, TANK-binding kinase 1; IRF, interferon regulatory factor; NF-kB, nuclear factor kB; ISG, interferon stimulated
genes; CCL, C-C motif chemokine ligand; CXCL, C-X-C motif chemokine ligand; CD, cluster of differentiation; NK, natural killer; DC, dendritic cell; TNF,
tumor necrosis factor; IL, interleukin; IFN, interferon; IFNR, interferon receptor; JAK1, janus kinase 1; STAT, signal transducer and activator of transcription;
P, phosphorylation.
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a substantial tumor mutational burden (TMB) and a high number of

predicted neoantigens (24, 31, 35, 36) (Figure 1A).

Besides MMRd cancers, there is a subset of tumors that harbor

mutations in the exonuclease domain of the catalytic subunit of the

DNA polymerase epsilon (POLE) or the polymerase delta (POLD1),

resulting in loss or defective proofreading (37, 38). These tumors can

also arise from a germline or somatic mutation in POLD1 or POLE

genes, with POLEmutations in 1%-10% of all CRC and EC cases (24,

38–40). Even though these tumors have relatively low MSI rates and

display different MSI signatures than MMRd (41), POLE-mutant

(POLE-mut) tumors have dramatically higher rates of SNVs and are

therefore considered ultra-mutated tumors (37, 42). While MSI is

high in MMRd tumors and SNV rates are high in both groups, in

general, MMRd and POLE-mut tumors display relatively stable

karyotypes and low numbers of copy number alterations

(CNAs) (43).

2.1.2 Defects in homologous recombination
HR is the mechanism primarily responsible for repairing

double-strand breaks (DSBs) in DNA during the S and G2 phases

of the cell cycle. Upon recognition of DSBs, the 5’ end of the break is

resected, creating a ssDNA region that serves as a template for the

repair. The exposed ssDNA regions are protected from degradation.

BRCA1/BRCA2 mediate recruitment at the DSB site and facilitate

the repair. After strand invasion by RAD51, a complex DNA

structure is formed (D-loop) followed by DNA synthesis. The

newly synthesized DNA can be directly ligated to the original

DNA, or alternatively, a holiday junction (HJ) is formed that

needs to be further resolved or dissolved by specific proteins to

complete the repair (44).

Germline mutations in HR genes including BRCA1 or BRCA2

predispose to early-onset breast and ovarian cancer (45), indicating

that the genomic instability caused by HR defects drives malignant

transformation. In addition, somatic alterations in BRCA1/2 and

other HR-related genes such as ATM or RAD51 are prevalent

among several cancer types including ovarian, breast, pancreas,

and prostate, among others (46). A defective or compromised HR

system leads to unrepaired DSBs, accumulation of DNA lesions,

and collapsed replication forks resulting in complex genomic

rearrangements and increased susceptibility to accumulation of

mutations. In line with this, the genomes of HR-deficient (HRD)

cancers are generally characterized by complex CNAs and are

highly aneuploid, but may also display specific base substitutions

and indels, thus yielding an intermediate TMB (46–49). In fact,

cancers with mutations in HR genes have a higher TMB and higher

number of predicted neoantigens in comparison to their HR-

proficient counterparts (48, 49) (Figure 1B).
2.2 Chromosomal instability

CIN is defined as persisting errors in chromosome segregation

during mitosis, leading to numerical and/or structural

chromosomal abnormalities in the resulting daughter cells (50).

Aneuploidy is the result of CIN, and it is a state in which cells
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harbor alterations in the chromosomes. CIN can yield numerical

aneuploidy i.e. an abnormal number of whole chromosomes, as well

as structural aneuploidy, when chromosome fragments display

CNAs due to unbalanced translocations, inversions, or deletions

(50) (Figure 1C). Faithful chromosome segregation relies on the

structural integrity of the microtubule spindle machinery and the

spindle assembly checkpoint (SAC). The various processes that can

lead to aneuploidy have been extensively described elsewhere and

include but are not limited to centrosome amplifications, telomere

dysfunction, deregulation of genes involved in the SAC, loss of

cohesion, altered microtubule polymerization rates or abnormal

kinetochore-microtubule dynamics (51).

Numerical and structural aneuploidies will lead to unbalanced

gene expression, thus disrupting normal cellular processes, and

being detrimental to the viability of healthy cells. Furthermore, CIN

and aneuploidy promote proteotoxic stress, replication stress, and

increased DNA damage, which often leads to cell cycle arrest or cell

death (52). Even though CIN and aneuploidy are not well tolerated

in healthy tissues (53, 54), over 80% of all human solid tumors

display chromosomal abnormalities (55). Furthermore, CIN and/or

aneuploidy are associated with (multi) therapy resistance (56–58),

immune evasion (59–61), metastasis (62, 63), and thus an overall

poor patient prognosis (64, 65). This can likely be explained by the

fact that ongoing CIN will promote the generation of new

karyotypes during tumorigenesis, thus driving cancer cell

evolution and intratumor karyotype heterogeneity (66).

Therefore, tumors with high CIN rates will have a large variety of

distinct karyotypes and upon (new) selective pressure, cells with

specific chromosome combinations may hold a survival advantage

and can be selected for.
3 Inflammatory signaling in
genomically unstable cancers

DNA is normally localized in the nucleus and mitochondria.

Genomic instability can lead to DNA being exposed into the

cytoplasm for instance as a result of stalled replication (67),

mitochondrial damage (68), or by mis-segregated chromosomes

and chromosome fragments that yield micronuclei (69).

Micronuclei are prone to rupture, eventually exposing the

genomic DNA to the cytoplasm (70). Cells are equipped with

pattern recognition receptors (PRR) that sense loss of cellular

homeostasis, including mislocalized or aberrant DNA and RNA

structures. Cytoplasmic nucleic acid sensors are PRRs that signal

foreign and host-derived DNA and RNA and when activated,

initiate cell autonomous and cell extrinsic defense mechanisms (71).

A well-known cytoplasmic DNA sensor is the cyclic GMP-AMP

synthase (cGAS), which recognizes and responds to cytosolic

double-stranded DNA (dsDNA) in a DNA-sequence independent

manner, serving as a ubiquitous DNA sensor (72, 73). Besides

dsDNA originating from the nucleus, other forms of nucleic acid

are also able to activate cGAS such as oxidized self-DNA (74),

mitochondrial DNA (mtDNA) (75, 76) and, as more recently

shown, DNA-RNA hybrids (77). These and other mislocalized
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nucleic acid structures such as endogenous dsRNA, ssRNA, or

mitochondria dsRNA can also be recognized by other cytosolic

sensors including RIG-I, MDA5, AIM2, IFI16, and TLRs, among

others [reviewed elsewhere (71)]. Here, we will focus on the role of

cGAS/STING activation in cancers with high genomic instability,

including tumors with DNA repair defects and tumors displaying

CIN/aneuploidy.
3.1 The cGAS-STING pathway

cGAS binding to cytoplasmic dsDNA leads to its enzymatic

activation and subsequent production of cGAMP, a second

messenger molecule and a potent agonist of Stimulator of

Interferon Genes (STING) (78). Activated STING recruits TANK-

binding kinase 1 (TBK1) to initiate further downstream signaling

that ultimately leads to translocation of interferon regulatory factor

3 (IRF3) dimers to the nucleus and the transcription of anti-viral-

like gene programs such as type I interferons (IFN) as well as pro-

apoptotic genes (79) (Figure 1D). Type I IFNs in turn activate

interferon-stimulated genes (ISG) in an autocrine and paracrine

manner, including genes in the janus kinase (JAK)/Signal

transducer and activator of transcription (STAT) pathway.

Whereas JAK/STAT1 signaling plays a key role in the induction

of cell death and anti-tumor immunity, JAK/STAT3 signaling has

anti-apoptotic effects and promotes cell growth (80). Parallel to

IRF3, STING can also activate both the canonical (RELA-p50) and

non-canonical (RELB-p52) Nuclear Factor-kB (NF-kB) to induce

other inflammatory gene programs (79, 81) (Figure 1D). These

signaling cascades do not operate independently but rather

constitute a complex signaling network displaying multiple levels

of crosstalk and feedback control that result in a pleiotropic

response (81). Yet, the magnitude of this response, its dynamics,

and the interconnections between these pathways are still

poorly understood.

Over the last decade, the cGAS/STING pathway has received

significant attention in the cancer field as it plays a pivotal role in

mounting anti-tumor responses both in a tumor cell autonomous

and non-autonomous manner. Chronic activation of cGAS/STING

can result in the secretion of soluble factors collectively known as

the senescence-associated secretory phenotype (SASP), which can

restrict malignant growth (82–84). Additionally, cGAS/STING-

induced pro-inflammatory chemokines and cytokines have a wide

range of immune-stimulatory effects shown to induce potent anti-

tumor responses (85). Importantly, intrinsic tumor STING

expression helps in immune-mediated control of metastatic

quiescent cancer cells (86). The cGAS/STING pathway can also

coordinate multicellular immune responses through extracellular

signaling of cGAMP, amplifying pro-inflammatory signaling (87).

cGAMP intracellular communication can be mediated by cell-to-

cell junctions that directly connect the cytosol of adjacent cells or by

cGAMP-containing exosomes secreted in the extracellular space

that can be taken up by recipient cells. In the context of anti-tumor

immunity, cancer-derived cGAMP or cancer-derived DNA have

been shown to activate dendritic cells and macrophages, which in

turn respond by producing type I IFN to enhance CD8+ T cell anti-
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tumor activity (88–90). Similarly, release of damaged DNA

resulting from telomere stress also results in enhanced immune

responses (91). This is in line with the observation that NK cell

cytotoxicity against tumor cells requires STING expression by host

cells and cGAS expression by cancer cells (90). Exploring whether

extracellular cGAS/cGAMP signaling is particularly relevant in

tumor cells with high genomic instability remains to be investigated.

Conversely, other work has shown a tumor-promoting role for

the cGAS/STING pathway. In preclinical models, chronic

inflammation induced by 7,12-dimethylbenz(a)anthracene

(DMBA) was shown to promote skin tumorigenesis in a STING-

dependent manner through IL-6 expression (92). Further studies

have shown that cGAS/STING signaling can promote tumor cell

survival in an autocrine and paracrine manner (93, 94). How these

opposite roles are mechanistically regulated remains unclear, but

their dynamics likely determine the ultimate output of cGAS/

STING, thereby being very context dependent.

The inflammatory consequences and anti- and pro-tumor

effects triggered by sensing of cytosolic DNA in tumors with

defects in DNA repair and chromosome imbalances are described

in more detail below.

3.1.1 cGAS/STING-driven inflammatory signaling
by deficient MMR

Recent work has shown that MMRd human tumors, as well as

MMR-deficient engineered cell lines, display enhanced type I and

type II IFN signatures in comparison to their MMR-proficient

(MMRp) counterparts and that this is mediated by activation of

the cGAS/STING pathway (95–97). Mechanistically, cells with an

inactivatedMLH1 gene accumulate cytosolic DNA by dysregulation

of MLH1-dependent EXO1 function, which causes unrestrained

DNA hyperexcision and aberrant DNA breaks (95). As a result,

MLH1 KO cells accumulate cytoplasmic DNA, which eventually

results in the expression of ISG15 and IFN-b in a cGAS and STING-
dependent manner (97). Further in vitro and in vivo studies have

demonstrated that cancer-cell intrinsic cGAS activation and

subsequent type I IFN expression is necessary for optimal CD8+

T cell priming. While defects in MMR reduced in vivo tumor

growth in comparison to wild-type tumor cells, concomitant

deletion of tumor cGAS, STING, or IFNAR1 rescued these

growth defects, indicating a key role of cGAS/STING-type I IFN

axis in immune surveillance (97). These and other studies have

reported the importance of type I IFN signaling in dendritic cell

(DC) -T cell interactions (98–101) (Figure 1E).

However, type I IFN is not the only factor produced upon cGAS

engagement. CCL5 and CXCL10 chemokines are also upregulated

in response to cGAS/STING. Indeed, anti-tumor immunity in

MMRd cancers also depends on the magnitude of cGAS/STING

activation and subsequent expression of CCL5 and CXCL10 in the

tumor microenvironment (TME), which influences CD8+ T and

NK cell infiltration (96, 102) (Figure 1E). In vivo, blockade of the

CXCR3-CXCL10 interaction with monoclonal antibodies

dampened the infiltration of immune cells into the tumors and

accelerated tumor growth (96). In comparison to MMRp CRCs,

gene and protein expression levels of both cGAS and STING are

significantly higher in MMRd, and such tumors display higher
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CXCL10, CCL5, and CD8+ T effector gene signatures (103, 104). In

fact, both cGAS and STING expression correlates with an increase

in CD8+ but not CD4+ T cell numbers (104). Although a similar

phenotype with accumulation of cytoplasmic DNA and enhanced

expression of type I IFN, ISG15, CXCL10, and CCL5 has been

shown for MSH2 KO cell lines (96), the mechanism of cGAS

activation upon MSH2 deficiency remains to be determined.

Altogether, these data underscore the importance of the cGAS/

STING-driven inflammatory phenotype in MMRd tumors for

optimal anti-tumor immunity.

3.1.2 cGAS/STING in cancers with HR defects
In the context of HR, loss, inhibition or mutations in BRCA1/2

lead to the generation of cGAS-positive micronuclei and induction

of cGAS/STING signaling which results in the expression pro-

inflammatory type I and type II IFNs, NF-kB dependent TNFa
activation, as well as expression of CXCL10, CXCL9, CCL5, IL-6,

and IL-8 (105–109), extensively reviewed elsewhere (110)

(Figure 1F). Similar effects are observed in cells with alterations in

other HR genes, defective DDR, or upon DNA-damaging agents

(109, 111, 112) (Figure 1F). For instance, defects in ATM also result

in cytoplasmic accumulation of STING, its subsequent activation,

and the initiation of a type I IFN response (113).

In breast cancer, higher cGAS/STING scores are associated with

higher genomic instability, which in turn correlate with overall higher

infiltration of immune cells (114). BRCA1/2 mutations are indeed

often associated with an increased number of tumor-infiltrating

lymphocytes in different cancer types (108, 109, 115, 116) and

tumor-associated inflammation in BRCA1-mutant breast cancer

has significant positive prognostic value (108, 117). In fact, tumors

with HR mutations are generally associated with a better patient

prognosis than their wild-type counterparts, beyond BRCA

mutations (118). Therapeutically, HR deficiency sensitizes tumors

to DNA-damaging agents and poly(ADP-ribose) polymerase (PARP)

inhibitors. Studies using mouse models of breast and ovarian cancer

have revealed that the efficacy of PARP inhibition in BRCA-deficient

tumors depends on the activation of the cGAS/STING pathway.

Mechanistically, PARP inhibitors increase expression of type I IFN in

the TME in a cGAS/STING-dependent manner, which in turn

mediates recruitment and activation of effector T cells (119, 120)

and NK cells while reducing the number of myeloid cells (121)

(Figure 1F). Overall, cGAS/STING activation appears to be relevant

for enhancing anti-tumor immunity in the context of HRD cancers

both at baseline and upon DNA-damaging therapies.

3.1.3 cGAS/STING in tumors displaying CIN
or aneuploidy

Chromosome mis-segregation events during mitosis can lead

whole chromosome and chromosome fragments to end up in the

cytoplasm as micronuclei. Rupture of the micronucleus membrane

exposes the DNA in the cytoplasm, activating the cGAS/STING

pathway (122, 123). Mackenzie and colleagues demonstrated that

cGAS quickly localizes to such micronuclei and that ISG genes

including CCL5 and CXCL10 are induced almost exclusively in
Frontiers in Immunology 06
micronuclei-positive cells (69). Indeed, drug-induced CIN triggers

type I IFN, canonical and non-canonical NF-kB and eventually

STAT1 and STAT3 signaling in an autocrine and paracrine manner

(62, 93, 124, 125), extensively reviewed elsewhere (126) (Figure 1G).

While micronuclei appear to be an important hub for cGAS

activation, recent work suggests that the formation of chromatin

bridges prior to micronucleus formation is required to activate the

cGAS/STING pathway (127).

In addition to cells exhibiting ongoing CIN, stable aneuploid

cells also display an inflammatory phenotype. In contrast to euploid

cells, cells with trisomy 21 show a constitutive IFN signature and

enhanced ISG response upon IFN stimulation (128). In fact, there

seems to be a general inflammatory response to the presence of any

extra chromosome as the cGAS/STING/TBK1/IRF3/STAT1 axis

was found to be constitutively active in cells with any trisomy,

presumably due to accumulation of cytoplasmic dsDNA (129).

Furthermore, cells with complex aneuploid karyotypes show

transcriptome signatures that include type I IFN response,

allograft rejection, antigen processing and presentation as well as

activation of NF-kB signaling (6). Another inflammatory

characteristic of CIN and aneuploid cells is increased expression

of SASP-like cytokines, such as IL-1b, CXCL8, CCL2, CCL27, and
TNFs (130). Together these pathways may sustain a chronic

inflammatory phenotype, potentially resulting from cGAS/STING

engagement, which might aid in the clearance of aneuploid and cells

displaying CIN by the immune system.

Conversely, recent work has shown that chronic activation of

cGAS/STING favors tumor growth, specifically in the context of

cancers displaying high levels of CIN. For instance, cGAS/STING

was shown to contribute to increased cancer cell survival through

autocrine IL-6/STAT3 signaling in cells with induced CIN phenotypes

(93) (Figure 1G). Furthermore, cytosolic DNA was shown to promote

metastasis in a cell-autonomous manner via STING/non-canonical

NF-kB activation (62) as well as in a non-autonomous cell manner via

STING-dependent modulation of the immune system (131).

Interestingly, cGAS/STING can lead to the activation of non-

canonical NF-kB signaling without altering IFN signaling, indicating

that cancer cells can eschew type I IFN signaling while benefiting from

cGAS/STING-induced pro-tumor inflammation (62, 131). Collectively,

this work demonstrates that cGAS/STING activation has both anti and

pro-tumorigenic effects in a context-dependent manner. Acute cGAS/

STING activation may lead to cell death, cell cycle arrest, and immune

surveillance, whereas chronic cGAS/STING stimulationmay ultimately

promote survival and initiation of metastasis.
3.1.4 Mitochondrial genomic instability and
cGAS/STING signaling

MtDNA is also replicated over cell divisions and mitochondria

have multiple replication and repair mechanisms to maintain

mtDNA integrity (132–135). Similar to nuclear DNA, defects in

mtDNA repair mechanisms have been associated with increased

malignant potential (136). Furthermore, many cancer types are

thought to harbor driver mutations in the mtDNA (137),

highlighting the role of mitochondrial genomic instability in
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tumorigenesis. Beyond nucleotide mutations, mtDNA is vulnerable

to damage due to its proximity to the mitochondrial electron

transport chain, where reactive oxygen species (ROS) are generated

as byproducts of cellular respiration. Under cellular stress,

mitochondrial damage or mitochondrial dysfunction, mtDNA or

oxidized mtDNA (ox-mtDNA) can exit the mitochondria and

activate cGAS/STING. This triggers inflammatory signaling

including expression of ISGs and the production of type I IFNs

and chemokines such as CXCL10 (68, 138, 139), which may have

intrinsic and extrinsic effects. Additionally, mtDNA has been shown

to contribute to the SASP via activation of the cGAS/STING (140)

and extracellular mtDNA release by senescent cells contributes to an

immunosuppressive TME (141).

It is important to notice that, beyond cGAS/STING, mtDNA

(and mtRNA) can activate a wide range of other inflammation

pathways including NLRP3 inflammasome, RIG-I, TLR9, ZBP1 or

IFI16, described in more detail elsewhere (142). Despite this

evidence, the specific consequences of mtDNA-driven

inflammation within tumors, as well as its impact on the overall

immune environment and response to immunotherapy are yet to be

fully understood. Furthermore, it would be interesting to investigate

whether tumors with high nuclear genomic instability (e.g. CIN)

also exhibit increased mitochondrial genomic instability.

Next to MMRd, HRD or CIN, it would be interesting to

understand how other forms of genomic damage or genomic

alterations such as centromere defects (143), DNA damage at

telomeres (144), chromotripsis or toroidal nuclei affect cGAS/

STING-driven inflammation and immune responses and how

these pathways intersect with each other.
4 Immunogenicity of genomically
unstable cancers

Tumor immunogenicity is the ability of tumor cells to induce a

strong immune response, which can greatly vary between cancer types

and individuals. Key determinants of tumor immunogenicity include

but are not limited to the specific oncogenic drivers (145–147), the

TMB (7) and/or the intrinsic inflammatory phenotype of the tumor

cells (148). How the different types of genomic instability trigger

inflammatory signaling and immune surveillance and how these

pathways are intertwined in tumors with high genomic instability is

described in more detail below.
4.1 Cancers with MMR defects

The genomic instability resulting from MMR deficiency

significantly impacts the TME, the progression of the disease and

the response to (immuno)therapy. In comparison to their proficient

counterparts, MMRd tumors have been consistently reported to have

an inflamed microenvironment with high infiltration of cytotoxic

immune cells, which is correlated with an overall better prognosis

and, importantly, better response to immunotherapy (149–151).
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In the last decade, transcriptional profiles of bulk tumor

samples and single cells from large cohorts of CRCs allowed for

the classification of these tumors in 4 consensus molecular

subgroups (CMS) based on their cellular composition (43, 152).

The first CMS was enriched for MMRd/MSI-high tumors

displaying high TMB and low somatic CNAs (SCNAs). In

comparison to the 3 other CMS, the MMRd-enriched subgroup

shows significantly higher infiltration scores of cytotoxic

lymphocytes and Th1 cells, low infiltration of regulatory T cells,

and high expression of genes encoding for cytotoxic T cell attracting

chemokines, Th1 cytokines, and other cytokines and chemokines

involved in anti-tumor immunity such as IFNs, CXCL13 and IL15

(43, 152). These findings were further substantiated using the

CIBERSORT algorithm in a more recent study (153) and

observed in other MMRd tumor types, including EC (39, 154,

155). Furthermore, MMRd tumors have been shown to generate

systemic robust immune responses (156). The diverse factors

contributing to increased immunogenicity and immune activation

in MMRd tumors are reviewed below.

4.1.1 TMB, neoantigens and CD8+ T cells
MMRd tumors accumulate many mutations in the DNA

sequence, quantified as the TMB (157). This may result in the

production of mutated proteins that can eventually be presented as

(neo)antigens loaded in the Major Histocompatibility Class-I

(MHC-I) complex. MHC-I complexes are expressed on the

surface of all nucleated cells and continuously present the host

proteome in the form of peptides to CD8+ T cells, thus playing a

critical role in the adaptive immune system (158). CD8+ T cells are

MHC-I-restricted, and therefore can only recognize peptides loaded

in the MHC-I. The MHC-I-peptide complexes are scanned by

CD8+ T cells, which mount potent, specific, and long-lasting

immune responses when non-self-peptides are identified (159).

Several studies have shown a very strong positive correlation

between TMB, CD3+, or CD8+ T cell infiltration and favorable

prognosis in many cancer types, particularly in MMRd ones (103,

160–163). In fact, the number of frameshift mutations and the

number of predicted neoantigens correlates with the density of

infiltrating CD8+ T cells and lymphocyte score, respectively (163,

164) (Figure 2). Not only do MMRd tumors contain higher

numbers of tumor-infiltrating T cells, but these T cells also have

higher expression of activation and cytotoxic markers such as IL-

2Ra (165), granzyme B (165, 166), perforin (167), PD-1 and IFN-g
(153, 162, 168, 169). Indeed, single-cell RNA-sequencing

experiments revealed that the T cell compartment is the key

difference between the immune composition of MMRd and

MMRp CRCs (170). In line with previous observations, tumor

infiltrating T cells in MMRd tumors exhibited gene signatures

related to cytotoxicity (granulysin, granzymes, and perforin) as

well as activation (PD-1) consistent with chronic stimulation.

Furthermore, MMRd tumors contain abundant T cells with a

strong CXCL13+ signature, suggesting effector tumor-specific T

cells (170, 171). Similarly, MMRd ECs are enriched in CD8+ T cells

expressing high levels of PD-1, CD39, TIM-3 and CXCL13, which
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define a population of tumor-reactive T cells that was also positively

correlated with the level of the TMB (160) (Figure 2).

The current dogma is that the high TMB drives the

inflammatory and immune activated phenotype. Indeed, pre-

clinical studies have shown that defects in DNA repair trigger

neoantigen generation and promote immune surveillance of tumors

in vivo in a CD8-dependent manner (7, 150). Moreover, the degree

of TMB within MMRd tumors affects their growth rate and

response to ICB (150). More interestingly, in preclinical MMR

heterogeneous tumors, the immunogenicity of MMRd cells was

shown to drive the elimination of MMRp cells within the same local

microenvironment (172). Clinically, TMB or surrogate markers

such as MMRd are often one of the strongest predictors of

response to ICB across cancer types (151, 173–175) and the

degree of TMB and MSI status (MSI-high vs MSI-low) predicts

long-term benefit to ICB (153). However, despite being a relevant

factor, increasing evidence suggests that TMB is necessary but not

sufficient to fully explain the strong anti-tumor immunity towards

cancers with a hypermutated phenotype (176). In studies using

murine lung and colon cancer models, MMRd and the resulting

high TMB were not sufficient to increase the immunogenicity nor

sensitivity of tumors to ICB. Instead, the presence of clonal

neoantigens was shown to be more critical for effective T cell

responses (177). Furthermore, the fact that cGAS or STING-

deficient MMRd cell lines grow faster than the cGAS or STING-

proficient MMRd counterparts in immunocompetent mice
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supports the idea that anti-tumor immunity does not solely rely

on the expression of neoantigens (97). These observations

underscore the importance of (cGAS/STING) inflammatory

signaling and antigen-independent mechanisms of immune

recognition and activation in cancers with MMR defects.

4.1.2 CD4+ T cell anti-tumor immunity
In addition to the high infiltration of cytotoxic CD8+ T cells,

MMRd tumors also show significant infiltration of CD4+ T cells

compared to their MMRp counterparts. Premalignant polyp lesions

of LS patients are densely infiltrated by IFN-g-expressing CD4+ T

cells, suggesting a role for CD4+ T cell recruitment and activation

early during tumorigenesis (167). Similarly, significant CD4+ T cell

infiltration has been observed in MMRd carcinomas, though in

variable proportions. These effects also differ per tumor type: while

in CRC CD8+ T cells are typically the dominant T cell type, MMRd

ECs have higher densities of CD4+ T cells (160). CD4+ T cells more

often localize in the invasive front and express higher levels of PD-1

and IFN-g compared to MMRp tumors (168). Flow cytometry

analysis showed enrichment of IFN-b-expressing CD4+ T cells in

MMRd CRCs (178). Furthermore, these cells were positive for

CXCL13 and co-express high levels of PD-1, CD27, CD39 and

Ki67 (178), suggesting tumor reactivity (179). Indeed, PD-1high

CD4+ T cells isolated from MMRd ECs co-expressed other

activation markers such as CD38, HLA-DR, ICOS, BCL6,

CXCL13 and KI67, were proven to be tumor-reactive T cells and
FIGURE 2

Immunogenicity of MMRd tumors. Frameshifts and SNV eventually result in the expression of neoantigens loaded in the MHC-I complex. Recognition of
neoantigens activates CD8+ T cells and subsequent expression of cytotoxic molecules including granzyme B, IFN-g or perforin, leading to the elimination
of tumor cells. Tumor cells can also express neoantigens loaded on the MHC-II, which can be recognized by CD4+ T cells and initiate a cytotoxic response.
In parallel, CD4+ T cells can also express pro-inflammatory cytokines and chemokines to recruit myeloid and NK cells that contribute to enhance anti-
tumor immunity. Innate gd T cells can target tumor cells via the NKG2D ligand-receptor interaction. High TMB correlates with the presence of TLSs in
the tumor, which are highly organized hubs of immune cells that shape both adaptive and humoral immune responses. In particular, TLSs contain B-cell
producing antibodies that may bind tumor antigens and trigger antibody-dependent cytotoxicity (ADCC). MHC, Major histocompatibility complex; TCR,
T cell receptor; CD, cluster of differentiation; PD-1, programmed-death 1; TLS, tertiary lymphoid structure; Ig, immunoglobulin; CXCL, C-X-C motif
chemokine ligand; CCL, C-C motif chemokine ligand; TNF, tumor necrosis factor; IFN, interferon; M1, macrophage type 1; NK, natural killer; IL,
interleukin; NKG2D, natural killer group 2 D.
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correlated with improved prognosis in ECs with high TMB (160).

Interestingly, CD4+ T cells can drive strong anti-tumor immunity

upon ICB in preclinical models of MMRd tumors with defective or

low expression of MHC-I, which cannot be recognized by CD8+ T

cells (180, 181). Under these circumstances, CD4+ T cells show high

expression of the activation markers PD-1 and CD69, and cytotoxic

molecules such as granzyme B (180) (Figure 2). However, the

mechanisms of CD4+ T cell mediated control of MMRd MHC-I-

deficient tumors remain to be fully elucidated.

Emerging evidence in different models indicates that CD4+ T

cells may play a role in anti-tumor immunity, distinct from their

conventional function as helpers and regulators of cytotoxic CD8+ T

cells (182). A subset of CD4+ T cells can acquire cytolytic function

towards MHC-II-expressing tumor cells (183, 184). MHC-II is

generally expressed by professional antigen presenting cells (APCs)

and is used to present extracellular peptides from pathogens or

tumors to CD4+ T cells. In contrast to CD8+ T cells, CD4+ T cells

are MHC-II-restricted and therefore, they can only recognize

peptides loaded onto the MHC-II complex. It has been reported

that, under certain conditions, tumor cells can also express MHC-II.

Because of the high TMB of MMRd tumors, it could be that

neoantigens are also presented in the context of MHC-II, activating

potent CD4+ T cell anti-tumor immunity. Indeed, CD4+ T cells

isolated from MMRd ECs showed MHC-II-restricted tumor

reactivity to autologous tumor cells (160)(Figure 2). Other work

has shown that CD4+ T cells can target tumor cells independently

of MHC-II by mobilizing or activating myeloid cells and NK cells

(182, 185, 186). Overall, this data suggests that CD4+ T cells have a

prominent cytotoxic role in anti-tumor immunity in MMRd tumors

(including MHC-I proficient ones) more than previously anticipated.

4.1.3 Innate immune cells
As opposed to the adaptive immune system, the role of innate

immunity in MMRd tumors remains largely unexplored. Increased

infiltration of innate gd-like T cells has been reported in someMMRd

CRC cohorts (170, 187) and these cells express higher levels of PD-1

in comparison to MMRp tumors (170). Analysis of MMRd tumors

treated with a combination of anti-PD-1 and anti-CTLA-4 showed a

role for gd-T cells in targeting MMRd tumor cells with defective

antigen presentation potentially via de NKG2D/NKG2DL ligand-

receptor interaction (188). Other studies have found a positive

correlation between MMRd status and infiltration of both

macrophages and NK cells (153, 187). Activated NK cell gene

signatures were also enriched in MMRd tumors (153) and

circulating CD16+ NK cells showed strong upregulation of

cytotoxicity and activation genes in EC MMRd patients responding

to ICB (156). In comparison to non-responders, NK cells from

responding patients express higher levels of granzyme A, EOMES,

and TNF-mediated signaling molecules and were associated with

longer survival (156). Anti-tumor M1-like macrophages were shown

to be predominant in MMRd tumors and had significant prognostic

value (187). A more recent study showed that whereas the abundance

of monocytes and macrophages is similar between MMRp and

MMRd CRC, macrophages from MMRd tumors express more

inflammatory factors, chemokines and immune-activating alarmins
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than their MMRp counterparts (170), potentially contributing to an

immunoreactive microenvironment. However, data remains scarce

and heterogeneous and the precise functional contribution of innate

immune cells in anti-tumor immunity and response to

immunotherapy in the context of MMRd tumors remains to

be elucidated.

4.1.4 Tertiary lymphoid structures (TLSs) and
B cells

An interesting observation is the positive correlation between

neoantigen burden, TMB, and the presence of tertiary lymphoid

structures (TLSs) (189). TLSs are highly organized ectopic lymphoid

structures, mainly comprised of B and T cells, that provide niches for

multiple crosstalk between immune cells. TLSs are thought to shape

antigen-specific immune responses, clonal expansion, and increase

cytokine-mediated signaling (190, 191). The presence of TLSs is a

prognostic factor in several cancer types (192–199), as it is associated

with a protective immunity and correlates with favorable outcomes

both in primary and metastatic disease (190, 195, 197, 198, 200, 201).

Using a TLS gene signature, Lin and colleagues proposed that

neoantigen load and the total TMB correlate with the presence of

TLSs in multiple cancer types, including ECs (189). In line with

these findings, TLSs were more frequent in MMRd and POLE-mut

ECs, and the presence of 1 or more TLSs in these tumor types was a

beneficial prognostic value (189, 202). While the mechanism

underlying this phenomenon is thus far poorly understood, a

contributing factor seems to be the increased presence of B cells

and CXCL13-producing T cells in high TMB tumors (203).

CXCL13 is a B-cell chemoattractant involved in lymphoid

neogenesis and B cell differentiation (204). Workel and colleagues

showed that CXCL13+ T cells are enriched in tumors with a high

TMB, which correlates with the presence of TLSs (203). In

agreement with this, MMRd CRCs display strong TLS signatures

and have a significant presence of CXCL13-expressing T cells

throughout the tumor and CXCL13-expressing follicular DCs in

TLSs (43, 170). Increased presence of TLSs in tumors with a high

TMB may also help improve humoral responses. Indeed, compared

to other EC subtypes, only MMRd ECs showed an increased

abundance of B cell-derived IgA antibodies in the TME. These

antibodies were further shown to increase the expression of

immunostimulatory cytokines such as TNF and IFN, overall

increasing anti-tumor immune responses (199)(Figure 2). In

other cancer types, IgA antibodies bind polymeric IgA receptors

on tumor cells, which in turn enhances tumor targeting by myeloid

and T cells (205). Nevertheless, how exactly the TMB instigates

immune cells to drive the formation of TLSs and how this

contributes to improved survival remains to be fully elucidated.
4.2 Cancers displaying CIN and aneuploidy

The relationship between cancers displaying CIN and the

immune system appears to be very complex. Classification of

CRCs based on transcriptional profiles showed a subgroup

characterized by high numbers of CNAs (43, 152). Despite the
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high genomic instability, this subgroup appears to be

immunologically “cold” in comparison to the other subtypes. A

similar trend is observed in EC, where the TP53mutant subgroup is

characterized by high CNAs, very low immunogenicity and poorer

survival outcomes (39, 206). The observation that tumors with low

CNAs present a more immune active profile and that high CIN/

aneuploid tumors exhibit features of immune exclusion has been

made in preclinical models (207) and other cancer types (208).

Nevertheless, the reasons for this phenomenon remain to be

fully understood.

An interesting study by William and colleagues compared the

immune differences between pre-cancerous lesions and later stages

of cancer development in HPV- head and neck cancers with major

risk SCNAs (209). They found that loss of chromosome 3p, 9p or

17p in pre-cancerous lesions is associated with increased CD3+ T

cell infiltration, being trisomy and tetrasomy in chromosome 7 the

most strongly associated with overall immune cell density.

Interestingly, in later stages of cancer development, the same

SCNAs were associated with reduced T cell infiltration, lower

cytotoxic activity, and poorer prognosis (209). Furthermore,

analysis using TCGA has shown that aneuploid tumors show

more features of immune evasion in comparison to non-

aneuploid tumors (59, 210). This data demonstrates that CNAs

drive a transition from an immune dense to an immune evasive

microenvironment over time, but it also suggests they can elicit an

immune response, at least in the early stages of tumorigenesis.

Subsequent research has shown that acute induction of CIN and/or

aneuploidy increases the immunogenicity of tumor cells in vitro and

in vivo, whereas chronic CIN and the resulting aneuploidy

ultimately leads to immune evasion, which will be described in

more detail further below.

Here, we describe the mechanisms by which immune cells can

recognize cancer cells mainly with acute induction of

aneuploidy/CIN.

4.2.1 Immune recognition of CIN/aneuploid cells
Besides inflammatory signaling, karyotypic abnormalities can

also trigger direct immune recognition mediated by membrane-

bound proteins. Hyperploid tumor cells as well as tetraploid

TP53-/- colon organoids display constitutive endoplasmic

reticulum (ER) stress which results in abnormal cell surface

exposure of calreticulin (CRT) (211, 212). Interestingly, cells with

an extra copy of chromosome 7 did not display ER stress nor

abnormal CRT exposure, suggesting that only a major increase in

chromosome copy number induces enough ER stress and

subsequent CRT surface exposure. Cells with abnormal surface

CRT exposure were able to grow in immunocompromised

Rag2yc-/- mice, but tumor growth was much slower when

injected in immunocompetent mice. Clearance of hyperploid

tumors in immunocompetent mice further protected them against

rechallenge, indicative of immune memory (211). Indeed,

immunosurveillance of hyperploid tumor cells was shown to

involve both CD4+ and CD8+ T lymphocytes as well as type I

and type II IFN (211) (Figure 3). Even though the precise

mechanism for CRT redistribution in the cell surface upon high

chromosome numbers is not well described, it is long known that
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CRT serves as an “eat-me signal” and facilitates phagocytosis of

stressed cells by APCs, including macrophages and DCs (213, 214),

which could explain the findings. In addition, CRT is known to

facilitate MHC-I assembly and folding. Thus, higher levels of CRT

may also result in higher MHC-I expression by aneuploid cells,

increasing their recognition by T cells (215). Finally, a role for

Natural Killer (NK) cells cannot be excluded since the widely

expressed NKp46 receptor has been recently shown to recognize

CRT as a danger-associated signal to eliminate ER-stressed cells

(216). CIN and aneuploidy are also known to induce ER stress,

which may also induce CRT exposure, enhancing the

immunogenicity of such tumor cells (52, 131).

Cultured cell lines with drug-induced aberrant karyotype also

show increased immunogenicity in vitro as a result of enhanced

expression of stress-related DNAM-1 and NKG2D ligands (6, 217).

DNAM-1 (CD226) is broadly expressed by various immune cells,

including NK and T cells, epithelial and endothelial cells, and

through its ligands, CD112 and CD155, mediates cell-to-cell

interactions. The activating NKG2D receptor is mainly expressed

in NK cells, gd-T cells, and CD8+ T cells. NKG2D ligands are a

highly diversified MHC-I-like family of self-molecules poorly

expressed in healthy cells. Binding of the DNAM-1 or NKG2D

ligands to their cognate receptor initiates a signaling cascade that

results in activation, IFN-g, and cytokine release by NK cells. Both

DNAM-1 ligands and NKG2D ligands are lowly expressed at

baseline but can be strongly induced upon viral infection, stress,

senescence, and DNA damage (218, 219). Murine and human

NKG2D and DNAM-1 ligands are upregulated by genotoxic

stress and stalled DNA replication, both known to activate the

DNA damage response (4, 220–222). Moreover, sensing of cytosolic

DNA in the form of micronuclei has been shown to upregulate the

NKG2D ligand RAE1 in murine lymphoma cells in a STING, TBK1,

IRF3 and IFN-dependent manner (223). In human melanomas,

there is a significant positive correlation between cGAS expression

and human NKG2D ligands ULBP1 and ULBP3 (90). This suggests

that not only the cGAS/STING pathway is relevant for the

production of soluble factors to alert the innate immune system,

but it is also involved in the surface expression of danger-associated

signals. Nonetheless, the expression and regulation of DNAM-1 and

NKG2D ligands upon genomic instability remains to be

fully dissected.

In line with previous findings, drug-induced hyperploid cells

upregulate CRT but also DNAM-1 and NKG2D ligands. Primary

human NK cells cocultured with drug-induced hyperploid cell lines

showed increased proliferation, IFN-g production, and enhanced

cytotoxic capacity (217) (Figure 3). Santaguida and colleagues

showed a similar phenotype in cells with drug-induced complex

karyotypes, which in vitro were also preferentially killed by the

NK92 cell line in comparison to their euploid counterparts (6).

NK92 killing of cells with complex karyotypes was further shown to

be dependent on both canonical and non-canonical NF-kB but not

on type I IFN (224) (Figure 3). However, these latter findings

remain to be confirmed in a more physiologically relevant context

involving primary NK cells. In summary, these data indicate that

acute induction of CIN or a high chromosome content can trigger

the expression of activating signals for the rapid elimination of cells.
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Similarly, MPS1 inhibition-induced aneuploidy of the B16 cell

line was shown to increase overall immune infiltration and to favor

macrophage polarization to an anti-cancer M1-like phenotype in

vitro and in vivo (225). Further coculture experiments showed that

macrophages can suppress the growth of aneuploid/CIN tumor

cells in vitro (225). However, a comparison of the TME of aneuploid

tumors at day 5 and day 10 post-injection into mice revealed a shift

from an M1-rich to a pro-tumor M2-like macrophage environment

over time (225). Altogether, this data supports the idea that acute

induction of CIN/aneuploidy increases the immunogenicity of cells

and triggers an immune response that can result in the elimination

of the target cells. However, this increase in immunogenicity is

reduced over time, ultimately preventing immune recognition and

creating a tolerant microenvironment for tumor growth.
5 Genomic instability and
immune evasion

The prevalence of genomic instability in human cancers indicates

that eventually cancer cells and/or their microenvironment become
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tolerant to genomic damage. Owing to its inflammatory nature,

malignant cells with high genomic instability must gain the ability

to reduce inflammatory signaling and suppress a productive immune

response to fully develop into tumors.

Given the immune-stimulatory effects of cytoplasmic dsDNA

and the role of type I IFN in enhancing T cell anti-tumor immunity

(100, 226–229), it would be expected that cancer cells with high

genomic instability would rewire their response to cytosolic DNA to

evade the immune system. Yet, loss of function mutations in either

cGAS or STING account for less than 1% of all cancer types (230),

potentially explained by the tumor-promoting role of this pathway.

The fact that cytosolic DNA can activate the NF-kB cascade without

initiating type I IFN indicates that downstream alterations of cGAS/

STING signaling are preferred and might favor cancer cells (62).

Indeed, dysregulation of the IFN sensing and signaling pathways are

well-known immune evasion mechanism across cancer types and

correlates with poor response and/or resistance to immunotherapies

(231–233). Another common mechanism of cancer immune evasion

is downregulation or complete loss of antigen presentation inMHC-I,

which impairs CD8+ T cell-mediated immune recognition and thus

correlates with poor response to ICB (234). As CD8+ T cells rely on
FIGURE 3

Immune recognition of CIN/aneuploid cells. CIN/aneuploidy trigger a wide range of cellular stressors resulting in the expression of immune activating
ligands at the cell surface. CRT is expressed upon ER stress and facilitates phagocytosis by APCs and cytotoxicity by NK cells via the NKp46 receptor.
CRT is also known to increase expression of MHC-I for the recognition of stressed cells by CD8+ T cells. In parallel, both DNA damage and ER-stress
can upregulate the expression of NKG2D and DNAM-1-ligands, widely known to potently activate NK cells. Finally, secretion of soluble factors by CIN/
Aneuploid cells may contribute to immune infiltration, immune activation and increase expression of MHC-I by tumor cells, altogether enhancing their
recognition by the immune system. CIN, chromosomal instability; IFN, interferon; ISG, interferon stimulated genes; CXCL, C-X-C motif chemokine
ligand; CCL, C-C motif chemokine ligand; MHC, Major histocompatibility complex; TCR, T cell receptor; CD, cluster of differentiation; M1, macrophage
type 1; DC, dendritic cell; NK, natural killer; NKG2D, natural killer group 2 D; DNAM-1, DNAX accessory molecule; CRT, calreticulin; ER, endoplasmic
reticulum; cGAS, cyclic GMP-AMP synthase; STING, stimulator of interferon response cGAMP interactor.
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antigen presentation, cancer cells with deficient MHC-I expression

remain undetected to CD8+ T cells. Increased expression of

inhibitory immune-checkpoint ligands, downregulation of danger-

associated signals, secretion of anti-inflammatory factors, or

modulation of the TME are other mechanisms to circumvent

immune surveillance. These mechanisms are not mutually exclusive

and, in most cases, tightly connected. Below, we summarize the main

mechanisms of immune evasion described specifically in cancers

MMR defects and displaying CIN/aneuploidy.
5.1 Immune escape mechanisms in MMRd

Despite having comparable TMB, the immunogenicity and

immune infiltration of MMRd tumors can be heterogeneous

(34, 235, 236). Accumulating evidence describes a spectrum of

immune infiltration in MMRd tumors ranging from robust

infiltration of cytotoxic immune cells referred as “hot” tumors, to

tumors with none or low density of immune cells, termed “cold”

(236). In fact, MMRd with low immune scores or “cold” had a

similar immune phenotype to MMRp tumors. Genomics and

transcriptomics analysis revealed a subgroup of MMRd CRC

displaying low immune and cytotoxic scores characterized by

KRAS mutations, Wnt/Notch activation, bigger size, distant

metastasis, and early recurrence (235). Furthermore, even though

ICB responses in MMRd cancer patients are remarkably positive,

they are also heterogeneous. For instance, locally advanced MMRd

rectal or colorectal patients achieve nearly 100% complete response

rates to anti-PD-1 (237) or anti-PD-1/anti-CTLA-4 treatment

respectively (238). In contrast, two doses of anti-PD-1 in local

MMRd EC patients yielded major pathological responses in 2/10

patients (239). In the recurrence setting, treatment of MMRd/MSI-H

EC patients with anti-PD-1 resulted in complete responses in 12% of

the patients and partial responses in 46% of the patients (156).

Similarly, a different study reported 48% of objective responses to

anti-PD-1 in advanced MMRd EC (240) and comparable results have

been shown for metastatic CRC (10, 13) and other non-CRC MMRd

tumors (11). These data indicate that between 30 and 60% of patients

do not respond to current immunotherapy strategies, suggesting the

presence of tumor-intrinsic and extrinsic immune evasion

mechanisms that occur during early tumorigenesis and persist

through cancer development, ultimately limiting anti-tumor

immunity and response to immunotherapy.
5.1.1 Disruption of antigen presentation
Antigen presentation plays a pivotal role in CD8-mediated anti-

cancer immunity. Due to enhanced TMB and subsequent neoantigen

generation, antigen presentation might be more relevant in

establishing an inflammatory microenvironment in MMRd cancers

than in other tumor types, increasing the selection pressure to its

inactivation (241). Therefore, MMRd cancers often harbor mutations

in genes involved in antigen processing and MHC-I complex

assembly. Mutations are most commonly found in TAP1 and

TAP2 genes, which are involved in antigen processing; B2M, which

is a scaffold protein necessary for the assembly of theMHC-I complex
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at the cell surface; and human leukocyte antigen I (HLA-I) genes,

encoding for proteins part of the MHC-I complex (34, 153, 156, 158,

163, 241–247). Notably, the majority of these mutations result in loss

of MHC-I function (246). In addition, regulators of HLA gene

expression, NLRC5, and RFX5, are mutated in a significant number

of MMRd CRC, leading to decreased expression of MHC-I in tumor

cells (242, 245) (Figure 4). Although disruptions in antigen

presentation have been traditionally considered a mechanism of

primary and acquired resistance to ICB across cancer types (234),

recent evidence has shown that it is not always the case and that

specific immunotherapy combinations can overcome loss of MHC-I

(185, 188, 248–250), particularly in MMRd tumors (180, 181, 251,

252). Besides MHC-I, between 20-30% of MMRd colorectal

carcinomas show negative or low expression of MHC-II (246, 253,

254), which is used to present antigens to CD4+ T cells. The fact that

MHC-II is lost in a proportion of MMRd tumors indicates a selection

pressure towards reducing the presentation of antigens to CD4+ T

cells (Figure 4). Overall, disruption of direct antigen presentation

from tumors to immune cells in both MHC-I and MHC-II context is

a main mechanism of immune evasion in MMRd tumors.

5.1.2 Alterations in IFN sensing and signaling
Binding of IFNs to their receptor triggers a JAK/STAT-

mediated signaling cascade that results in the inhibition of tumor

growth and promotes apoptosis. Moreover, IFN signaling increases

the expression of MHC-I at the cell surface. Prior studies across

multiple contexts have shown that defective IFN signaling protects

tumors from IFN-mediated apoptosis, reduced MHC-I expression

and reduced CD8+ T cell killing, and is, therefore, a key mechanism

of immune evasion across tumors (233, 255). Loss-of-function JAK1

frameshift mutations are enriched in endometrial and stomach

MMRd tumors, are associated with downregulation of the IFN

response, lower infiltration of immune cells, limited anti-tumor

immunity, and reduced response to ICB (31, 32, 244, 256, 257)

(Figure 4). Conversely, in a cohort of MMRd CRC, JAK1 loss-of-

function mutations were positively associated with better patient

outcome (258) and EC MMRd patients with JAK1 mutations

benefited from anti-PD-1 treatment (156). These opposing results

extend to other cancer types and in vivo studies (259, 260), which

suggest that loss of IFN signaling sensitizes tumor cells to

lymphocyte-mediated cell killing and, more broadly, to

immunotherapy. Several factors could contribute to these

contradictory results. For instance, these studies do not consider

the degree of genomic instability and its consequences, the baseline

level of IFN signaling in tumor cells, and the tissue type. In

conclusion, alterations in IFN sensing and signaling impact tumor

development and response to immunotherapy in a context

dependent manner, highlighting the complexity of the

relationship between IFN signaling and cancer immunity,

reviewed elsewhere (261).

5.1.3 Immunosuppressive TME
The colonic mucosa of LS patients (with and without

carcinoma) is enriched in exhausted CD8+ T cells, FOXP3+ T reg

(262), and high levels of the checkpoint molecules PD-L1 and LAG-
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3, suggesting an early immunosuppressive TME and an early

compromised immune surveillance (167). In fact, MSI-high

tumors have a higher density of FOXP3+ T reg cells compared to

MSS (263, 264). Interestingly, a recent study also found an inverse

correlation between FOXP3+ T reg cells and mature CD208+ DCs,

suggesting local immune evasion by impaired DC maturation

mediated by T reg (264).

MMRd/MSI tumors are also characterized by high expression of

the PD-1/PD-L1 molecules in comparison to MMRp (154, 155, 168).

Histological analysis revealed that checkpoint ligands such as PD-L1

are not only expressed by tumor cells but also by other immune cells

(154, 155), including myeloid cells at the invasive margin (168)

(Figure 4). IFNs, among other inflammatory factors, play a role in

increasing PD-L1 expression. Thus, the presence of IFNs in the TME

could potentially account for the elevated levels of PD-L1 observed in

multiple cell types. In fact, MSI CRCs show the highest expression of

PD-L1 and PD-L2 genes among the CRC subtypes (152).

Side-by-side comparison of MMRd and MMRp tumors using

RNA-sequencing and protein analysis have shown increased
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expression of other immunosuppressive ligands and molecules

such as PD-L2, CTLA-4, LAG-3, TIM-3, TIGIT, LAIR-1, IDO,

IL-10, TGF-b, IL-8 and IL-1b in MMRd tumors (103, 152, 153, 168,

170, 187, 265). In line with this, T cells derived fromMMRd tumors

express high levels of PD-1 and LAG-3 and were enriched in gene

programs associated with exhaustion such as TOX (170)(Figure 4).

Immunosuppressive macrophages and monocytes in MMRd

tumors have been described. In fact, in CRCs these cells have

been shown to express high levels of tumor-promoting factors

(VEGF, EREG) and immunosuppressive molecules (IL-10, TGF-

b). In EC, MMRd tumors with an inflamed or “hot”

microenvironment contain higher number of T reg cells and M2-

like macrophages in comparison to “cold” MMRd tumors (236).

Preclinical models have shown that tumor-associated neutrophils

can also contribute to immune evasion and anti-PD-1 resistance in

MMRd cancers (266). Other studies have reported increased CCL2

expression in MMRd tumors, a chemokine involved in recruitment

of immunosuppressive myeloid derived suppressor cells

(MDSCs) (152).
FIGURE 4

Mechanisms of immune evasion in MMRd tumors. Immune evasion occurs from the selection of clones with more immune evasion features upon an
immune selective pressure or immunotherapy. Tumor cells with low MHC-I and/or MHC-II are preferentially selected for. Loss or downregulation of
antigen presenting complexes can occur via mutations in antigen presentation genes, mutations in regulators of their transcription, or via disruption of
the IFN signalling. Disruption of the IFN signalling generally occurs via mutations in JAK1/2 which in turn result in lower MHC-I expression, lower expression
of ISG, CXCL9 and CXCL10, and resistance to apoptosis. Next to tumor cell intrinsic mechanisms, an immunosuppressive TME can also drive immune
evasion. The TME of MMRd tumors often displays high expression of immune checkpoint ligands that, together with chronic stimulation, result in T cell
exhaustion. In addition, the TME may have high infiltration of M2 macrophages, T reg, neutrophils and MDSCs expressing various immunosuppressive
factors, which may also contribute to lower DC maturation, lower T cell activation and a microenvironment that suppress cytotoxic responses, ultimately
favoring tumor growth. MHC, major histocompatibility complex; IFN, interferons; IFNR, interferon receptor; B2m, B-2-microglobulin; TAP, transporter
associated with antigen presenting; JAK, janus-kinase; HLA, human leukocyte antigen; ISG, interferon stimulated gene; CXCL, C-X-C motif chemokine
ligand; PD-1, programmed death 1; IL-2, interleukin 2; LAG-3, lymphocyte-activation gene 3; TIM-3, T-cell immunoglobulin and mucin-domain containing-
3; PD-L, programmed death ligand; CD, cluster of differentiation; CEACAM, carcinoembryonic antigen-related cell adhesion molecule; CTLA-4, cytotoxic
T lymphocyte-associated protein 4; TIGIT,: T cell immunoreceptor with Ig and ITIM domains; LAIR-1, leukocyte associated immunoglobulin like receptor
1; DC, dendritic cells; T reg, regulatory T cell; FOXP3, Forkhead Box P3; M2, macrophage type 2; TGF-b, transforming growth factor b; VEGF, vascular
endothelial growth factor; EREG, epiregulin; IDO, Indoleamine 2,3-Dioxygenase; CCL2, C-C motif chemokine Ligand 2; MDSCs, Myeloid-derived
suppressor cells.
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Additionally, chronic inflammation can facilitate tumor

progression and compromise response to therapy (267). For

instance, local inflammatory hubs between T cells, myeloid and

malignant cells were specifically found in MMRd but not in MMRp

CRC. Such hubs contained exhausted T cells in close proximity with

myeloid and malignant cells both expressing ISG gene programs

and inhibitory IDO1 and CD38, indicating a negative feedback loop

potentially driven by inflammatory signaling (170). In a different

study, local inflammatory conditions were recently shown to

correlate with poorer response to anti-PD1 in MSI-high CRC

(268). In this study, neutrophil-mediated local inflammation

suppressed T cell activation possibly through the CD80/86-

CTLA-4 axis. Altogether, this suggests that the strongly inflamed

microenvironment driven by defective MMR may also increase the

presence of self-tolerance mechanisms to restrain immune

responses, which may indirectly favor tumor growth (Figure 4).
5.2 Immune escape mechanisms in CIN/
aneuploid tumors

Aneuploidy and CIN correlate with immune evasion, worsened

prognosis, and reduced response to immunotherapy in many

cancer types (59, 269–272). In comparison to cancers with low

CNAs, highly aneuploid tumors are characterized by reduced

inflammatory signatures, reduced gene expression of cytotoxic

lymphocytes, including T and NK cells, and lower ratios of CD8/

T reg and anti-tumor M1/pro-tumor M2 macrophages, indicative

of a more immunosuppressive TME (59, 61, 152). This is also

observed in a genetically engineered mouse model of EMl4-Alk-

driven lung adenocarcinoma. Here, the induction of a CIN

phenotype by Mad2 overexpression increased tumor burden,

promoted recruitment of pro-tumor M2 macrophages and

impaired CD8+ T cell infiltration and NK cell function in

comparison to non-CIN tumors (60).

Immune evasion in tumors displaying CIN is likely to be

achieved by the generation of high karyotype heterogeneity and

the preferential selection of clones with lower immunogenicity or

higher immunosuppressive function upon selective pressure from

the immune system. In fact, recurrent patterns of loss or

amplification of specific chromosome regions containing known

immune regulators have been attr ibuted to reduced

immunogenicity and immune evasion in aneuploid tumors (247).

Below we summarize the main mechanisms of immune evasion

described in cancers with high CIN/aneuploidy.

5.2.1 Dysregulation of the IFN sensing pathway
The most common homozygous deletion across cancer types

involves chromosome 9p21.3 (55, 273), which eliminates the cell

cycle inhibitor CDKN2A/B as well as a type I IFN gene cluster. Loss

of the 9p21 locus has been widely associated with reduced JAK/

STAT, TNFa, and NF-kB signatures, as well as with reduced

expression of CXCL9 and CXCL10 chemokines, reduced CD3+

and CD8+ T cell infiltration, and, importantly, with poor prognosis

and increased resistance to ICB in several cancer types (209, 233,
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273, 274). Genetically engineered cancer cell lines with deletions of

the 9p21 chromosome were shown to form more aggressive and

metastatic tumors in vivo in comparison to cell lines with shorter

9p21 deletions that do not include the IFN cluster (275).

Mechanistically, type I IFN, largely through secretion of IFN-e by

tumor cells, enhances antigen presentation by APCs and generates

more functional CD8+ T cells leading to immune control (275). In

addition, codeletions with the 9p24.1 locus, containing JAK2 and

PD-1 ligands CD274 (PD-L1) and PDCD1LG2 (PD-L2), have been

observed. Loss of JAK2 also contributes to reducing IFN signaling.

In fact, 9p24.1 losses were associated with an immune cold

phenotype with low CD8+ T cell infiltration and reduced

response to anti-PD-1 in head and neck cancer (276).

Because IFN signaling also regulates MHC-I expression in an

auto and paracrine manner, dysregulation of the type I IFN

signaling might also contribute to lower MHC-I expression on

the surface of adjacent aneuploid cancer cells and reduce CD8+ T

cell recognition of tumors. Downregulation of IFN signaling, and

the antigen presentation machinery was observed during the

evolution of high CIN tumors in immunocompetent hosts, but

not in immunodeficient (61) and human CRCs with high CIN

scores generally show lower expression of MHC-I in comparison to

other CRC subtypes (152) (Figure 5).

It is important to note that besides evasion of the immune

system, loss of IFN sensing has also been linked to pro-survival

signals and reduced cell death (277). In a mouse model of renal

carcinoma displaying high levels of CIN, 9p21 negative tumors

spontaneously lose the 16q chromosome (21q in humans) which

contains a region with the IFN receptors (277). In line with these

findings, an in vivo transposon screen identified inactivation STAT1

as one of the main requirements for CIN hematopoietic tumors to

fully develop (210). Both data strongly suggest an evolutionary

pressure towards suppression of both type I and type II IFN

signaling in tumor cells with high levels of CIN. Analysis of

publicly available datasets confirmed that aneuploidy/CIN and

IFN signaling are inversely correlated (210). Collectively, these

studies indicate that reduced IFN signaling and STAT1 activity

favor the survival of aneuploid tumors in multiple ways through

tolerance of CIN, evasion of the immune system, and contributing

to the acquisition of metastatic potential (Figure 5).
5.2.2 Specific chromosome losses or gains
Other chromosome losses have also been related to immune

evasion. For instance, loss of 3p14 or 17p13 is associated with

reduced CD3+ and CD8+ T cell infiltration and reduced immune

cell activation makers, but not with CD68+ cells, a macrophage and

monocyte marker (209). Rooney et al. showed that amplification of

certain genomic regions such as 8p11 and 17p13 were predicted in

tumors with low cytotoxic scores (247). The 8p11 region is next to

IDO1 and IDO2 enzymes which deplete extracellular tryptophan,

creating an immunosuppressive TME (278), thus being a potential

mechanism of immune evasion. High-grade serous ovarian cancers,

heavily driven by CNAs, often show deletion of the genomic region

chr4q35.2 (containing CXCL10 and IL-15 genes, among others)

which in turn correlates with reduced formation of TLSs (279).
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Whereas the presence of TLSs correlates with longer survival,

tumors with 4q loss and therefore less TLSs formation responded,

worse to ICB and showed a worse prognosis (279). Bladder cancers

with loss of the Y chromosome display increased genomic

instability and correlate with worsened response to anti-PD-1 and

poorer prognoses. Deletion of the Y chromosome was shown to

accelerate tumor growth in immunocompetent but not in

immunodeficient mice, indicating that tumors deficient in

chromosome Y were evading the adaptive immune system more

efficiently (280). Loss of the Y chromosome was shown to create a

more immunosuppressive microenvironment with a higher

presence of terminally exhausted CD8+ T cells expressing TOX

and several immune checkpoints such as CD39, TIM-3 and LAG-3.

Furthermore, Y-chromosome-negative tumors were enriched in T

reg and inflammatory PD-L1+ macrophages in both mice and

humans (280). Together, these results demonstrate that loss of

specific chromosome or chromosome regions during tumor

evolution contributes to altered immune cell function and

response to immunotherapy (Figure 5).
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5.2.3 Modulation of the TME
Next to gains and loss of chromosome arms, CIN and aneuploidy

can also orchestrate an immunosuppressive microenvironment for

instance by overexpression of ENPP1, a negative regulator of

extracellular cGAMP (207). By degrading extracellular cGAMP,

ENPP1 prevents paracrine activation of STING and promotes the

accumulation of immunosuppressive adenosine, which are two

mechanisms contributing to immune evasion (207). Indeed, using

mouse models, ENPP1 was shown to reduce immune infiltration of

CD8+ T cells and NK as well as the proportion of PD-1+ CD8+ and

CD4+ T cells while decreasing the CD8/T reg ratio, consistent with an

immunosuppressive TME. Furthermore, ENPP1 was shown to

compromise ICB therapy in mice. In human tumors, not only does

the expression of ENPP1 negatively correlate with immune cell

infiltration, but it is also associated with metastasis (Figure 5).

One of the cellular consequences of CIN and aneuploidy is

proteotoxic stress and subsequent unfolded protein response (UPR)

and ER stress. CIN has been recently shown to drive metastasis in

mouse models by modulating the TME through ER stress and UPR
FIGURE 5

Mechanisms of immune evasion in CIN/aneuploid tumors. A main mechanism of immune evasion in CIN/aneuploid tumors is dysregulation of the IFN
pathway. This can occur in multiple ways including 1) loss of the 9p21 arm, which deletes a IFN gene cluster or loss of 9p24 with deletes JAK2, 2) loss of
the 21q arm which deletes the IFN receptors, 3) reduced STAT1 activity, 4) chronic stimulation of STING which consequently eschews inflammatory
signalling towards NF-kB, while downregulating IFN-signalling. Loss of IFN signalling may also result in decrease MHC-I expression, decrease expression
of ISG, CXCL9/10 and resistance to apoptosis. In parallel, increase NF-kB signalling promotes pro-survival signals and initiation of metastasis. CIN tumors
also overexpress ENPP1, which eventually leads to the accumulation of adenosine in the TME and inhibition of T cell activity. ER stress and specific
chromosome loses or gains can result in an immunosuppressive TME that leads to the accumulation of FOXP3+ T reg, MDSCs, M2 macrophages and
immunosuppressive soluble factors, altogether contributing to a dysfunctional and exhausted T cell state. IFN, interferon; IFNR, interferon receptor; ISG,
interferon stimulated gene; cGAs; cyclic GMP-AMP synthase; STING, stimulator of interferon genes; PD-1, programmed death 1; LAG-3, lymphocyte-
activation gene 3; TIM-3, T-cell immunoglobulin and mucin-domain containing-3; TOX, thymocyte selection associated high mobility group box; CD,
cluster of differentiation; UPR, unfolded protein response; ER, endoplasmic reticulum; NF-kB, nuclear factor kB; ENPP1, ectonucleotide pyrophosphatase/
phosphodiesterase 1; AMP: adenosine monophosphate; GMP, guanosine monophosphate; IL, interleukin; PD-L1, programmed death ligand 1; T reg,
regulatory T cells; TME, tumor microenvironment.
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signaling (131). In comparison to CIN-low tumors, CIN-high

murine tumors display a heavily immunosuppressive TME

characterized by the presence of dysfunctional CD8+ T cells

expressing exhaustion markers such as TOX, PD-1, TIM-3, LAG-

3 and CTLA-4; pro-tumor M2-like macrophages and granulocytic

MDSCs. These effects were shown to be mediated by chronic

activation of STING on tumor cells, which rewires the intrinsic

inflammatory signaling to promote ER stress/UPR signaling while

decreasing pro-inflammatory anti-tumor IFN signaling (131).

Indeed, upon STING knock-down in CIN-high tumors the effects

on the TME were reversed and CD8+ T cells showed higher

expression of IFN-g, granzyme-B and TCF7, indicating a less

exhausted cell state (131). These data align with previous research

indicating that dysregulation of the IFN signaling is key for tumors

with high levels of CIN/aneuploidy. In agreement with these

observations, Xian et al. showed that conditional media from

aneuploid cells displaying UPR favor polarization of bone

marrow-derived macrophages to a pro-tumor M2 phenotype,

which were further shown to inhibit T cell activation in vitro

(269) (Figure 5). Although further research is needed to elucidate

the role of macrophages and macrophage polarization in CIN/

aneuploid tumors, the secretion of soluble factors by aneuploid cells

might highjack macrophages to create an environment that

supports the growth of aneuploid tumors.

Importantly, in comparison to responders, anti-PD-1 refractory

mesothelioma patients showed increased levels of SCNAs, increased

T reg numbers in the tumor, and higher levels of IL-6 and IL-8 in

the plasma (271). Altogether, this data suggests that by secretion of

soluble factors, CIN and aneuploidy rewire the TME and ultimately

succeed in favoring tumor growth, metastasis, and resistance to

therapy by evasion and modulation of the TME.
5.3 The role of p53 in cancers with high
genomic instability

Mounting evidence has shown that mutations in TP53 alter the

inflammatory signaling in tumors and heavily affect the immune

landscape (281). Tumors with high genomic instability, including

CIN tumors, BRCA1/2 mutant tumors, and, in some cases, MMRd

tumors, most often harbor TP53 loss-of-function mutations. Under

normal conditions, activation of p53 following a genomic insult

enhances anti-tumor immunity by engaging cGAS/STING

signaling (282, 283). Therefore, absence of p53 due to mutations

would prevent initiation of cGAS/STING signaling. Furthermore,

some p53-mutants have been shown to interfere with TBK1 and

prevent IRF3-induced signaling downstream of cGAS/STING,

contributing to a decrease in type I IFN (284). In cancer cell lines,

mutant p53 has been shown to increase expression of TNF-a that in

turn sustains pro-tumor chronic NF-kB activation (285, 286). Thus,

mutant p53 may favor pro-tumorigenic cGAS/STING-induced NF-

kB via attenuating type I IFN signaling. Indeed, a recent study

demonstrated that gain-of-function mutations in p53 leads to

genomic instability, activation of the cGAS/STING pathway and

subsequent non-canonical-NFkB while attenuating IFN signaling

(287). This resulted in reduced numbers of tumor-infiltrating
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T cells, granzyme B+ cells and DCs (287), overall leading to

immune evasion and enhanced tumor growth.

Similarly, tumor-specific loss of p53 delayed tumor rejection in a

cell-extrinsic manner by inducing CXCL11, CXCL1, CXCL5, CCL3,

and M-CSF expression to promote the recruitment of MDSCs and T

reg, which were found to attenuate both CD4+ and CD8+ T cell

activation (288). In particular, CD4+ and CD8+ T cells from p53-null

tumor-bearing mice produced less TNF-a, IFN-g and IL-2. Similar

phenotypes were observed in a genetically engineered murine MMRd

lung cancer model with high TMB. Here, deletion of p53 resulted in

decreased numbers of CD3+ and CD8+ T cells, a decreased

CD8+/T reg ratio, and increased numbers of macrophages,

potentially due to increased CCL2 expression by tumor cells.

Furthermore, p53 deficient tumors exhibited lower levels of MHC-I

and therefore impaired T cell function, which could be rescued by

genetic or pharmacological induction of p53 or by stimulation of the

cGAS/STING pathway. Importantly, deletion of p53 was shown to

drive resistance to ICB in murine tumors and to correlate with worse

responses in lung patients treated with anti-PD-1 (146). Similarly,

alterations in other oncogenes such as MYC amplification and KRAS

mutations have also been linked to enhanced immune evasion

features in tumors with high genomic instability (147, 289–292).

Collectively, activation of oncogenes or inactivation of tumor

suppressors have implications that extend beyond being an

oncogenic driver as factors that modulate the inflammatory

phenotype, the TME, and the anti-tumor immune response.
5.4 Intratumor heterogeneity

Finally, a main factor contributing to immune escape and

resistance to ICB in tumors with high genomic instability is

intratumor heterogeneity (ITH). ITH refers to the diversity of

genetic and phenotypic characteristics of cancer cells within a

single tumor. The processes underlying ITH allow individual

cancer cells to continually adapt and fosters the acquisition of

new features that can contribute to immune evasion and resistance

to therapies (293). Some studies have pointed out that sub-clonal

neoantigens that are only present in a minority of tumor cells, fail to

elicit productive T cell responses. As a result, the ability of the

immune system to effectively target and eliminate constantly

changing tumor cell populations is severely compromised. In fact,

ITH is associated with decreased T cell infiltration and poor

survival, whereas a more homogenous tumor composition is

generally predictive of response to ICB (177, 294).
6 Conclusions and outlook

In this review we discussed the multifaceted interplay between

tumor cells with high genomic instability and the immune system,

involving various inflammatory signaling pathways and triggering a

wide range of cellular responses.

Activation of the cGAS/STING pathway initiates a complex

molecular network involving pro- and anti-inflammatory signals.

Which pathways are induced upon cGAS/STING engagement
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1462496
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Requesens et al. 10.3389/fimmu.2024.1462496
appears to be highly dependent on the type of genomic damage, the

source of immunostimulatory DNA/RNA, and its dynamics. While

MMRd- and HRD-induced cGAS/STING mostly results in the

expression of anti-tumor CCL5, CXCL10 and type I IFN; tumors

displaying high levels of CIN seem to direct the cGAS/STING

response towards NF-kB while attenuating type I IFN signaling,

which ultimately promotes pro-metastatic signals and limits anti-

tumor immunity. Understanding the balancing act between pro-

and anti-tumor inflammatory signaling upon cGAS/STING

activation is likely to point the way forward in therapeutic

manipulation of this pathway. Furthermore, it is important to

shed light on the role of other molecular players involved in

sensing self-DNA/RNA, such as the RIG-I/MAVS pathway.

It is also crucial to understand the immunogenic make up of each

genomic unstable cancer subtype. In the context of MMRd, there is a

strong association between TMB, T cell infiltration, a pro-

inflammatory cytokine milieu and favorable outcomes (295).

Nevertheless, the immune microenvironment and the response to

immunotherapy in MMRd tumors can be highly variable, which

underscores the importance of understanding other key determinants

of tumor immunogenicity and/or immune evasion. For instance,

recent findings suggest that the molecular mechanism of MMRd

(germline mutation vs MLH1 promoter hypermethylation) not only

affects the TMB but also shapes the cellular composition and

functional status of the circulating immune cells and the response

to anti-PD-1 (150, 156). Similarly, the immunogenicity and the

response to immunotherapy of breast cancers seem to be different

between tumors with a BRCA1 or a BRCA2mutation (115, 116, 296).

The tissue type also plays an important role: while MMRd ECs and

CRCs exhibit exceptional responses to ICB, brain and pancreatic

MMRd have limited benefit from current immunotherapies (11).

Moreover, affected MS loci are similar between tumors within the

same tissue type, but substantially vary between tissues, indicating

preferential tissue-specific molecular events (32). Likewise, in the

context of immune evasion, human MMRd ECs are enriched in

JAK1/2 mutations, with less frequent mutations in the antigen-

presenting machinery; whereas MMRd CRCs show opposite

patterns, with frequent mutations in genes for antigen presentation

and rarely display alterations in the IFN pathway (32, 297). These

observations implicate additional factors that influence the TME and

anti-tumor immunity beyond simply the MMR (or HR) status (148).

Conversely, despite initially increasing the immunogenicity of

cultured cells and premalignant lesions, CIN/aneuploidy are generally

associated with low immune scores and poor response to

immunotherapy in cancer. The reasons for this phenomenon remain

largely unclear. Firstly, although genomic rearrangements can cause

frameshift mutations, whether CIN generates neoantigens that can

trigger a productive and sustained T cell response remains a matter

of debate. Secondly, recognition of CIN/aneuploid cells by innate cells

and membrane-bound ligand-receptor interactions has been mostly

reported in vitro and data in relevant immunocompetent mouse models

and human tumors is scarce. Furthermore, CIN/aneuploid tumors seem

to generate a highly immune-excluded and immunosuppressive TME
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generally characterized by the presence of T reg and M2-macrophages,

which limit the access and reactivation of cytotoxic immune cells.

Altogether, insights into which aspects of CIN and aneuploidy can

activate an immune response and how this response is selectively

suppressed during tumor evolution is crucial to identifying

therapeutic vulnerabilities in cancers with high CIN/aneuploidy.

From a therapeutic perspective, a single therapy or agent alone

is unlikely to be the solution to the complexity and heterogeneity of

tumors characterized by high genomic instability. Combinatorial

DNA damage inducers or DDR inhibitors that can generate or

enhance an (acute) pro-inflammatory milieu in tandem with

immunotherapies are likely key for successful clinical outcomes.

Such strategies have provided encouraging results in preclinical

models and are currently being tested in clinical trials (298, 299).

In conclusion, from the work described above, it has become

clear that genomic instability and its consequences add a layer of

complexity to tumor biology, anti-tumor immunity, and response

to (immuno)therapy. A deeper understanding of how genomic

instability shapes the immune microenvironment is thus essential

to improve the effectiveness of immunotherapies and select those

patients most likely to benefit.
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65. Lagarde P, Pérot G, Kauffmann A, Brulard C, Dapremont V, Hostein I, et al.
Mitotic checkpoints and chromosome instability are strong predictors of clinical
outcome in gastrointestinal stromal tumors. Clinical Cancer Research. Clin Cancer
Res. (2012) 18:826–38. https://pubmed.ncbi.nlm.nih.gov/22167411/.

66. Shoshani O, Bakker B, De Haan L, Tijhuis AE, Wang Y, Kim DH, et al. Transient
genomic instability drives tumorigenesis through accelerated clonal evolution. Genes
Dev. (2021) 35:1093–109. doi: 10.1101/gad.348319.121
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195. Ladányi A, Kiss J, Mohos A, Somlai B, Liszkay G, Gilde K, et al. Prognostic
impact of B-cell density in cutaneous melanoma. Cancer Immunology Immunotherapy.
(2011) 60:1729–38. doi: 10.1007/s00262-011-1071-x

196. Montfort A, Pearce O, Maniati E, Vincent BG, Bixby L, Böhm S, et al. A strong
B-cell response is part of the immune landscape in human high-grade serous ovarian
metastases. Clin Cancer Res. (2017) 23:250. doi: 10.1158/1078-0432.CCR-16-0081

197. Iglesia MD, Vincent BG, Parker JS, Hoadley KA, Carey LA, Perou CM, et al.
Prognostic B-Cell Signatures using mRNA-Seq in Patients with Subtype-Specific Breast
and Ovarian Cancer. Clin Cancer Res. (2014) 20:3818. doi: 10.1158/1078-0432.CCR-13-
3368
Frontiers in Immunology 22
198. Kroeger DR, Milne K, Nelson BH. Tumor-infiltrating plasma cells are
associated with tertiary lymphoid structures, cytolytic T-cell responses, and superior
prognosis in ovarian cancer. Clin Cancer Res. (2016) 22:3005–15. https://clincancerres-
aacrjournals-org.proxy-ub.rug.nl/content/22/12/3005.

199. Mandal G, Biswas S, Anadon CM, Yu X, Gatenbee CD, Prabhakaran S, et al.
IgA-dominated humoral immune responses govern patients’ Outcome in endometrial
cancer. Cancer Res. (2022) 82:859–71. doi: 10.1158/0008-5472.CAN-21-2376

200. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, et al.
Tertiary lymphoid structures improve immunotherapy and survival in melanoma.
Nature. (2020) 577:561–5 https://www.nature.com/articles/s41586-019-1914-8.

201. Qin M, Hamanishi J, Ukita M, Yamanoi K, Takamatsu S, Abiko K, et al.
Tertiary lymphoid structures are associated with favorable survival outcomes in
patients with endometrial cancer. Cancer Immunology Immunotherapy. (2021) 71:1–
12. doi: 10.1007/s00262-021-03093-1

202. Horeweg N, Workel HH, Loiero D, Church DN, Vermij L, Léon-Castillo A,
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