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Aldo-keto reductase family 1 member B10 (AKR1B10) is a member of the AKR1B

subfamily. It is mainly found in cytoplasm, and it is typically expressed in the

stomach and intestines. Given that its expression is low or absent in other tissues,

AKR1B10 is a potential diagnostic and therapeutic biomarker for various digestive

system diseases. Here, we review recent research progress on AKR1B10 in

digestive system tumors such as hepatocellular carcinoma, gastric carcinoma,

colorectal carcinoma, pancreatic carcinoma, oral squamous cell carcinoma,

laryngeal squamous cell carcinoma, cholangiocarcinoma, and nasopharyngeal

carcinoma, over the last 5 years. We also discuss the current trends and future

research directions for AKR1B10 in both oncological and non-oncological

diseases to provide a scientific reference for further exploration of this gene.
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1 Introduction

AKR1B10 is an NADPH-dependent reductase belonging to subfamily 1B of the aldo-

keto reductases (AKRs). It was first discovered by Professor De-Liang Cao in 1998 (1).

AKR1B10 encodes proteins that catalyze the reduction of aldehydes, ketones, and quinones.

It interacts with heat- shock protein 90a and regulates lipid synthesis via acetyl coenzyme A

carboxylase a (ACCa), thereby playing a central role in cancer lipid metabolism (2).

According to RNA-sequencing and immunohistochemistry (IHC) analysis, the enzyme

is highly expressed in the stomach, small intestine, and colon, but its expression is

downregulated in gastrointestinal (GI) cancers and inflammatory bowel disease (3–7). At

the same time, it is increased in normal tissues such as the liver, thymus, and prostate. Its

expression is upregulated in the presence of cancer, nonalcoholic fatty liver disease

(NAFLD), and certain skin diseases (8–11). Further, the expression of this enzyme is

elevated in cancer cells that are resistant to clinical anticancer drugs such as ethoxyquin,
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doxorubicin, and lipopolysaccharide (12–14), suggesting a potential

association between the AKR1B10 expression and resistance to

chemotherapy. This underscores the growing evidence that

AKR1B10 could be a promising target for the diagnosis and

treatment of tumors and other related diseases (11).

In this paper, we review the research progress on AKR1B10 in

digestive system tumors in the last 5 years, and provide a reference

for the subsequent research of AKR1B10 in more diseases.
2 Structure and function of AKR1B10

2.1 AKR1B10 structure

Based on sequence similarity, the AKR family is divided into 16

major classes, namely, AKR1-AKR16, with each number

representing a different class, and each family is further divided

into subfamilies based on >60% sequence homology with each

other. There have been 15 AKR family members identified thus far,

including AKR1A, AKR1B, AKR1C, AKR1E, AKR6A, and AKR7A

subfamilies. Among them, AKR1B1, AKR1B10, and AKR1B15 in

the AKR1B subfamily have been widely studied for their role in

tumors (11–15). AKR1B10 shares more than 68% homology with

AKR1B1 and up to 91.5% homology with AKR1B15 (1, 16, 17), so

AKR1B10 is often compared to both in studies of enzymatic

function and inhibitors.

Structurally, AKR1B10 contains beta strands, alpha helices, and

turn features, as well as a macrocycle that controls substrate

specificity and a conserved cofactor- binding domain. A total of

35 posttranslational modifications have been predicted for

AKR1B10, including phosphorylation modifications at 16 sites,

acetylation modifications at 10 sites, ubiquitination modifications

at 6 sites, nitrosylation modifications at 2 sites, and glycosylation

modification at 1 site (18–20) (Figure 1). However, further

exploration is needed to determine the actual function of these

modification sites.
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2.2 AKR1B10 function

AKR1B10, also known as AKR1B11, exhibits catalytic activity

for all-trans retinaldehyde, H+, and NADPH (21, 22). It facilitates

the reduction of aldehydes and ketones carboxylic compounds,

thereby mitigating damage to proteins and DNA. This

detoxification helps to maintain cellular homeostasis and thereby

protects the cells. Its potent retinaldehyde reductase activity can

indirectly influence cell differentiation (23). This enzyme also

interacts with ACCa to inhibit apoptosis by upregulating ACCa
expression to promote lipid synthesis, reduce mitochondrial

membrane damage, and inhibit cytochrome c release and caspase-

3 activation (24, 25).
3 AKR1B10 and tumors of the
digestive system

The development of tumors necessitates a restructuring of

cellular metabolism, which underscores the significance of

understanding the role of metabolism in tumorigenesis. Metabolic

alterations are a notable hallmark of tumors and can profoundly

affect various functions of both normal and cancerous cells,

including cell proliferation and migration. Progression of

gastrointestinal (GI) tumors is closely related to metabolism; thus,

metabolomics studies offer fresh perspectives on the metabolic

mechanisms of GI tumors. The principal metabolic changes

associated with tumors encompass abnormal uptake of glucose

and amino acids, and the generation of essential substances and

NADPH through metabolic pathways (26). Functioning as an

NADPH-dependent reductase, AKR1B10 assumes a critical role

in metabolic activities, such as lipid synthesis, transport, oxidation,

drug metabolism, and cellular signaling. Further, AKR1B10 stands

as a key participant in the cellular antioxidant defense mechanism,

essential for maintaining intracellular redox homeostasis via

reduction reactions (11, 25).
FIGURE 1

AKR1B10 sequence and PTM sites. The amino acid sequence of AKR1B10 was obtained from the UniProt database (https://www.uniprot.org/), and
the PTM sites were obtained from the PhosphoSitePlus database(https://www.phosphosite.org/) and PTMcode 2 database(PTMcode 2:
Home (embl.de)).
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The mRNA and protein levels of 12 known AKR family members,

namely, AKR1A1, AKR1B1, AKR1B10, AKR1B15, AKR1C1,

AKR1C2, AKR1C3, AKR1C4, AKR1D1, AKR1E2, AKR7A2, and

AKR7A3, have been evaluated by next-generation sequencing (NGS)

and liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Most of the AKR isoforms were found to be highly expressed in the

duodenum and jejunum regions, and the expression declined toward

the rectum, with AKR1B10 having the highest expression level (27–29).

Consequently, conducting thorough research into the connection

between AKR1B10 and GI tumors holds significant promise (Figure 2).
3.1 AKR1B10 and liver cancer

Lipids are mainly processed and metabolized in the liver. Under

normal conditions, the liver can break down excess cholesterol,

triacylglycerols, and glycerophospholipids, and re-release them into

the blood circulation. Liver processes that act on lipids include fatty

acid synthesis (FAS) and fatty acid oxidation (FAO). When the liver

function is affected by the environment, drugs, genetics, and

diseases and cannot synthesize and metabolize lipids properly,

excess lipids accumulate in the liver, affecting its function and

gradually forming fatty liver, then cirrhosis, and ultimately

developing into hepatocellular carcinoma (HCC) (30–33).

HCC is the most prevalent form of liver cancer. It is known for

its aggressive nature, and ranks among the top three causes of

cancer-related deaths globally (34). Despite advancements in

diagnostic techniques and surgical treatments, the 5-year survival
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rate for patients with advanced HCC remains low, which is largely a

consequence of the challenge of early detection (35).

It has been demonstrated that HCC can evolve from NAFLD,

and AKR1B10 expression is upregulated in NAFLD, which is

consistent with AKRB10 expression in HCC cells (9). In HCC,

changes in lipid metabolic processes, such as FAS and FAO, can

affect cancer cell proliferation compared with normal tissues.

Specifically, upregulation of FAS may provide cancer cells with

lipids required for the construction of new cell membranes, while an

increase in FAO may provide additional energy to support rapid

proliferation of cancer cells. Consequently, inhibiting the FAS and

FAO processes may reduce the energy supply to HCC cells, and

limit their growth (36). Blocking AKR1B10 expression leads to cell

cycle arrest and impaired cell proliferation, indicating a potential

tumorigenic role for AKR1B10 in promoting cell growth (37).

The results of a meta-analysis have shown that high expression of

AKR1B10 predicts a favorable prognosis after hepatectomy (38).

AKR1B10 has an overall sensitivity and specificity of 78% and 85%,

respectively, for diagnosing HCC, and it appears more sensitive than

alpha-fetoprotein (AFP) for detecting early-stage HCC. Further,

combining AKR1B10 and AFP shows higher sensitivity and

specificity for HCC diagnosis compared with using AKR1B10 or

AFP alone (38). However, in the current state of research, AKR1B10

has not been widely used as a predictive test for HCC compared to

AFP in clinical applications, and further comprehensive studies or

large randomized controlled multicenter trials are required to delve

deeper into the clinical significance of AKR1B10 in patients

with HCC.
FIGURE 2

AKR1B10 expression in digestive tract tumors. ↑: Upregulation of AKR1B10 expression; ↓: Downregulation of AKR1B10 expression.
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The researchers used the DepMap dataset to analyze AKR1B10

by gene effector CRISPR (DepMap Public 22Q4 + Score, Chronos)

and found that upregulation of AKR1B10 expression is associated

with poorer overall survival, and that HCC cell proliferation,

migration, and invasion are influenced by AKR1B10 activity (39).

Mechanistically, AKR1B10 increases the expression of cell

proliferation and the EMT-associated proteins CCND1, E-cadherin,

N-cadherin, vimentin, and Twist1. AKR1B10 knockdown results in

decreased levels of PI3K and AKT phosphorylation, suggesting that

AKR1B10 promotes proliferation, migration, and invasion of HCC

cell through the PI3K/AKT signaling pathway, and this pathway has

an important reference value for the assessment of HCC (39–43).

According to Liu et al., during the progression of HCC, AKR1B10

may be expressed as a compensatory mechanism to protect

hepatocytes from oxidative stress (44). This upregulation could be a

response to chronic liver disease and hepatocarcinogenesis, while

the absence of AKR1B10 might accelerate hepatotoxin and

inflammation-related hepatocarcinogenesis. Therefore, rather than

being a driver of malignant transformation during HCC

development, increased AKR1B10 expression in HCC may be a

compensatory mechanism.
3.2 AKR1B10 and gastric cancer

Gastric cancer (GC) is a widespread malignant tumor with a

grim prognosis (45). The expression of AKR1B10 in GC tissues is

markedly lower than that in normal gastric tissues. In addition,

clinicopathological factors suggest that increased AKR1B10

expression predicts a poor prognosis in patients with GC

undergoing resection (46).

The proliferation and spread of GC cells are driven by the

abnormal activation of epithelial-mesenchymal transition (EMT),

and EMT can be activated by factors such as TGF-b and

mesenchymal markers (Slug, vimentin, and a-SMA), which

promote cancer development. Selective inhibition of heparinase

with suramin can inversely inhibit EMT activation and thereby

retard the proliferation and migration of GC cells (47, 48). Notably,

in early GC, all of the water-soluble compounds and volatile

metabolites explored were found to be lipids, hinting at a close tie

between abnormal lipid metabolism and GC development (49).

Furthermore, AKR1B10 plays a role in lipid synthesis, cellular

metabolism, and fatty acid oxidation. Investigating the link

between AKR1B10 and GC is an intriguing area of study (25). It

has been confirmed that AKR1B10 exerts a regulatory influence on

EMT, which is inversely linked to with tumor volume, infiltration

depth, and metastasis. Moreover, its positivity serves as a predictor

of a better 5-year survival rate for patients with GC (50).

However, in contrast to the above results, Ahmed et al. verified

that AKR1B10 was expressed predominantly in the cytoplasm of GC

cells and that positive expression of AKR1B10 was associated with

lymph node metastasis and poorer tumor response to neoadjuvant

chemotherapy, which indicated a poorer prognosis for the patient (7,

46). A meta-analysis has shown that AKR1B10 expression is actually

not associated with overall patient survival (51). These differences

may be related to a number of factors, including the different reagent
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products, antibody brands, and sample sources used by investigators

to validate in vivo, and in vitro experiments. Specifically, reagents

from different manufacturers may vary in purity, activity, and

stability, all of which may affect the consistency and reproducibility

of experimental results. Similarly, antibodies from different brands

may differ in specificity and affinity, which in turn may affect the

accuracy of the experiment. In addition, the diversity of sample

sources, such as genetic backgrounds, pathological states, and

environmental exposures of different individuals, may also have a

significant impact on experimental results. Therefore, to ensure the

reliability and validity of experimental results, we suggest that these

potential sources of variation should be fully considered in

experimental design and data analysis, and appropriate measures

should be taken to control and correct the effects of these variables.

Integrin subunit alpha 5 (ITGA5) is involved in cell surface

adhesion and signaling. It is upregulated in GC tissues and cells.

Salvage experiments have suggested that AKR1B10 may act as a

potential tumor suppressor in GC, inhibiting the migration,

invasion, and adhesion of GC cells by modulating ITGA5

expression (52). However, the regulatory mechanism of AKR1B10

on ITGA5, as well as how both affect the proliferation and

migration of GC cells, remain unproven, and the available data

are insufficient to support further studies.

The feasibility of targeting AKR1B10 is unclear due to the

differences in its expression in GC and other tumors, as well as the

discrepancies in findings between different investigators (35, 53).

Few studies have confirmed the value of AKR1B10 in diagnosis, and

prognosis prediction, and in-depth mechanistic studies are lacking.

Therefore, it is important to further investigate whether AKR1B10

can be a potential target for GC treatment.
3.3 AKR1B10 and colorectal cancer

Colorectal cancer (CRC) is a prevalent and lethal form of cancer

worldwide. Its intricate mechanisms hamper the effectiveness of

treatments for advanced cases. Therefore, gaining insight into the

mechanisms underlying CRC occurrence and progression is crucial

for identifying new treatment targets. Previous studies have

indicated that unusually low levels of AKR1B10 in the GI tract

are closely associated with cancer development (4, 54). Yet, the role

of AKR1B10 in CRC development remains poorly understood,

making the exploration of its role and molecular mechanism in

CRC an active area of research.

The gene AKR1B10 is typically found in intestinal epithelial cells,

but its expression is low in the early stages of CRC and increases as the

cancer progresses. Both in vitro and in vivo functional assays have

shown that AKR1B10 expression is downregulated in CRC and is

linked to the patients’ clinicopathological status (3). Deletion of

AKR1B10 has been found to enhance the proliferation and

migration of CRC cells in vitro, whereas overexpression of AKR1B10

has the opposite effect. In addition, patients with high AKR1B10

expression have been shown to have longer overall survival (6).

Fibroblast growth factor 1 (FGF1) plays a critical role in

maintaining lipid and metabolic homeostasis, and it exhibits anti-

inflammatory effects (55, 56). This suggests that FGF1 could
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potentially affect tumor progression through its influence on

metabolic disorders. Further, AKR1B10 shows significant

association with FGF1 gene and protein levels. In vivo

experiments have shown that downregulation of AKR1B10

promotes tumor growth and increases FGF1 expression,

suggesting that AKR1B10 may play a tumor-suppressive role in

CRC by decreasing the level of FGF1 (3). In vitro studies have also

demonstrated that ectopic expression of AKR1B10 significantly

inhibits the proliferation, clone formation, and migration of CRC

cells (54).

Liu et al. demonstrated for the first time that the expression of

AKR1B10 significantly correlated with the TNM stage and clinical

stage of human colon cancer. Moreover, they found that AKR1B10

promoted the production of IL-1a and IL-6 in colon cancer cells

through the activation of NF-kB, and the proliferation of cancer

cells was inhibited by knocking down AKR1B10, which contrasts

some previous findings (57). This may be closely related to

AKR1B10’s aldose reductase activity, whose protumorigenic

effects are attenuated upon inhibition of the inflammatory factors

IL-1a and IL-6, thereby inhibiting tumor cell growth. The latest

study has shown that AKR1B10 was positive in only 12.16% of the

tumor tissues of 592 patients with CRC, while AKR1B10 was not

detected in 63.13% of tumor tissues, so it is speculated that

AKR1B10 may be an oncogenic factor rather than a prognostic

indicator for CRC (58).

In the examination of AKR1B10 in relation to autophagy, it has

been discovered that when AKR1B10 interacts with GAPDH, it can

trigger an NADPH-dependent reduction reaction, leading to the

reduction of GAPDH. This prevents the translocation of GAPDH

into the nucleus, thereby impeding autophagy progression during

glucose deprivation. This study implies that not only does

AKR1B10 hinders the nuclear translocation of GAPDH by

interacting with it, but it also obstructs the conversion of normal

cells to cancer cells by suppressing the downregulation of autophagy

through AMPK phosphorylation (59). These findings offer valuable

insights into the regulation of autophagy in human colon cancer.

Further, there is evidence suggesting that elevated levels of

arachidonic acid (AA) can disrupt the gut microbial balance,

thereby potentially contributing to the development of CRC. The

drug inhibition assay revealed that AA had an inhibitory effect on

AKR1B10 with an IC50 value of 1.1 mM, and was able to effectively

inhibit AKR1B10-mediated 4-oxo-2-nonenal metabolism (60). In

previous studies, CRC has usually been associated with

inflammation and intestinal flora, which are also closely related to

metabolic processes. There are no data to support whether

AKR1B10 affects the development of CRC through changes in the

inflammatory microenvironment or flora, suggesting that we can

start from this direction in our future work to reveal the role of

AKR1B10 in the inflammatory microenvironment and the

intestinal flora of CRC.
3.4 AKR1B10 and pancreatic cancer

Risk factors for pancreatic cancer (PC) are closely associated

with lifestyle, diet, environment, genetic factors, and genetic
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environmental interactions (61). Commonly recognized risk

factors for PC development include smoking and chronic

pancreatitis (62, 63). Excessive accumulation of nutrients and

metabolites can also disrupt the body’s metabolic environment,

potentially leading to direct carcinogenic effects (64, 65).

Overexpression of AKR1B10 has been identified in smoking-

related cancers, such as lung cancer. Since the development of PC

is closely related to smoking, and AKR1B10 can be activated by

tobacco-associated oncogenic transcription factors (66, 67), it has

been hypothesized that AKR1B10 expression is upregulated in

human PC, which was confirmed by immunohistochemical (IHC)

results (68, 69).

Upon evaluating the expression and enzymatic activity of

AKR1B10 in isolated human PC samples, it has been observed

that AKR1B10 expression is notably increased in pancreatic

precursor lesions and invasive adenocarcinomas. Knocking down

AKR1B10 in PC cells results in the inhibition of the Kras and its

downstream Kraf/MEK/ERK pathway, along with the upregulation

of E-cadherin expression (70). This leads to the suppression of the

proliferation, invasion, and metastasis of PC cells. In summary, the

downregulation of AKR1B10 expression is linked to heightened

apoptosis, decreased protein prenylation, and inhibited Kras and its

downstream effectors activation. Targeting protein prenylation,

including AKR1B10 and Kras and its downstream pathways, and

inducing apoptosis hold substantial promise for future

research (68).

Checkpoint Suppressor 1 (CHES1) is a member of the forehead

box (Fox) family of proteins that inhibit PC proliferation and

invasion by regulating cellular senescence. Proteomic analyses

have shown that CHES1 inhibits AKR1B10 expression, thereby

suppressing PC cell activity and senescence phenotype (71). This

not only suggests the feasibility of inhibiting PC progression from

the CHES1/AKR1B10 signaling pathway, but also provides new

ideas for cellular senescence therapies.
3.5 AKR1B10 and oral cancer

There are various histological types of oral cancer, such as

squamous cell carcinoma derived from epithelial cells,

adenocarcinoma from salivary glands, lymphoma from tonsils,

and melanoma from melanin-producing cells. Oral squamous cell

carcinoma (OSCC) is the most prevalent tumor, accounting for

approximately 90% of oral cancers (72). In Southeast Asia, OSCC is

primarily linked to the use of tobacco, alcohol, and particularly betel

nut (73).

There is a significant correlation between AKR1B10 and tumor

size, perineural infiltration, and recurrence in OSCC (74). Elevated

expression of AKR1B10 is associated with poor overall survival in

OSCC, suggesting its potential as a prognostic marker (51). High

levels of salivary AKR1B10 may also be linked to disease

progression and poor prognosis in OSCC (75). Combining

AKR1B10 immunostaining with clinicopathological features

enables the categorization of patients into different risk groups,

which could aid in better clinical management of OSCC and the

identification of effective targeted therapies for AKR1B10-
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associated malignancies (74). In addition, metabolomics analysis

has revealed potential disruptions in amino acid and lipid

metabolism in patients with OSCC, emphasizing the link between

OSCC and AKR1B10 (76). However, further research is needed to

delve into the molecular mechanisms underlying the role of

AKR1B10 in OSCC.
3.6 AKR1B10 and laryngeal cancer

Laryngeal squamous cell carcinoma (LSCC) originates from the

epithelial tissue of the laryngeal mucosa and accounts for 90% all of

laryngeal cancers (77, 78). Despite advancements in surgery and

radiotherapy, the mortality rate of LSCC remains high.

Consequently, there is a growing focus on exploring the

molecular mechanisms involved in LSCC development and

devising new therapeutic approaches.

Liu et al. observed high expression of AKR1B10 in LSCC, with

its level of expression being inversely associated with differentiation

and positively correlated with tumor size (79). Moreover, AKR1B10

has been found to be overexpressed in Hep-2 laryngeal carcinoma

cells, and inhibiting its activity and expression in these cells with

oleanolic acid resulted in inhibited proliferation, migration, and

invasion (79). The microenvironment of LSCC is also influenced by

glucose metabolism, lipid metabolism, and nitrogen metabolism

(80–83). Thus, it is plausible that AKR1B10 expression is linked to

LSCC development, and it stands as one of the potential prognostic

indicators for the condition. However, the existing studies on

AKR1B10 in LSCC are limited, and further studies with an ample

number of samples are required to quantify AKR1B10 expression at

the tissue level for a more comprehensive understanding of how

AKR1B10 influences the phenotype of LSCC.
3.7 AKR1B10 and biliary cancer

Cholangiocarcinoma (CCA) is a relatively rare type of cancer

within the digestive system, but it is the most common aggressive

malignant tumor of the biliary tract. It is closely associated with

metabolism and is the second most prevalent primary malignant

tumor of the liver, following HCC. CCA mainly originates from

the epithelium of the bile ducts and can affect the entire biliary tract

(84, 85). Changes in amino acid and lipid metabolism during the

development of CCA provide ample nutrients for the growth and

spread of cancer cells (86). This underscores the close relationship

between CCA and metabolism. Diagnosis of CCA is often delayed

due to the lack of obvious clinical symptoms, resulting in many

patients having reached advanced stages at the time of diagnosis.

Limited understanding of the molecular mechanisms of CCA

further restricts early diagnosis and treatment.

According to the IHC analysis, AKR1B10 expression is

upregulated during the middle and early stages of high

differentiation, and downregulated in the later stage of low

differentiation in CCA (87). This indicates that AKR1B10 could

serve as a valuable marker for CCA proliferation and differentiation.

Cai et al. revealed an upregulation pattern of AKR1B10 expression
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and its oncogenic effects in CCA. Their investigation of genes

associated with AKR1B10 led to the discovery that the tumor-

promoting function of methyltransferase 3 (METTL3) relied on the

N6-methyladenosine (m6A) modification of AKR1B10. Further,

they found that the knockdown of AKR1B10 reversed the tumor-

promoting effects induced by METTL3 overexpression (88). These

findings open up new avenues for future studies on the role of

AKR1B10 in tumors.
4 AKR1B10 inhibitors

The differential expression of AKR1B10 in tumor and normal

tissues has prompted the exploration of its role in tumor therapy.

The quest for effective AKR1B10 inhibitors has the potential to

enhance the efficacy of chemotherapy and open up new prospects

for clinical cancer treatment. These inhibitors can be broadly

categorized into four groups, namely, aldose reductase inhibitors

(ARIs), endogenous substances, and natural and chemically

synthesized sources (89). Among natural inhibitors, frangula

emodin, aloe emodin, frangulin A, and frangulin B have

demonstrated superior inhibition of AKR1B10 compared with

AKR1B1, with IC50 values falling within the low micromolar

range (3.5-16.6 mM) (90). Oleanolic acid, a triterpenoid, stands as

an earlier and widely used natural inhibitor, exhibiting higher

selectivity for AKR1B10 compared with AKR1B1, potentially

attributed to the nonconserved residues Val301 and Gln303 in

AKR1B10 (91). In addition, the aldose reductase inhibitor

epalrestat, despite its potential for causing DNA damage, when

combined with drugs such as sorafenib and doxorubicin, enhances

the sensitivity of cancer cells to the drug (92, 93). 7-Hydroxy-2-oxo-

2H-chromene-3-carboxylic Acid [3 (4-Fluorophenyl) propyl]

amide (HCCFA) demonstrates more stable inhibition among

chemosynthetic inhibitors (94–96). Moreover, in Ejaz’s computer

simulation study, two quinolones, namely, quinine and quinidine,

have been anticipated to be potential AKR1B10 inhibitors (97).

Overall, the prediction of small molecule drugs targeting AKR1B10

through network pharmacology, molecular docking, and molecular

dynamics simulation stands as a promising approach for screening

potential inhibitors. Experimental validation in tandem with the

screening results will provide a reliable scientific reference for new

drug development (Table 1).
5 Conclusions

AKR1B10, one of the major members of the aldo-keto reductase

family, has its gene located on chromosome 7q33 and consists of

316 amino acids, including a total of 13846 bases (100). AKR1B10 is

involved in a variety of physiological activities, such as

detoxification, and retinoic acid/retinol metabolism, and

influences cell survival through the regulation of lipid synthesis,

mitochondrial function and oxidative status, and carbonyl levels

(101–103) (Figure 3). Since its discovery in 1998, AKR1B10 has

been investigated as a potential biomarker in a number of

oncological diseases, including breast, lung, endometrial, bladder,
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TABLE 1 Some AKR1B10 inhibitors, and their drug half-inhibitory concentrations (IC50), and chemical structural formulas.

Drug
IC50(mM)

AKR1B10 AKR1B1
Structure References

Frangula emodin 3.47 >50 (90)

Aloe emodin 16.6 >50 (90)

Frangulin A 5.73 >50 (90)

Frangulin B 5.45 >50 (90)

Oleanolic acid 0.090 124 (11, 91)

Epalrestat 0.33 0.021 (11, 98)

HCCFA 0.0035 0.277 (11, 99)
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and renal cell carcinomas, as well as in a number of chronic

diseases, such as alcoholic hepatitis, NAFLD, and benign prostatic

hyperplasia (40, 104–110). This paper reviews the research progress

on AKR1B10 in liver, gastric, colorectal, pancreatic, oral, laryngeal,

and bile duct cancers, which are digestive tumor diseases, and

emphasizes that, except for the downregulation of AKR1B10

expression in GC and CRC, AKR1B10 is overexpressed in the rest
Frontiers in Immunology 08
of the solid tumors, and it thus has potential as a diagnostic and

prognostic indicator in all of these solid tumors.

Genome-Wide Association Studies (GWAS) studies have

confirmed that HCC cells are significantly more dependent on

AKR1B10, an enzyme that plays a crucial role in regulating the

proliferation and migration of HCC cells. Importantly, AKR1B10

exhibits a high degree of specificity in HCC, which provides a
FIGURE 3

Mechanism of AKR1B10 in digestive system tumors. AKR1B10 can play a role in digestive system tumors by participating in lipid synthesis, oxidative
stress, and epithelial mesenchymal transition. An upward arrow indicates an increase in content and a downward arrow indicates a decrease
in content.
FIGURE 4

Selected signaling pathways regulated by AKR1B10. AKR1B10 promotes IL-1a and IL-6 production in colon cancer cells by activating the NF-KB signaling
pathway. Silencing the expression of AKR1B10 can regulate the Kras-E-cadherin pathway and inhibit the proliferation, invasion and metastasis of
pancreatic cancer cells, and reduce the phosphorylation level of PI3K and AKT to promote the proliferation, migration and invasion of HCC cells.
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theoretical basis for the development of specific inhibitors targeting

AKR1B10, which are expected to improve patients’ quality of life by

producing only minor toxicities in the treatment of HCC (111). In

addition, data from large cohort studies further support the

diagnostic value of AKR1B10 as a potential HCC serum marker

superior to conventional AFP, which may contribute to the early

diagnosis and prognostic assessment of HCC (112). Despite the

remarkable progress of AKR1B10 in HCC, AKR1B10 and related

GWAS studies in other GI tumors are still lacking. Given the

multifunctionality of AKR1B10 in metabolism and tumor biology,

exploring its expression pattern and function in more GI tumors

will be a promising research direction.

The study of AKR1B10 and its relationship with digestive

system tumors has revealed its potential role in regulating the

proliferation and migration of tumor cells through involvement

in the PI3K/AKT and Kras signaling pathways. The development of

highly selective AKR1B10 inhibitors offers promising prospects for

improving tumor treatment and survival rates for patients with

cancer (Figure 4).

It is important to note that tumors are heterogeneous (113), and

the pathogenic and metabolic mechanisms of AKR1B10 can differ

between different tumor types. The expression of AKR1B10 may

also vary across different sites and stages of the same tumor. For

example, its expression is high in early to mid-stage HCC, but

decreases in advanced stages (114). In addition, AKR1B10

expression is downregulated in pre- CCA, but increases after

progression (54). In GC, high expression of AKR1B10 tends to

predict a poor prognosis for patients undergoing surgical treatment

(7). In addition to the tumor itself affecting AKR1B10, external

factors such as therapeutic means and therapeutic drugs, and the

nutritional status of the patient may also have an effect on the

differential expression of AKR1B10 between different tumors.

Meanwhile, AKR1B10 may play different roles at different stages

of tumor development. In the early and proliferative stages of tumors,

AKR1B10 may play a tumorigenic role by promoting cell growth and

proliferation, which is consistent with our observation that inhibition

of AKR1B10 expression resulted in cell cycle arrest and impaired cell

proliferation (37). However, in the post hepatectomy setting, high

expression of AKR1B10 may be associated with liver repair and

regenerative capacity, which may explain the association with

favorable prognosis observed in the meta-analysis (38). The

complexity of the tumor microenvironment may also contribute to

this apparent contradiction. AKR1B10 may play different roles within

tumor cells and in the tumor microenvironment, and these roles may

affect both tumor growth and patient prognosis. Moreover, patient

populations differ in terms of tumor stage, treatment modality, and

genetic background, and these factors may collectively influence the

relationship between AKR1B10 expression and prognosis.

Metabolic studies in tumors have gained increasing attention

from researchers, particularly in addressing key issues such as

detection, traceability, and the impact of metabolites on tumor

development. Further, there is a growing focus on identifying

effective targets involved in metabolic pathways (115, 116).

In summary, the exploration of AKR1B10 expression in tumors,

investigation of its interactions, and research of the molecular

mechanisms of AKR1B10 are important research directions.
Frontiers in Immunology 09
Combining in vivo and in vitro studies with clinical samples will

likely yield valuable results, which can significantly contribute to

early tumor diagnosis, prognosis, and the development of novel

therapeutic approaches in the future.
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