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Mitochondrial-related genes
as prognostic and metastatic
markers in breast cancer:
insights from comprehensive
analysis and clinical models
Yutong Fang1, Qunchen Zhang2, Cuiping Guo1, Rongji Zheng1,
Bing Liu1, Yongqu Zhang1* and Jundong Wu1*

1Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou,
Guangdong, China, 2Department of Breast Surgery, Jiangmen Central Hospital, Jiangmen,
Guangdong, China
Background: Breast cancer (BC) constitutes a significant peril to global women’s

health. Contemporary research progressively suggests that mitochondrial

dysfunction plays a pivotal role in both the inception and advancement of BC.

However, investigations delving into the correlation between mitochondrial-

related genes (MRGs) and the prognosis and metastasis of BC are still infrequent.

Methods: Utilizing data from the TCGA database, we employed the “limma” R

package for differential expression analysis. Subsequently, both univariate and

multivariate Cox regression analyses were executed, alongside LASSO Cox

regression analysis, to pinpoint prognostic MRGs and to further develop the

prognostic model. External validation (GSE88770 merged GSE425680) and

internal validation were further conducted. Our investigation delved into a

broad spectrum of analyses that included functional enrichment, metabolic

and immune characteristics, immunotherapy response prediction, intratumor

heterogeneity (ITH), mutation, tumor mutational burden (TMB), microsatellite

instability (MSI), cellular stemness, single-cell, and drug sensitivity analysis. We

validated the protein and mRNA expressions of prognostic MRGs in tissues and

cell lines through immunohistochemistry and qRT-PCR. Moreover, leveraging

the GSE102484 dataset, we conducted differential gene expression analysis to

identify MRGs related to metastasis, subsequently developing metastasis models

via 10 distinct machine-learning algorithms and then selecting the best-

performing model. The division between training and validation cohorts was

set at 70% and 30%, respectively.

Results: A prognostic model was constructed by 9 prognostic MRGs, which

were DCTPP1, FEZ1, KMO, NME3, CCR7, ISOC2, STAR, COMTD1, and ESR2.

Patients within the high-risk group experienced more adverse outcomes than

their counterparts in the low-risk group. The ROC curves and constructed

nomogram showed that the model exhibited an excellent ability to predict

overall survival (OS) for patients and the risk score was identified as an

independent prognostic factor. The functional enrichment analysis showed a

strong correlation between metabolic progression and MRGs. Additional

research revealed that the discrepancies in outcomes between the two risk
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1461489/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1461489/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1461489/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1461489/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1461489/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1461489&domain=pdf&date_stamp=2024-09-24
mailto:wujun-dong@163.com
mailto:zhangyq@stu.edu.cn
https://doi.org/10.3389/fimmu.2024.1461489
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1461489
https://www.frontiersin.org/journals/immunology


Fang et al. 10.3389/fimmu.2024.1461489

Frontiers in Immunology
categories may be attributed to a variety of metabolic and immune

characteristics, as well as differences in intratumor heterogeneity (ITH), tumor

mutational burden (TMB), and cancer stemness indices. ITH, TIDE, and IPS

analyses suggested that patients possessing a low-risk score may exhibit

enhanced responsiveness to immunotherapy. Additionally, distant metastasis

models were established by PDK4, NRF1, DCAF8, CHPT1, MARS2 and NAMPT.

Among these, the XGBoost model showed the best predicting ability.

Conclusion: In conclusion, MRGs significantly influence the prognosis and

metastasis of BC. The development of dual clinical prediction models offers

crucial insights for tailored and precise therapeutic strategies, and paves the way

for exploring new avenues in understanding the pathogenesis of BC.
KEYWORDS
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1 Introduction

Breast cancer (BC), a prevalent malignancy among women,

represents a significant global health challenge. Statistics show that

around 2.3 million new cases of BC are reported annually, making

up 11.7% of total cancer diagnoses. The annual mortality associated

with breast cancer approaches 700,000, accounting for 6.9% of all

fatalities linked to cancer (1). BC is a complicated and multifaceted

process that is influenced by a combination of factors such as

genetics, environment, and lifestyle. Furthermore, there has been a

growing body of research in recent years showing a strong

connection between tumor development and abnormal energy

metabolism in tumors. In 2011, Weinberg et al. proposed the ten

hallmarks of cancer, which include abnormal energy metabolism in

tumor cells (2). Additionally, Warburg pioneered the theory that

tumor cells exhibit a unique phenotype, characterized by increased

glycolysis rates even under aerobic conditions (3). This metabolic

behavior has been confirmed across various types of cancer,

including BC (4). Tumor cells rely on mitochondrial oxidative

phosphorylation (OXPHOS) for growth, as they can transition

from aerobic glycolysis to OXPHOS for energy when glucose is

scarce (5). Mitochondria, the quintessential powerhouses of

eukaryotic cells, play a pivotal role in a myriad of cellular

processes, encompassing metabolism, growth, differentiation, and

apoptosis (6). Emerging evidence strongly suggests that

mitochondrial dysfunction plays a pivotal role in the initiation

and progression of cancer. A range of factors, including

mitochondrial DNA abnormalities and defects in mitochondrial

ribosomes, can disrupt the process of OXPHOS and compromise

the function of the respiratory chain. The disruption leads to a lack

of ATP synthesis, elevated calcium release, overproduction of

reactive oxygen species (ROS), triggering of the mitochondrial

unfolded protein response, and the alteration of multiple genes

and signaling pathways related to the promotion or inhibition of
02
cancer. Ultimately, these processes promote the occurrence and

progression of cancers (7, 8). Furthermore, impaired mitochondrial

function is linked to resistance to drugs and the survival of cancer

stem cells (9, 10), making it a hot topic in the field of

cancer research.

Recent research has increasingly focused on the role of

mitochondrial-related genes (MRGs) function in the context of

BC (11, 12). However, although these investigations offer crucial

insights into the role of MRGs in BC, they also underscore the

necessity for further research to comprehensively decipher the

intricate biological mechanisms of mitochondria in BC,

particularly their associations with metastasis and prognosis.

In the present study, we constructed a novel mitochondrial-

related risk model with the transcriptional information of BC

samples from The Cancer Genome Atlas (TCGA) database to

effectively predict the prognosis and immunotherapy responses of

BC patients using 9 MRGs. Furthermore, to delve into the

connection between MRGs and distant metastasis in BC, we

developed diverse machine-learning models with 6 MRGs. The

flow chart of the study is illustrated in Figure 1.
2 Methods

2.1 Data collection

We obtained level 3 RNA sequencing data (FPKM) for 1113 BC

samples and 113 normal samples from the TCGA database (https://

www.cancer.gov/tcga), along with their clinical details. Post

exclusion of specimens lacking complete prognostic information,

1,055 BC samples were retained for analysis. We also integrated

datasets with prognosis information from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) for

external validation (GSE88770 merged with GSE42568). The
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metastasis model was constructed using the GSE102484 dataset,

which included 101 metastatic and non-metastatic BC samples. In

total, 2,030 MRGs were amassed from preceding studies as denoted

in Supplementary Table S1 (13).
2.2 Construction and validation of
prognostic model based on MRGs

The differential gene expression analysis between normal and BC

sample groups was performed with the “limma” R package, utilizing

2030 MRGs and applying the criteria of |Log fold change| >1 and

adjusted P-value <0.05. Univariate and multivariate Cox regression

analyses were performed to identify potential MRGs associated with OS.

By constructing gene expression and survival object matrices, the Lasso-

Cox regression model was fitted using the “glmnet” package. The

optimal penalty parameter lambda was selected through ten-fold

cross-validation, and the non-zero regression coefficients significantly

associated with survival time were extracted. These coefficients reflect

the contribution of each gene to the risk score. The risk score for each

sample was determined by applying the formula: Risk score = (Coef1 *
Frontiers in Immunology 03
mRNA1 expression) + (Coef2 * mRNA2 expression) + … (Coefn *

mRNAn expression), where “Coef” represents the coefficient derived

from each mRNA’s LASSO regression analysis. Based on the above

formula, we calculated the risk score for each BC sample and divided the

BC samples into high-risk and low-risk groups according to the median

value of the risk score. Kaplan-Meier analysis and log-rank test were

used to compare overall survival (OS) in the two groups.We utilized the

R packages “survival” and “timeROC” to conduct time-related ROC

analysis to evaluate the prognostic efficacy of the model. Finally, the

prognostic model was validated by an external validation cohort

(GSE88770 merged with GSE425680). We also randomly selected

70% of the BC samples from TCGA as the internal validation cohort.
2.3 Nomogram construction and validation
based on risk scores and
clinical characteristics

We examined the correlation between the risk score and clinical

characteristics and performed KM survival analysis for high-risk

and low-risk groups across various clinical subgroups. Additionally,
FIGURE 1

The flowchart graph depicts the methods and results in the present study.
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both univariate and multivariate Cox regression analyses were

employed to ascertain the independent prognostic validity of the

model, which incorporates the risk score and clinical characteristics.

Subsequently, we developed a nomogram using the “rms” R

package, incorporating risk score and clinical characteristics to

predict the 1-, 3-, and 5-year OS probabilities for BC patients

within the TCGA cohort. The precision of the nomogram was

subsequently validated using the GEO cohort.
2.4 Functional enrichment analysis

Utilizing the “clusterProfiler” and “org.Hs.eg.db” R packages,

we performed enrichment analyses on Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) based on the

differentially-expressed MRGs. We applied an adjusted P-value

threshold of less than 0.05 to discern the functional candidates.

Furthermore, we executed a Gene Set Enrichment Analysis (GSEA)

based on differentially-expressed genes between high-risk and low-

risk groups, considering a P-value of less than 0.05 as

statistically significant.
2.5 Metabolism analysis

Building on the findings from the functional enrichment analysis,

we analyzed metabolism-related gene expression in two risk groups.

From a study that was published (Supplementary Table S2) (14), we

gathered 2752 metabolism-related genes, among which we

constructed protein-protein interaction (PPI) networks for

nucleotide, fatty acid, and amino acid metabolism-related genes

and selected top 15 core genes for further analysis by Cytoscape

(version 3.8.2).
2.6 Immunity analysis and immunotherapy
response prediction

To explore the tumor immune landscape within two risk

groups, we analyzed the expression of major histocompatibility

complex (MHC) molecules, chemokines and receptors, immune cell

infiltration, and evaluated the expression of prevalent immune

checkpoint genes (ICGs) across two groups. Utilizing the single

sample gene set enrichment (ssGSEA) algorithm (15), we quantified

the abundance of 24 well-known immune cell types. Additionally,

the CIBERSORT algorithm (16) enabled the evaluation of

infiltration levels across 22 distinct immune cell populations. We

further performed a comparative analysis of immune cell signatures

between two risk groups, drawing upon data sourced from the

TISIDB database (http://cis.hku.hk/TISIDB/download.php) (17).

Moreover, the ESTIMATE algorithm, executed via the “estimate”

R package, allowed us to calculate immune, stromal, and

ESTIMATE scores, providing a comprehensive assessment of the

tumor microenvironment.

The likelihood of each BC specimen from the TCGA database

responding to immunotherapy was estimated using the Tumor
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Immune Dysfunction and Exclusion (TIDE) score (http://

tide.dfci.harvard.edu). Additionally, the Immunophenoscore (IPS)

algorithm, which leverages machine-learning to forecast responses

to anti-CTLA4 and anti-PD-1 therapies (18), was applied to each

BC sample for predictive insights. The IMvigor210 and GSE78220

cohorts were further used to validate the immunotherapy response

predictive power of the model.
2.7 Intratumor heterogeneity analysis

ITH signifies the presence of varied cellular subpopulations

within a single tumor, each distinguished by distinct genetic,

phenotypic, or functional characteristics (19). We evaluated the

ITH scores of each BC specimen utilizing the “DEPTH” package in

R, classifying them into ITH-high and ITH-low cohorts based on

the median ITH score. Subsequently, we conducted a differential

gene expression analysis between two ITH groups utilizing the

“limma” package in R, from which we identified the top 20 ITH-

differentially-expressed genes for subsequent exploration of their

expression in two risk groups.
2.8 Mutation, tumor mutational burden,
microsatellite instability, cancer stemness,
and single cell analysis

We conducted a comprehensive evaluation to ascertain

disparities in mutations, TMB scores, MSI scores, and tumor

stemness between two risk groups. Mutation details for BC

specimens were sourced from the TCGA database, with the

“maftools” R package utilized to generate waterfall plots that

visually depict the mutational landscape for each risk group.

Subsequently, we calculated the TMB score for individual

samples. MSI scores were integrated from a previous study (20).

Additionally, we applied a one-class logistic regression algorithm

within the machine-learning domain (21) to derive the mRNA

expression-based stemness index (mRNAsi) for each specimen. We

separately categorized the samples according to the median values

of TMB, MSI, and mRNAsi scores for subsequent analysis. We also

conducted single-cell analyses on nine prognostic MRGs using data

from the GSE148673 dataset, accessed via the TISCH web resource

(http://tisch.comp-genomics.org) (22).
2.9 Drug sensitivity analysis

The R package “pRRophetic” was employed to determine the

50% inhibitory concentration (IC50) values of 236 medications for

individuals using the Genomics of Drug Sensitivity in Cancer

(GDSC) (https://www.cancerrxgene.org/) database (23). A

Spearman correlation analysis was conducted on the risk score

and IC50 values of the drugs, followed by the selection of the top 10

drugs with the most significant positive and negative correlations

with the risk score for further examination. We compared the IC50

value of the drugs in two risk groups. Furthermore, we categorized
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samples into high-response and low-response groups based on the

median cut-off value of the IC50 value for each drug. Additionally,

we conducted a ROC analysis to evaluate the efficacy of the risk

score in distinguishing between the high-response and low-

response groups.
2.10 Construction of the metastasis model
based on MRGs

We employed the GSE102484 dataset for the construction of

the distant metastasis model. BC patients were categorized into

distant metastasis and non-metastasis groups for subsequent

analysis of differential gene expression between the two groups to

identify metastasis-related MRGs based on the criteria of |Log fold

change| >0.75 and adjusted P-value <0.05. Then we selected the

metastasis-related MRGs for further selection of crucial metastatic

variables using the Boruta method. The Boruta algorithm is a

random forest (RF) based feature selection algorithm for

identifying the most relevant features in a dataset. Its core steps

include the construction of shadow features and voting in RF.

Then we used 10 different machine-learning algorithms, which

were extreme gradient boosting (XGBoost), logistic regression (LR),

light gradient boosting machine (LightGBM), RF, adaptive boosting

(AdaBoost), gaussian naive bayes (GNB), complement naive bayes

(CNB), multi-layer perceptron neural networks (MLP), support

vector machine (SVM) and k-nearest neighbors (KNN), to

construct the metastasis model with selected crucial metastatic

variables. BC Patients from the GSE102484 dataset were allocated

into training and validation cohorts with a proportion of 70% and

30%, respectively. The model’s performance was compared using

the area under the curve (AUC), accuracy, sensitivity, specificity,

positive predictive value (PPV), negative predictive value (NPV)

and F1 value. The cross-validation method was used with a random

seed set to 1 and the fold set to 10.
2.11 Interpretability of the
metastasis model

Upon identifying the best-performing model, its classification

efficacy was illustrated through a confusion matrix. Calibration

curves were used to assess the consistency between the model’s

predicted outcomes and actual results. Decision Curve Analysis

(DCA) was performed to evaluate the practical value of the model in

clinical settings. Moreover, the significance of each characteristic in

the model was clarified by utilizing SHapley Additive exPlanations

(SHAP) values obtained through the “shap” software package.
2.12 Statistical analysis

Statistical analyses were performed using the R software version

4.0.5 or Python Version 3.8. The Wilcoxon signed-rank test was

used to compare the differences of continuous variables between
Frontiers in Immunology 05
two groups, and the Kruskal-Wallis test to more than two groups.

Categorical variables were compared using the chi-square test.

Correlation analysis was carried out with Spearman’s correlation

analysis. A P-value of less than 0.05 was considered statistically.
2.13 Cell lines and quantitative real-
time PCR

BC cell lines MCF-7 and MDA-MB-231, as well as the breast

epithelial cell line MCF-10A were purchased from Procell (Wuhan,

China). These were cultured by the manufacturer’s instructions.

Total RNA was isolated from the cells using the RNAsimple total

RNA kit from Tiangen in Beijing, China, according to the

manufacturer’s instructions. Subsequently, we conducted a

quantitative real-time polymerase chain reaction (qRT-PCR) with

the PrimeScript™ RT reagent kit and the SYBR Premix Ex Taq™ II

from Takara, Japan, following the instructions provided by the

manufacturer. We chose GAPDH as the internal reference gene and

determined relative expression levels utilizing the 2-△△Ct method.

Supplementary Table S3 contains a list of the particular primers

utilized in this research.
2.14 Immunohistochemistry

Tissue microarrays (F048Br01a) containing BC samples and

adjacent non-tumor tissues were acquired from Bioaitech (Xian,

China). For IHC staining, the slides underwent deparaffinization,

rehydration, and antigen retrieval using a microwave. Antibodies

were applied and incubated at 4°C overnight. The antibody

concentrations are detailed in Supplementary Table S4. Secondary

antibodies were then applied at room temperature for 30 minutes,

followed by staining with DAB and counterstaining with

hematoxylin. Two pathologists independently reassessed the

IHC scores.
3 Result

3.1 Identification of prognostic MRGs

The result of the differential gene expression analysis between

normal and BC sample groups based on 2030 MRGs is shown in

Supplementary Table S5, including a total of 365 differentially-

expressed MRGs, and the heat map was plotted (Figure 2A).

Subsequent univariate Cox regression analysis revealed that 27

differentially-expressed MRGs significantly associated with OS

(p<0.05), depicted in Figure 2B. Progressing further, a

multivariate Cox regression analysis was conducted on these 27

prognostic MRGs (Figure 2C), resulting in the selection of 9 critical

MRGs for LASSO regression analysis to develop a prognostic

model. The selected MRGs include DCTPP1, FEZ1, KMO,

NME3, CCR7, ISOC2, STAR, COMTD1, and ESR2, with detailed

information provided in Table 1.
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Additionally, Kaplan-Meier (KM) survival analyses were

performed to examine the differences in OS between high- and low-

expression groups of these 9 prognostic MRGs, categorized by their

median expression levels. Illustrated in Supplementary Figure S1, our

findings revealed that high expression of DCTPP1 and low expression

of CCR7 were correlated with reduced OS in BC patients (p<0.05).
3.2 Construction and validation of
prognostic model

The LASSO regression and its cross-validation are illustrated

in Figures 2D and E, respectively. The model calculates the risk

score for each sample using the formula: Risk score = (0.021 *

DCTPP1) + (0.434 * FEZ1) + (0.085 * KMO) + (-0.017 * NME3) +

(0.021 * CCR7) + (0.023 * ISOC2) + (-0.974 * STAR) + (0.033 *

COMTD1) + (-5.701 * ESR2). This formula stratified BC samples

into high-risk and low-risk groups based on the median risk score. A

heat map was plotted to compare 9 prognostic MRGs expression

between high- and low-risk groups (Supplementary Figure S2A). KM

survival analysis demonstrated significantly poorer OS in the high-
Frontiers in Immunology 06
risk group compared to the low-risk group (p<0.001) (Figure 2F). To

assess the model’s predictive accuracy for 1-, 3-, and 5-year OS, time-

dependent ROC analysis was performed, yielding AUC values of

0.764, 0.753, and 0.703 respectively (Figure 2G). Figures 2H and I

display the risk score distribution and survival status across the low-

and high-risk groups, highlighting a correlation between elevated risk

score and increased mortality in BC patients.

In the GEO external validation cohort (GSE88770 merged with

GSE425680), patients in the high-risk group had worse OS

(Figure 3A), which was consistent with the TCGA training

cohort. The AUC of the time-dependent ROC curves for

predicting 1-, 3-, and 5-year OS were 0.851, 0.785, and 0.729,

respectively (Figure 3B). The correlation between increasing risk

score and higher mortality rate in patients was further substantiated

(Figures 3C, D). Clinical characteristics of BC patients from the

GEO validation cohort are shown in Supplementary Table S6. For

internal validation, a subset comprising 70% of BC samples from

the TCGA database was randomly selected, and the above results

were also validated (Figures 3E-H).

In our study, 6 MRGs showed a marked increase in expression in

BC tissues, while 3 MRGs exhibited a decrease compared to normal
FIGURE 2

Construction of prognostic model based on MRGs. (A) Heat map shows differentially-expressed MRGs expression between normal and BC groups.
(B, C) Univariate (B) and multivariate (C) Cox regression analyses to identify prognostic MRGs. (D) LASSO coefficient profiles. (E) Cross-validation for
tuning parameter selection in the LASSO model. (F) KM survival curves to compare OS between high- and low-risk groups in the TCGA training
cohort. (G) ROC curves for predicting 1-, 3-, and 5-year OS in the TCGA training cohort. (H) Distribution of risk scores between high- and low-risk
groups in the TCGA training cohort. (I) Survival status of BC patients in the high- and low-risk groups in the TCGA training cohort.
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tissues (p<0.001) (Supplementary Figure S2B). As revealed by ROC

analysis, DCTPP1 showed the best diagnostic performance for BC

among 9 MRGs, achieving an AUC of 0.920, sensitivity of 0.803, and

specificity of 0.930 (Supplementary Figure S2C). Furthermore, FEZ1

(AUC=0.917), NME3 (AUC=0.833), ISOC2 (AUC=0.850),

COMTD1 (AUC=0.842), and ESR2 (AUC=0.904) also

demonstrated substantial diagnostic capabilities. The differential

expression of these 9 MRGs was further corroborated in BC cell

lines compared to a normal breast epithelial cell line (Supplementary

Figure S2D). To confirm these findings at the protein level, we

conducted IHC on both normal and BC tissues. Representative

IHC images are presented in Supplementary Figure S2E.
3.3 Clinical significance and clinical
subgroup survival analysis of the
risk groups

Clinical characteristics of BC patients from TCGA are shown in

Table 2. We analyzed the clinical significance of the risk score and

found that it is significantly associated with T stage, estrogen receptor

(ER) status, progesterone receptor (PR) status, human epidermal

growth factor receptor 2 (HER2) status, survival status, and PAM50

subtype (p<0.01) (Supplementary Figure S3). Notably, the risk score

were notably elevated in T4 stage cases, suggesting the involvement of

MRGs in the invasion of the skin and chest wall in locally advanced

BC. Furthermore, negative ER and PR status, positive HER2 status,
Frontiers in Immunology 07
and deceased survival status were associated with higher risk score. By

analyzing the relationship between the risk score and PAM50 breast

cancer subtypes, we found that the risk score is significantly higher in

Luminal B, HER2-enriched, and Basal-like subtypes compared to

Normal-like and Luminal A subtypes. Additionally, as illustrated in

Supplementary Figure S4, 9 MRGs exhibited significant correlations

with various clinical characteristics.

In addition, we analyzed the prognostic differences between high-

and low- risk groups in different clinical subgroups. As depicted in

Supplementary Figure S5, in the majority of subgroups, except for the

HER2-positive, Normal-like, Luminal A, and Basal-like subgroups,

the OS for high-risk patients is notably shorter compared to that of

low-risk patients (p<0.05). These findings highlight the clinical

applicability and reliability of the prognostic model.
3.4 Construction and validation
of nomogram

The nomogram, constructed using multifactorial regression

analysis, forecasts patient survival by representing various clinical

indicators as a series of distinct line segments on a two-dimensional

Cartesian coordinate system. In univariate and multivariate Cox

regression analysis, we combined the OS of BC patients with their

clinical characteristics to determine whether the risk score from the

prognostic model is an independent predictor of survival. In the

TCGA training cohort, univariate Cox regression analysis revealed
TABLE 1 The information of 9 prognosis MRGs.

Gene Full name Location Function of the encoded protein

DCTPP1 dCTP
pyrophosphatase 1

16p11.2 DCTPP1 is an enzyme protein primarily involved in the metabolism of dCTP within cells. Through catalytic hydrolysis
reactions, it breaks down dCTP into dCMP and pyrophosphate.

FEZ1 Fasciculation and
elongation protein

zeta 1

11q24.2 Protein encoded by FEZ1 primarily participates in neuronal development and synapse formation, exerting a crucial
role within the nervous system.

KMO Kynurenine
3-monooxygenase

1q43 KMO plays a crucial role in the kynurenine pathway, which is a metabolic pathway involved in the degradation of the
amino acid tryptophan.

NME3 Nucleoside
diphosphate
kinase 3

16p13.3 NME3 is a protein that belongs to the nucleoside diphosphate kinase family. This family of enzymes plays a crucial
role in cellular processes by catalyzing the transfer of phosphate groups between nucleoside diphosphates and

nucleoside triphosphates, which are essential for energy transfer and cellular functions.

CCR7 C-C chemokine
receptor 7

17q21.2 CCR7 is a protein that belongs to the G-protein coupled receptor family and is involved in mediating cell migration
and immune responses. It is specifically known for its role in guiding immune cells to lymph nodes and other

secondary lymphoid organs, where immune responses are orchestrated.

ISOC2 Isochorismatase
domain

containing 2

19q13.42 ISOC2 is a protein that possesses an isochorismatase-like domain, which suggests its potential involvement in certain
enzymatic activities related to metabolic processes.

STAR Steroidogenic
acute

regulatory protein

8p11.23 STAR is a crucial regulatory protein involved in the synthesis of steroid hormones, which are essential for various
physiological processes in the body. The STAR protein facilitates the transport of cholesterol, a precursor molecule,

into the mitochondria of steroid-producing cells, where it serves as the building block for steroid hormone production.

COMTD1 Catechol-O-
methyltransferase

containing
domain 1

10q22.2 COMTD1 is a protein that contains a domain similar to catechol-O-methyltransferase, an enzyme involved in the
metabolism of catechol compounds, including neurotransmitters like dopamine and catecholamines.

ESR2 Estrogen
receptor 2

14q23.2-
q23.3

ESR2 refers to Estrogen Receptor b, which is a specific protein in the human body. ESR2 is essential for the
functioning of the reproductive system and has effects throughout the body.
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that age, T stage, N stage, M stage, pathologic stage, and risk score

were significantly associated with OS (p<0.001) (Figure 4A). The

results of the multivariate Cox regression analysis suggested that

both risk score and age were independent predictors for OS in BC

patients (p<0.001) (Figure 4B). We also confirmed that the risk score

was an independent prognostic indicator in the GEO validation

cohort (GSE88770 merged with GSE425680) through univariate

and multivariate Cox regression analysis (Figures 4C, D). To

improve the clinical applicability of the constructed prognostic

model, we developed a nomogram incorporating age, T stage, N

stage, M stage, pathologic stage, ER status, PR status, HER2 status,

and risk score. This nomogram was utilized to predict the 1-, 3-, and

5-year OS probabilities of BC patients in the TCGA training cohort

(Figure 4E). The calibration curve further substantiated the

consistency between the actual OS of patients and the predictions

made by the nomogram (Figure 4F). We also constructed a

nomogram in the GEO validation cohort based on ER status,

lymph node status, grade, and risk score (Figure 4G), with the

calibration curve displayed in Figure 4H. We further evaluated the

predictive performance of the nomogram for OS across all BC types

and within each PAM50 subtype by plotting time-dependent ROC

curves. As illustrated in Figure 4I, the AUCs for predicting 1-year, 3-

year, and 5-year OS in all BC patients from TCGA were 0.827, 0.788,

and 0.789, respectively. Among the various subtypes, the nomogram

exhibited moderate predictive accuracy for OS in Normal-like and

Luminal A BC patients, but demonstrated superior predictive

performance in Luminal B, HER2-enriched, and Basal-like

subtypes. Collectively, these results suggested that the nomogram,
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which combined the risk score with other clinical characteristics,

exhibited superior prognostic predictive performance.
3.5 Functional enrichment analysis

We conducted GO and KEGG enrichment analyses based on 356

differentially-expressed MRGs to investigate the potential biological

functions of MRGs in the progression of BC. The corresponding

results are presented in Supplementary Tables S7 and S8, respectively.

The key findings of the GO enrichment analysis are illustrated in the

bubble chart (Figure 5A) and network diagram (Figure 5C). These

results suggested that the genes annotated to biological processes (BP)

were primarily associated with metabolic processes, particularly those

involving nucleotides, nucleoside phosphates, and fatty acid. The

cellular component (CC) primarily comprised the mitochondrial

matrix, inner membrane, and outer membrane, while the

molecular function (MF) was characterized by lyase activity, acid-

thiol ligase activity, CoA-ligase activity, and C-acyltransferase

activity. The key outcome of the KEGG enrichment analysis is

depicted in Figures 5B and D, indicating the involvement of

differentially-expressed MRGs in metabolic processes such as

carbon metabolism, fatty acid metabolism, and amino acid

metabolism. Based on these findings, we concluded that MRGs

might play a role in regulating the progression of metabolism

during the development of BC. Additionally, GSEA analysis

conducted on differentially-expressed genes between high-risk and

low-risk groups uncovered a significant association between the risk
FIGURE 3

Validation of the prognostic model. (A, E) KM survival curves show the OS between high- and low-risk groups in the GEO external validation (A) and
TCGA internal validation cohort (E). (B, F) ROC curves for predicting 1-, 3-, and 5-year OS in the GEO external validation (B) and TCGA internal validation
cohort (F). (C, G) Distribution of risk scores between high- and low-risk groups in the GEO external validation (C) and TCGA internal validation cohort
(G). (D, H) Survival status of BC patients in the high- and low-risk groups in the GEO external validation (D) and TCGA internal validation cohort (H).
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score and various pathways in the high-risk group (Figure 5E). These

pathways included alcoholic liver disease, cell adhesion molecules,

herpes simplex virus 1 infection, human T-cell leukemia virus 1

infection, and the Ras signaling pathway. In the low-risk group,

pathway enrichment primarily centered around aminoacyl-tRNA

biosynthesis, basal transcription factors, biosynthesis of nucleotide

sugars, ribosome, and SNARE interactions in vesicular transport

(Figure 5F). The detailed GSEA results for the high-risk and low-risk

groups can be found in Supplementary Tables S9 and S10,

highlighting a robust correlation between the risk score and
Frontiers in Immunology 09
biological processes crucial to the development of BC, such as cell

proliferation, differentiation, cell migration, immune regulation,

biosynthesis, and gene transcription.
3.6 Metabolism analysis

The outcomes of the functional enrichment analysis revealed

that MRGs were primarily associated with the progression of

metabolism. To investigate the metabolic characteristics between

two risk groups, we compared metabolism-related genes expression

between two risk groups, including 63 nucleotide, 139 fatty acid, 38

amino acid, 17 CoA, and 5 ATPase metabolism-related genes

(Supplementary Table S2). Subsequently, we constructed PPI

networks for 63 nucleotide, 139 fatty acid, and 38 amino acid

metabolism-related genes. We identified 15 hub genes from each

PPI network for further analysis (Supplementary Figure S6). From

the results (Figure 6A) we found that in the high-risk group, the

enzymes catalyzing nucleotide hydrolysis were down-expressed,

such as NTPD5, NTPD8, NT5C and NT5M (p<0.001), revealing

a function role in maintaining the rapid proliferation of tumor cells

by inhibiting nucleotide hydrolysis. We also observed differential

expression of metabolism-related genes, including fatty acid, amino

acid, CoA, and ATPase, between the high-risk and low-risk groups

(Figures 6B-E). This suggested that MRGs might influence various

metabolic pathways, thereby affecting the energy metabolism and

biosynthesis of tumor cells, promoting the progression of BC.
3.7 Immunity analysis and immunotherapy
response prediction

Throughout the course of tumorigenesis, mitochondrial

metabolism can exert influence on immune cells within the

tumor microenvironment (TME) (24). Therefore, we analyzed the

immune characteristics in the TME between two risk groups.

Interestingly, our analysis revealed no significant differences in

the constituents of MHC-I and MHC-II between the two risk

groups, as illustrated in Figure 7A. This observation suggests that

MRGs might not influence the capability of antigen presentation.

Notably, in the high-risk group, we observed a pronounced up-

regulation of various chemokines and their receptors (Figure 7B),

including CCL7, CCL8, CCL13, CCL18, CCL20, CCR1, CCR8,

CXCL8, CXCL10, and CXCL11 (p<0.001). This up-regulation

indicated a potential enhancement in the recruitment of anti-

tumor immune cells within the TME as the patient risk score

increased. However, the ssGSEA algorithm-based calculation of

immune cell abundance revealed a significantly higher presence of

most immune cells in the low-risk group. This included activated

dendritic cells (aDCs), macrophages, neutrophils, natural killer

(NK) CD56 dim cells, T helper 1 (Th1) cells, gamma delta T cells

(Tgd), Th2 cells, and regulatory T cells (Tregs) (p<0.001)

(Figure 7C). In addition, differences in the abundance of immune

cells were observed in the high- and low-expression groups of 9

MRGs (Supplementary Figure S7). The CIBERSORT algorithm was

also utilized to evaluate the infiltration levels of 22 distinct immune
TABLE 2 Clinical characteristics of BC patients from TCGA.

Clinical
characteristics

Group No. of case (%)

Age (year) <60 588 (53.73)

≥60 467 (46.27)
275 (26.07)
610 (57.82)T stage T1

T2

T3 134 (12.70)

T4 33 (3.13)

Unknown 3 (0.28)

N stage N0 499 (47.30)

N1 347 (32.89)

N2 116 (11.0)

N3 74 (7.01)

Unknown 19 (1.80)
879 (83.32)

M stage M0

M1 20 (1.90)

Unknown 156 (14.79)

Pathologic stage I 180 (17.06)

II 597 (56.59)

III 236 (22.37)

IV 18 (1.71)

Unknown 24 (2.27)
770 (72.99)

ER status Positive

Negative 237 (22.46)

Unknown 48 (4.55)

PR status Positive 670 (63.51)

Negative 334 (31.66)

Unknown 51 (4.83)

HER2 status Positive 153 (14.50)
544 (51.56)

Negative

Unknown 358 (33.93)

Survival status Alive 908 (86.07)

Dead 147 (13.93)
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cell populations (Figure 7D). Our research has revealed a substantial

enrichment of CD8+ T cells and active mast cells in the high-risk

group (p<0.001). Moreover, M0, M1, and M2 macrophages were

found to be notably enriched in the low-risk group (p<0.05).
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Further analyzing the expression of various immune cell

signatures expression indicated that the majority of CD8+ T cell

signatures were up-regulated in the high-risk group, corroborating

our findings. Details of various immune cell signatures expression
FIGURE 4

Construction and validation of nomogram. (A, B) Univariate (A) and multivariate (B) Cox regression analysis of the risk score and clinical
characteristics in the TCGA training cohort. (C, D) Univariate (C) and multivariate (D) Cox regression analysis of the risk score and clinical
characteristics in the GEO validation cohort. (E, F) The nomogram (E) for predicting the 1-, 3- and 5-year OS probabilities, and calibration curves (F)
of the nomogram to predict 1-, 3- and 5-year OS probabilities in the TCGA training cohort. (G, H) The nomogram (G) for predicting the 1-, 3-and 5-
year OS probabilities, and calibration curves (H) of the nomogram to predict 1-, 3- and 5-year OS probabilities in the GEO validation cohort. (I)
Nomogram predicted OS in all BC samples and each PAM50 subtype. *P < 0.05, **P < 0.01, ***P < 0.001.
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in both risk groups are presented in Supplementary Figure S8.

Currently, immune checkpoint pathways and genes have been

identified as promising avenues in cancer immunotherapy (25).

We therefore evaluated the levels of 44 ICGs between two risk

groups. Our findings indicated that the expression of ADORA2A,

BTNL2, CD160, TNFRSF14, TNFRSF18, and TNFRSF25 were
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significantly elevated in the low-risk group, while in the high-risk

group, CD70, CD276, HAVCR2, PDCD1LG2, and TNFSF9 were

considerably higher (p<0.001) (Figure 7E). Furthermore, we

observed that the stromal score and ESTIMATE score of the

high-risk group were higher than those of the low-risk group

(p<0.01) (Figure 7F). It has been established that a higher Stromal
FIGURE 5

Functional enrichment analysis. (A, B) The bubble chart presents the results of the GO (A) and KEGG (B) enrichment analyses based on the
differentially-expressed MRGs. (C, D) The network diagram shows the results of the GO (C) and KEGG (D) enrichment analyses. Blue nodes (circular)
represent molecules, red nodes (square) represent categories, and the lines indicate the relationships between entries and molecules. (E, F) GSEA
analysis based on differentially-expressed genes between high-risk (E) and low-risk groups (F).
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FIGURE 6

Metabolism analysis between two risk groups. (A-E) Differences in nucleotide (A), fatty acid (B), amino acid (C), CoA (D), and ATPase (E) metabolism-
related genes expression between two risk groups. NS indicates no statistical difference, *P < 0.05, **P < 0.01, ***P < 0.001.
FIGURE 7

Immune characteristics between two risk groups. (A) Differences in MHC molecules between two risk groups. (B) Differences in chemokines and
receptors between two risk groups. (C) Immune cell abundance between two risk groups calculated by the ssGSEA algorithm. (D) Immune cell
infiltration between two risk groups calculated by the CIBERSORT algorithm. (E) Differences in ICG expression between two risk groups. (F) Differences
in immune, stromal, and ESTIMATE scores between two risk groups. NS indicates no statistical difference, *P < 0.05, **P < 0.01, ***P < 0.001.
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score may correlate with lower levels of T cell co-inhibitory/

stimulatory molecules and angiogenesis markers (26). This could

potentially contribute to the poorer prognosis of BC patients in the

high-risk group. Our findings revealed distinct immune landscapes

in the TME between the two risk groups, which may be one of the

factors influencing the differences in prognosis between these

groups, warranting further validation.

We employed the TIDE score to evaluate the predictive prowess

of our risk model in forecasting the outcomes of immunotherapy in

BC patients within the TCGA database. As depicted in Figure 8A,

patients with a high risk score exhibited a significantly higher TIDE

score compared to those with a low risk score (p<0.05), suggesting

that patients with a low risk score might derive greater benefits from

immunotherapy. KM survival analysis indicated no significant

difference in OS between the non-responder and responder

cohorts (Figure 8B). However, in both the non-responder and

responder groups, individuals in the low-risk groups

demonstrated improved prognosis (p<0.01) (Figures 8C, D).

Furthermore, we employed the IPS algorithm to predict responses

to anti-CTLA4 and anti-PD-1 therapies for each BC patient from

TCGA. The results revealed that the low-risk group exhibited
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higher IPS in any CTLA4 and PD-L1 stratification (p<0.01)

(Figures 8E-H), suggesting that BC patients with a low-risk score

might be more responsive to immune checkpoint inhibitors. We

further validated the predictive ability of the prognostic model for

immunotherapy responses using two cohorts: anti-PDL1 in the

IMvigor210 cohort and anti-PD1 in the GSE78220 cohort. Aligning

with our findings from the TCGA training cohort (Figure 8I),

patients in the low-risk groups in both the IMvigor210 and

GSE78220 cohorts exhibited a higher response proportion

compared to those in the high-risk groups (Figures 8J, K),

although statistical significance was not reached. These results

collectively demonstrate the superior predictive performance of

the prognosis model in assessing the effectiveness of

immunotherapy, indicating that patients with lower risk score

were more likely to derive benefits from immunotherapy.
3.8 ITH analysis

ITH is one of the mechanisms leading to drug resistance in

treatment, therefore, it is a significant challenge in clinical practice.
FIGURE 8

Prediction of immunotherapy response between two risk groups. (A) Differences in TIDE score between two risk groups. (B) KM survival curves in OS
of the non-responder and responder cohorts. (C, D) KM survival curves in OS between two risk groups in the non-responder (C) and responder
cohorts (D). (E–H). Differences of the IPS between two risk groups in both CTLA- and PD1-negative (E), CTLA4-positive and PD1-negative (F),
CTLA4- negative and PD1- positive (G), and both CTLA4- and PD1-positive cohorts (H). (I–K) Proportion of the BC patients who non-respond and
respond to immunotherapy in TCGA (I), IMivgor210 (J), and GSE78220 cohorts (K). *P < 0.05, **P < 0.01, ***P < 0.001.
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To explore the relationship between the risk score and ITH of BC, we

calculated ITH scores for each sample and divided them into ITH-low

and ITH-high groups for further differential gene expression analysis

between them (Supplementary Table S11). We identified the top 20

genes exhibiting differential expression related to ITH for further

investigation of their associations with risk groups. Notably, these 20

ITH-differentially-expressed genes demonstrated lower expression in

the ITH-high group (p<0.001) as shown in Supplementary Figure S9A.

Furthermore, a majority of these genes also exhibited reduced

expression in the high-risk group (Supplementary Figure S9B).

Considering the low expression of these genes in both high-risk and

ITH-high groups, we hypothesized a positive correlation between

elevated ITH and increased risk scores, suggesting that high ITH

may contribute to adverse prognoses. Subsequent analyses revealed

that the ITH score was higher in the high-risk group (p<0.05)

(Supplementary Figure S9C), and a positive correlation was observed

between the ITH score and risk score (R=0.062, p=0.045)

(Supplementary Figure S9D). Additionally, the prognosis for the

ITH-high group was notably poorer compared to the ITH-low

group (p<0.05) (Supplementary Figure S9E), reinforcing our

hypothesis that high ITH likely serves as a critical factor influencing

poor prognosis in BC. Moreover, within both ITH-low and ITH-high

cohorts, patients in the high-risk groups exhibited significantly worse

prognoses (p<0.01) (Supplementary Figures S9F-G).
3.9 Mutation, TMB, MSI, cancer stemness,
and single cell analysis

Somatic mutations have significant impacts on the occurrence,

development, and treatment of BC. Through in-depth research on

these mutations, scientists can gain a better understanding of the

molecular mechanisms of BC, laying the foundation for

personalized treatment and the development of new therapies

(27, 28). We conducted a comprehensive mapping of somatic

mutation characteristics across two distinct risk groups,

employing waterfall plots for visualization. The analysis for the

high-risk group, as depicted in Supplementary Figure S10A,

identified TP53 as the predominant mutation gene. In the low-

risk group, PIK3CA emerged as the most frequently mutated gene,

as shown in Supplementary Figure S10D. Notably, TP53, PIK3CA,

and TTN were identified as common genes with high mutation

frequencies in both groups. An examination of mutation statuses in

both high- (Supplementary Figure S10B) and low-risk

(Supplementary Figure S10E) groups revealed that single

nucleotide variations (SNV) predominated as the most common

variation type, with missense mutations being the most frequent

variation classification in both cohorts. Comprehensive details

regarding the base mutations, the proportion of base transitions

(Ti) and transversions (Tv), along with a percentage breakdown of

base mutations across all samples within both high- and low-risk

groups, are illustrated in Supplementary Figures S10C and

S10F, respectively.

Both TMB and MSI have been identified as promising

predictive biomarkers for immunotherapy in cancer treatment

(29). Additionally, cancer stemness not only correlates with
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tumor cell characteristics but also intertwines complexly with

tumor development, prognosis, and immune infiltration (30, 31).

In our analysis, we noted elevated TMB and mRNAsi score within

the high-risk group (p<0.05) (Supplementary Figure S11A). There

were significant positive correlations between the risk score and

TMB (R=0.0198, p<0.001), as well as mRNAsi score (R=0.142,

p<0.001) (Supplementary Figure S11B). Nonetheless, no

noteworthy relationship was discernible between the MSI score

and risk score (Supplementary Figure S11A-B). Despite patients in

the low-risk group might derive greater benefits from

immunotherapy, the high-risk group patients exhibited higher

TMB levels, suggesting an enhanced capability for generating

novel tumor antigens. This observation underscores the potential

efficacy of immunotherapy in the high-risk group, meriting further

exploration in clinical settings. Survival analysis revealed that TMB,

MSI and mRNAsi scores were not associated with prognosis

(Supplementary Figure S11C). Furthermore, within each

subgroup, OS for high-risk patients was notably shorter

compared to that of low-risk patients (p<0.05) (Supplementary

Figure S11D-E).

We performed single-cell analysis using the BRCA_GSE148673

dataset from the TISCH database to examine the expression patterns

of 9 prognostic NRGs in the tumor microenvironment-associated

cells of BC. The annotation of cell types is displayed in

Supplementary Figures S12A and S12B, encompassing 4 immune

cell types, 4 stromal cell types, and malignant cells. The GSE148673

dataset comprises 28 distinct cell populations (Supplementary Figure

S12C). Supplementary Figures S12D and S12E present the number of

different cell types and the proportions of each cell type in various

patients, respectively. Additionally, Supplementary Figure S12F

illustrates the percentages and expressions of 9 prognostic MRGs.

Among these MRGs, namely DCTPP1, KMO, NME3, CCR7, ISOC2,

and COMTD1, their expressions were observed across multiple

immune cell types. Specifically, DCTPP1, NME3, and ISOC2 were

predominantly expressed in CD8T, CD4Tconv, and Mono/Macro

cells. KMO exhibited a primary expression in Mono/Macro cells,

while CCR7 and COMTD1 were primarily detected in CD8T and

CD4Tconv cells. Notably, DCTPP1, NME3, and ISOC2 were also

found to be expressed in stromal cells. Conversely, FEZ1,

STAR, and ESR2 displayed minimal expression within the

immune microenvironment.
3.10 Drug sensitivity analysis

To assess the predictive capacity of the risk score for drug

treatment efficacy in BC patients, we calculated the IC50 values for

235 drugs and evaluated their correlation with the risk score,

detailed in Supplementary Table S12. We pinpointed the top 10

drugs whose IC50 values demonstrated a negative correlation with

the risk score and another 10 with a positive correlation. Detailed

information about these drugs is presented in Supplementary

Tables S13, S14, respectively. The top 10 drugs whose IC50

negatively correlated with the risk score were FTI-277, AKT

inhibitor VIII, Thapsigargin, RO-3306, JNK-9L, AMG-706, TW

37, CH5424802, Docetaxel, and MS-275, all of which demonstrated
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significantly higher IC50 values in the low-risk group (p<0.001)

(Supplementary Figure S13A). The top 10 drugs with IC50 values

positively correlated with the risk score were TL-2-105, LAQ824,

Belinostat, Navitoclax, I-BET-762, Dabrafenib, PHA-665752, AR-

42, Linsitinib, and Phenformin. With the exception of AR-42, an

increase in the IC50 of these drugs was observed in the high-risk

group (p<0.05) (Supplementary Figure S13C). The risk score

demonstrated potential discriminatory power in distinguishing

between high-response and low-response groups for most drugs

with negative IC50 correlations (Supplementary Figure S13B).

However, this discriminatory power of the risk score was less

evident in drugs with positive IC50 correlations to the risk score,

as shown in Supplementary Figure S13D.
3.11 Establishment and evaluation of
metastatic model

We used the GSE102484 dataset, which included 101 distant

metastasis and 582 non-metastasis BC samples, for the construction

of the model for predicting distant metastasis. The results of the

differential gene expression analysis between distant metastasis and

non-metastasis groups are shown in Supplementary Table S15. The

Boruta algorithm was used to determine the importance of the

features of the metastatic models, and the results showed that

PDK4, NRF1, DCAF8, CHPT1, MARS2, and NAMPT were

inc luded in subsequent construct ion of the models

(Supplementary Figure S14). Detailed information on 6

metastasis-related MRGs are shown in Table 3. Compared with

the other models, the XGBoost model not only demonstrated an

excellent AUC of 0.951 in the training set but also achieved the

highest AUC of 0.778 in the validation set (Figure 9A). While the
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RF model showed an outstanding AUC of 0.990 in the training set,

it performed inferiorly compared to the XGBoost model in the

validation set (Figure 9B). DCA was employed to determine the

clinical utility of the models. The results indicated that both

XGBoost and RF models had good net benefit in predicting

metastasis in the training set, with XGBoost showing higher net

benefit than RF in the validation set, thereby demonstrating greater

clinical utility (Figures 9C, D). To further evaluate the probability

prediction accuracy of the models, the calibration curves showed

that the calibration of the RF model was inferior to that of the

XGBoost model in both the training and validation sets (Figures 9E-

H). Table 4 shows the performance of the 10 machine-learning

models in the training and validation sets. The XGBoost model in

the training set showed an outstanding accuracy of 0.842, sensitivity

of 0.859, specificity of 0.839, PPV of 0.506, NPV of 0.968, and F1

score of 0.628. Moreover, the XGBoost model in the validation set

also possessed an accuracy of 0.737, sensitivity of 0.767, specificity

of 0.709, PPV of 0.318, NPV of 0.935, and F1 score of 0.450.

Therefore, in terms of comprehensive model evaluation, XGBoost

was the optimal model for predicting metastasis in BC patients.
3.12 Evaluation and interpretability of the
XGBoost model

The confusion matrix visualized the performance of the

XGBoost classifiers in the training and validation sets

(Supplementary Figure S15A, B). The SHAP analysis provided an

explanation of how the XGBoost model predicted distant metastasis

and calculated the importance of features. Supplementary Figure

S15C shows the SHAP values for each feature at different levels. As

the feature values increase, the redder color is, and vice versa, the
TABLE 3 The information of 6 metastasis-related MRGs.

Gene Full name Location Function of the encoded protein

PDK4 Pyruvate dehydrogenase
kinase 4

7q21.3 PDK4 protein plays a crucial role in the pathway of pyruvate metabolism by
inhibiting the activity of pyruvate dehydrogenase through phosphorylation. This
inhibition prevents the conversion of pyruvate to acetyl-CoA, thereby influencing

the progression of the tricarboxylic acid cycle.

NRF1 Nuclear respiratory
factor 1

7q32.2 NRF1 protein is a transcription factor associated with the cellular nuclear
respiratory chain. It plays a role in regulating and coordinating mitochondrial
biosynthesis, the expression of respiratory chain genes, and overall cellular

energy regulation.

DCAF8 DDB1 and CUL4
associated factor 8

1q23.2 DCAF8 protein interacts with the CUL4-DDB1 E3 ligase macromolecular
complex, playing a crucial role in biological processes such as cell cycle

regulation and DNA damage response.

CHPT1 Choline
phosphotransferase 1

12q23.2 CHPT1 is involved in the phosphatidylcholine biosynthetic process and platelet-
activating factor biosynthetic process.

MARS2 Methionyl-tRNA
synthetase 2

2q33.1 MARS2 protein is a methionyl-tRNA synthetase, primarily responsible for
catalyzing the binding of methionine to its corresponding tRNA, forming
aminoacyl-tRNA, and participating in the process of mitochondrial protein

synthesis within the mitochondria.

NAMPT Nicotinamide
phosphoribosyltransferase

7q22.3 NAMPT protein catalyzes the condensation of nicotinamide with 5-
phosphoribosyl-1-pyrophosphate to yield nicotinamide mononucleotide, a step in

the biosynthesis of nicotinamide adenine dinucleotide.
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FIGURE 9

Performance of the distant metastasis machine-learning models. (A, B) ROC curves for the training set (A) and the validation set (B). (C, D) Decision
curves for the training set (C) and the validation set (D). (E, F) Calibration curves of the XGBoost model in the training set (E) and the validation set
(F). (G, H) Calibration curves of RF model in the training set (G) and the validation set (H).
TABLE 4 Performance of machine-learning metastatic models in training and validation sets.

Sets Models AUC Accuracy Sensitivity Specificity PPV NPV F1‐score

Training set XGBoost 0.951 0.842 0.859 0.839 0.506 0.968 0.628

LR 0.735 0.647 0.778 0.626 0.263 0.938 0.393

LightGBM 0.669 0.835 0.805 0.593 0.131 0.878 0.205

RF 0.990 0.998 1.000 1.000 1.000 0.997 0.993

AdaBoost 0.828 0.776 0.772 0.770 0.376 0.946 0.505

GNB 0.720 0.627 0.812 0.598 0.257 0.944 0.390

CNB 0.709 0.592 0.802 0.558 0.237 0.938 0.366

MLP 0.593 0.502 0.667 0.475 0.122 0.854 0.197

SVM 0.669 0.639 0.723 0.627 0.275 0.930 0.380

KNN 0.931 0.886 0.978 0.862 0.973 0.885 0.983

Validation set XGBoost 0.778 0.737 0.767 0.709 0.318 0.935 0.450

LR 0.723 0.605 0.567 0.829 0.226 0.920 0.323

LightGBM 0.688 0.854 0.867 0.509 0.104 0.854 0.175

RF 0.752 0.780 0.800 0.611 0.174 0.857 0.286

AdaBoost 0.713 0.683 0.833 0.571 0.254 0.910 0.389

GNB 0.738 0.615 0.667 0.743 0.247 0.944 0.361

CNB 0.726 0.580 0.733 0.680 0.225 0.932 0.345

MLP 0.549 0.190 0.933 0.171 0.153 0.975 0.263

SVM 0.637 0.566 0.667 0.629 0.208 0.913 0.317

KNN 0.573 0.844 0.333 0.811 0.250 0.856 0.286
F
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bluer color is. In addition, we ranked the features of the model

(Supplementary Figure S15D). The higher feature ranking indicated

that the feature is more important, which means that the feature

contributes more to the model. Overall, the XGBoost model places

the most importance on NAMPT, CHPT1, and MARS2.

Furthermore, we presented two representative samples to

elucidate the interpretability of the XGBoost model. One

exemplifies a non-metastasis BC patient, characterized by a low

SHAP prediction score of 0.23 (Supplementary Figure S15E), while

the other metastasis BC patient exhibits a higher SHAP score of 0.66

(Supplementary Figure S15F).
4 Discussion

BC is the most widespread malignant neoplasm among women

worldwide, with its prevalence intricately linked to a myriad of

factors (1, 32). As such, the exploration of the complex mechanisms

underpinning the development of BC and the creation of clinical

prediction models for BC patients have become critical frontiers in

BC research. This endeavor is crucial for guiding the development

of efficacious treatment strategies for affected individuals. As the

center of cellular energy metabolism, mitochondrial dysfunction is

not only closely related to the occurrence and progression of cancer

(7, 8) but also associated with drug resistance and the maintenance

of tumor stem cells (9, 10). The relationship between mitochondria

and BC is a significant area of research, and recent studies have

revealed the intricate interactions between them. For example,

through in vitro experiments and cancer cell transplantation

experiments, research has found that inducing the expression of

LACTB protein in BC cells can inhibit cell proliferation and

differentiation (33). Additionally, burgeoning evidence indicates

that MRGs are associated with the prognosis of BC patients,

exemplified by genes such as SIRT5 and VDAC1 (12, 34).

Additionally, MRGs have been linked to the metastasis of BC

(35). Nonetheless, research investigating the relationship between

MRGs and both the prognosis and metastasis of BC remains

nascent. Reports of clinical prediction models being developed for

BC patients based on MRGs are scant.

Currently, a substantial corpus of research has delved into the

correlations between MRGs and cancer prognosis, with various

models being formulated to predict outcomes (13, 36, 37). In this

study, we have successfully constructed a prognostic model that

forecasts OS in BC patients, employing 9 MRGs: DCTPP1, FEZ1,

KMO, NME3, CCR7, ISOC2, STAR, COMTD1, and ESR2. Patients

in the high-risk group exhibited a significantly poorer prognosis

compared to their low-risk counterparts. The AUC of the time-

dependent ROC curves for predicting 1-, 3-, and 5-year OS in the

TCGA training cohort surpassed 0.7, affirming the model’s excellent

predictive accuracy. This finding was further validated through both

external and internal validation cohorts. Previously, Weixu et al.

explored the significance of MRGs in BC, proposing a prognostic

model based on 4 MRGs (38). In comparison, we included a greater

number of MRGs in our prognostic analysis, which yielded a model

with enhanced predictive precision. In addition, we constructed a

nomogram combining the model’s risk score and the patient’s
Frontiers in Immunology 17
clinical characteristics, further confirming the accuracy and

reliability of the model. Research indicates that DCTPP1 is up-

regulated in BC, and high expression of DCTPP1 in BC is associated

with poor prognosis, suggesting that DCTPP1 might play a

significant role in the development of BC (39). Conversely, the

body of research exploring the association between FEZ1 and BC

remains sparse. Nevertheless, extant studies illustrate that

introducing FEZ1 into FEZ1-deficient cancer cells significantly

curtails tumorigenesis and reduces cellular proliferation,

culminating in an accumulation of cells in the late S-G2/M phase

of the cell cycle (40). Additionally, our findings indicate a notable

down-expression of FEZ1 in BC tissues. Given FEZ1’s role as a

tumor suppressor gene, its absence or reduced expression appears

to significantly contribute to the advancement of BC. KMO is a key

enzyme in the tryptophan metabolic pathway, primarily expressed

at higher levels in triple-negative breast cancer (TNBC), and

promotes the migration and invasion of TNBC cells, which might

be independent of its enzymatic activity but through an b-catenin
pathway (41). Current research on the correlation between NME3

and BC is limited, but studies suggest that it may play the role of a

tumor suppressor gene (42). Our current findings indicate that

patients with high expression of NME3 seem to have a better

prognosis, although this is not statistically significant, further

confirming its tumor-suppressing function. However, the anti-

cancer mechanisms of NME3 in BC require further experimental

exploration. The link between CCR7 and BC primarily manifests in

its role in BC metastasis, notably influencing the migration and

dissemination of tumor cells to the lymphatic system. Targeting the

CCR7 axis may offer therapeutic avenues to mitigate BC spread (43,

44). Current knowledge regarding the involvement of ISOC2,

STAR, and COMTD1 in BC is lacking. Our study finds their

expression correlates with the infiltration of various immune cells,

suggesting a potential role in the tumor immune microenvironment

of BC. However, elucidating their precise functions in BC onset and

progression requires further investigation. It is established that

ESR2 exhibits reduced expression in BC, and its low expression

levels are linked to enhanced OS rates, potentially through

modulation of immune responses (45). Although our current

research also confirms the low expression of ESR2 in BC, no

significant differences in OS were observed, indicating the need

for more extensive experiments to decode ESR2’s role in BC.

In this study, the outcomes of the functional enrichment

analysis revealed that MRGs were primarily associated with the

progression of metabolism involved in the progression of BC,

mainly nucleotide, fatty acid, and amino acid metabolism.

Therefore, we analyzed the differences in metabolism-related

genes expression between two risk groups. Aberrations in

nucleotide metabolism extend beyond tumor proliferation to

encompass diverse oncogenic behaviors such as immune evasion,

metastasis, and therapy resistance (46). Our findings indicate a

downregulation of enzymes catalyzing nucleotide hydrolysis in the

high-risk group, suggesting that the impact of MRGs on nucleotide

metabolism predominantly manifests through the modulation of

nucleotide hydrolase expression and activity, thereby influencing

the proliferation of BC cells. Additionally, we noted variations in the

expression of other metabolism-related genes between the two risk
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groups, highlighting a multifaceted and profound interconnection

between energy metabolism and cancer development. Tumor cells

alter the flux through various metabolic pathways to meet their

increased demands for bioenergy and biosynthesis, while

simultaneously mitigating oxidative stress, thus promoting the

proliferation and survival of tumor cells. Furthermore, fibroblasts

and immune cells within the TME also regulate tumor progression

through their metabolism (24, 47). In summary, energy metabolism

plays a crucial role in the development of BC, and metabolic

pathways regulated by mitochondrial genes hold promise as new

therapeutic targets for BC.

Mitochondrial metabolism exerts a notable influence on immune

cells within the TME, prompting us to examine the immune

characteristics of two distinct risk groups. Chemokines and their

receptors exert pro- or anti-tumoral role in cancer progression

through their involvement in leukocyte recruitment, angiogenesis,

cancer cell proliferation, andmetastasis (48, 49). Our analysis revealed

that patients in the high-risk group typically exhibit elevated levels of

chemokine and receptor expression, alongside increased infiltration of

CD8+ T cells and reduced presence of various immunosuppressive

cell types, such as Tregs, M0, and M2 macrophages. Research

indicates that chemokines and their receptors within the TME play

a crucial role in regulating the migration and function of CD8+ T

cells, such as CXCL9 and CXCL10 (50). Consequently, we

hypothesize that the pronounced infiltration of CD8+ T cells in

patients of the high-risk group is linked to the activity of chemokines.

Furthermore, M2 macrophages and Treg cells are known to create an

immunological barrier that impedes the anti-tumor immune response

mediated by CD8+ T cells (51). Intriguingly, a similar pattern was

observed among patients in the low-risk group, rather than those in

the high-risk group, suggesting that in the latter, the recruitment of

anti-tumor immune cells and the suppression of immunosuppressive

cells may be consequences of the body’s defensive response to the

tumor, rather than the causes. Nevertheless, we noted elevated

infiltration levels of anti-tumor immune cells in the low-risk group,

including aDCs, NK CD56 dim cells, and Th1 cells, which may

contribute to a more favorable prognosis for these patients. The

activation of DCs is essential for the successful presentation of cancer

antigens to T cells, which results in a specific immune attack on tumor

cells (52). NK cells, particularly those characterized by the expression

of CD56 dim, play a significant role in the body’s immune response

against cancers. These cells are a subset of NK cells that are known

for their potent cytotoxic activity against tumor cells (53).

Recent studies have highlighted the increasing importance of

eliciting a Th1 response in cancer immunotherapy, which can kill

tumor cells indirectly by activating cytotoxic T lymphocytes and

antigen-presenting cells, and directly by releasing cytokines that

activate death receptors on the surface of tumor cells (54).

Furthermore, we observed that the Stromal score and ESTIMATE

score of the high-risk group were higher than those of the low-risk

group. It has been reported that higher stromal score and

lower immune score may correlate with higher levels of T cell co-

inhibitory/stimulatory molecules and angiogenesis markers

(26), which may contribute to the poorer prognosis of BC patients

in the high-risk group. Nonetheless, no differences in immune
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scores were observed between the two groups. Given these findings,

we propose that the TME in both groups contributes to both

cancer promotion and tumor suppression. The immune

characteristics of the two groups likely not be the primary cause

of the differences in prognosis. Thus, a deeper understanding of

the TME’s complexities is essential for the development of more

efficacious immunotherapeutic approaches.

The TIDE score is used to predict the tumor’s immune escape

capability by comprehensively evaluating the activity of two main

mechanisms in the tumor: T cell dysfunction and tumor immune

exclusion (55). The IPS algorithm is a measure for evaluating the

likelihood of a patient’s response to ICIs, such as PD-1/PD-L1 and

CTLA-4 inhibitors (18). Patients in the low-risk group exhibited

lower TIDE scores and higher IPS scores, regardless of their PD-1 or

CTLA-4 status. This indicates that patients at lower risk are more

likely to benefit from immunotherapy. This finding implies that

stratifying patients by risk can more accurately predict who will

respond better to immunotherapy, thereby supporting personalized

immunotherapy decisions. Moreover, analyses of real-world

cohorts of patients receiving immunotherapy, specifically the

IMvigor210 and GSE78220 cohorts, have also confirmed the

model’s predictive performance in evaluating responsiveness to

immunotherapy. These studies underscore the utility of the model

in a clinical setting, providing a more accurate prediction of patient

outcomes following immunotherapy treatment. Additionally,

through drug sensitivity analysis, we found that patients in the

high-risk group are more sensitive to treatments with drugs such as

FTI-277. FTI-277 is a compound that exhibits significant anti-

proliferative effects on BC cells, particularly showing a strong anti-

proliferative action on H-Ras-MCF10A and Hs578T BC cells

expressing active H-Ras mutations (56). In contrast, patients in

the low-risk group are more sensitive to drugs such as TL-2-105.

Currently, there are no studies on the correlation between TL-2-105

and BC treatment, and more detailed information is needed to fully

understand its mechanism of action and potential for clinical

application. In summary, drug sensitivity analysis has revealed

differences in sensitivity to specific drugs among patients in

different risk groups, providing important information for the

development of personalized treatment plans.

The association between ITH and cancer has emerged as a focal

point in BC research recently. The high tumor heterogeneity

associated with poor prognosis is also one of the main

determinants of treatment resistance and failure (19). In this

study, we observed a positive correlation between risk score and

ITH score, and ITH-high was related to poor prognosis in BC

patients. This relationship might explain the poorer prognosis and

reduced responsiveness to immunotherapy observed in high-risk

groups, thereby lending additional support to the interpretability of

our model.

Machine-learning models demonstrate immense potential in

clinical applications; however, successfully integrating these models

into clinical practice requires overcoming challenges related to data

quality, model interpretability, regulatory compliance, and ensuring

fairness and ethics in their application (57). Distant metastasis in

BC is a primary cause of poor prognosis and treatment failure in
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patients. At present, there are relatively few studies focused on

predicting BC metastasis through model construction. Previously,

one study selected target genes for distant metastasis of BC and

constructed multiple 21-gene models for predicting distant

metastasis using different machine-learning methods. Among

these, the model based on the random forest algorithm performed

the best in predicting the occurrence of distant metastasis (58).

Mitochondria plays a crucial role in the metastasis of BC, largely

due to their involvement in metabolic reprogramming and the

regulation of cellular processes that promote cancer progression

and resistance to treatment (35). Our study is pioneering in

constructing a clinical prediction model for BC distant metastasis

using six mitochondrial-related genes (MRGs): PDK4, NRF1,

DCAF8, CHPT1, MARS2, and NAMPT. This represents one of

the innovative aspects of our current research. PDK4 is a key

enzyme involved in regulating glucose metabolism and

mitochondrial respiration, which has been shown to be relatively

overexpressed in BC and associated with poor prognosis (59). NRF1

is involved in mitochondrial energy metabolism and is highly

expressed in BC tissues, which upregulates the expression of ROS

scavenging enzymes SOX2 and GPX1, allowing tumor cells to

maintain low levels of ROC, thereby promoting tumor cell

epithelial-mesenchymal transition (EMT) and metastasis (60).

DCAF8, through its interaction with the CUL4-DDB1 E3

ubiquitin ligase complex, participates in the ubiquitination and

subsequent proteasomal degradation of proteins, playing a crucial

role in several biological processes closely related to the

development and progression of cancer (61). CHPT1 is found to

be significantly overexpressed in BC, mediating pivotal metabolic

alterations within BC cells and contributing to the enhancement of

the malignant phenotype and the proliferation of BC cells, and

associated with the early metastasis of tamoxifen-resistant BC cells

(62). No studies currently link MARS2 with BC, but in non-small

cell lung cancer, MARS2 is known to impact glycolysis and cellular

redox balance through its interaction with MCU, facilitating EMT

and cancer progression (63). Research indicates that NAMPT

accelerates the proliferation of BC cells by activating AKT and

ERK1/2 pathways, NAMPT inhibitors hold promise as novel

therapeutic approaches for BC treatment (64).

In the current study, the XGBoost model showed the best

performance with an accuracy of 0.842, sensitivity of 0.859,

specificity of 0.839, PPV of 0.506, NPV of 0.968, and F1 score of

0.628 in the training set. The establishment of a distant metastasis

prediction model for BC through MRGs not only helps us

understand the mechanisms of MRGs in BC metastasis but also

provides a basis for personalized treatment of BC patients.

This study has developed predictive models for BC prognosis

and distant metastasis by analyzing MRGs. These models exhibit

high accuracy in forecasting OS and the likelihood of distant

metastasis in BC patients. Against the backdrop of the increasing

focus on personalized medicine, the MRGs identified in this

research offer novel perspectives for the individualized treatment

of BC. Specifically, the predictive models constructed herein can

assist clinicians in estimating patient responses to chemotherapy or

immunotherapy based on individualized risk scores, thereby
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guiding the selection of treatment strategies, optimizing

therapeutic plans, and minimizing unnecessary side effects.

Moreover, for high-risk patients, targeted interventions aimed at

enhancing mitochondrial function may be considered as an adjunct

to standard treatment protocols to improve therapeutic outcomes.

However, despite the significant contributions of this study,

several limitations must be acknowledged. First, the retrospective

design of this study inherently restricts the ability to establish causal

relationships with certainty. Second, although the study utilized data

from multiple databases, the potential lack of population diversity

within these datasets may limit the generalizability of the models.

Furthermore, while several MRGs associated with prognosis were

identified, the precise biological functions and mechanisms of these

genes in BC remain inadequately understood. Lastly, the drug

sensitivity analyses conducted in this study were based on in vitro

data, necessitating further validation through in vivo experiments and

clinical trials to support the translation of these findings into clinical

practice. Nonetheless, these findings lay the groundwork for future

research. Further investigations are needed to elucidate the

underlying mechanisms by which these MRGs influence BC

progression and metastasis. A deeper understanding of these

pathways could lead to the identification of new therapeutic targets,

potentially resulting in the development of more effective treatments.

Additionally, clinical trials are necessary to validate the clinical utility

of the MRG-based models developed in this study, ensuring their

reliability in guiding treatment decisions. Moreover, given that

mitochondrial dysfunction is a hallmark of various cancer types,

future research should explore the role of these MRGs in other

malignancies, potentially contributing to the development of cross-

cancer therapeutic strategies.
5 Conclusion

In summary, based on MRGs we successfully constructed a

prognostic model to predict OS and immunotherapy responses for

BC patients. Moreover, we established a model for predicting

distant metastasis. The formulation of these dual clinical

prediction models offers valuable insights for personalized and

precise treatment strategies and heralds new avenues for

investigating the pathogenesis of BC. Moving forward, it is crucial

to further explore the roles of MRGs in BC.
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of gene regulation suppress and then restore oxidative phosphorylation in cancer cells.
Int J Biochem Cell Biol. (2011) 43:950–68. doi: 10.1016/j.biocel.2010.05.003

6. Chew EGY, Lim TC, Leong MF, Liu X, Sia YY, Leong ST, et al. Observations that
suggest a contribution of altered dermal papilla mitochondrial function to androgenetic
alopecia. Exp Dermatol. (2022) 31(6):906–17. doi: 10.1111/exd.14536

7. Kirtonia A, Sethi G, Garg M. The multifaceted role of reactive oxygen species in
tumorigenesis. Cell Mol Life Sci. (2020) 77:4459–83. doi: 10.1007/s00018-020-03536-5

8. Lee HY, Nga HT, Tian J, Yi HS. Mitochondrial metabolic signatures in
hepatocellular carcinoma. Cells. (2021) 10:1901. doi: 10.3390/cells10081901

9. Zhang G, Frederick DT, Wu L, Wei Z, Krepler C, Srinivasan S, et al. Targeting
mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. J Clin
Invest. (2016) 126(5):1834–56. doi: 10.1172/JCI82661

10. Cuyàs E, Verdura S, Folguera-Blasco N, Bastidas-Velez C, Martin ÁG, Alarcón
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OXPHOS oxidative phosphorylation
ROS reactive oxygen species
MRGs mitochondrial-related genes
TCGA The Cancer Genome Atlas
GEO Gene Expression Omnibus
OS overall survival
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
GSEA Gene Set Enrichment Analysis
PPI protein-protein interaction
MHC major histocompatibility complex
ICGs immune checkpoint genes
ssGSEA single sample gene set enrichment
TIDE Tumor Immune Dysfunction and Exclusion
IPS Immunophenoscore
ITH intratumor heterogeneity
TMB tumor mutational burden
MSI microsatellite instability
mRNAsi mRNA expressionbased stemness index
IC50 50% inhibitory concentration
GDSC Genomics of Drug Sensitivity in Cancer
RF random forest
XGBoost extreme gradient boosting
LR logistic regression
LightGBM light gradient boosting machine
ogy 22
AdaBoost adaptive boosting
GNB gaussian naive bayes
CNB complement naive bayes
MLP multi-layer perceptron neural networks
SVM support vector machine
KNN k-nearest neighbors
AUC area under the curve
PPV positive predictive value
NPV negative predictive value
DCA Decision Curve Analysis
SHAP SHapley Additive exPlanations
qRT-PCR quantitative real-time polymerase chain reaction
IHC immunohistochemistry
ER estrogen receptor
PR progesterone receptor
HER2 human epidermal growth factor receptor 2;
TME tumor microenvironment
aDC activated dendritic cells
NK natural killer
Th1 T helper 1
Tgd gamma delta T cells
Tregs regulatory T cells;
SNV single nucleotide variations
TNBC triple-negative breast cancer
EMT epithelial-mesenchymal transition
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