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As a grave and highly lethal clinical challenge, sepsis, along with its consequent

multiorgan dysfunction, affects millions of people worldwide. Sepsis is a complex

syndrome caused by a dysregulated host response to infection, leading to fatal

organ dysfunction. An increasing body of evidence suggests that the

pathogenesis of sepsis is both intricate and rapid and involves various cellular

responses and signal transductions mediated by post-translational modifications

(PTMs). Hence, a comprehensive understanding of the mechanisms and

functions of PTMs within regulatory networks is imperative for understanding

the pathological processes, diagnosis, progression, and treatment of sepsis. In

this review, we provide an exhaustive and comprehensive summary of the

relationship between PTMs and sepsis-induced organ dysfunction.

Furthermore, we explored the potential applications of PTMs in the treatment

of sepsis, offering a forward-looking perspective on the understanding of

infectious diseases.
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Introduction

Sepsis, a systemic malady precipitated by the host’s dysregulated response to infection,

is commonly caused by a plethora of pathogenic microorganisms and is one of the most

prevalent causes of mortality within intensive care units (ICU) (1, 2). As a grave threat to

life, sepsis, characterized by its complexity and mutability, has rapidly advanced,

implicating multiple organ systems (3, 4). Its hallmark manifestations include

endothelial dysfunction, acute lung injury, bone marrow suppression, disturbances in

acid-base balance, hepatic and renal impairment, coagulopathy, and myocardial damage (5,

6). With the aging population, increasing incidence of cancer, and increasing use of invasive

medical procedures, the prevalence of sepsis is on the rise, making it a prominent global
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public health concern (7). Despite significant advancements in our

understanding of sepsis in recent years, the complex

pathophysiological mechanisms involved have limited the

development of effective diagnostic and therapeutic approaches to

improve patient outcomes.

Post-translational modifications (PTMs) refer to a series of

covalent alterations of proteins following RNA translation,

representing a pivotal phase in protein biosynthesis (8).

Throughout their life cycles, organisms experience PTMs, which

serve to enhance the complexity of the proteome, modify the

localization of associated proteins, facilitate or inhibit interactions

among proteins, and activate or deactivate relevant proteins (9, 10).

Increasing research has uncovered that many critical biological

processes and disease occurrences are regulated not merely by the

abundance of proteins but significantly by various PTMs. The most

common PTMs include phosphorylation, methylation, acetylation,

ubiquitination, and glycosylation, in addition to a range of novel

acylations discovered in recent years, such as succinylation,

crotonylation, 2-hydroxyisobutyrylation, and lactylation (11–13).

In pathways related to sepsis, PTMs play a crucial role, not only by

diversifying protein functions but also by acting as switches,

enabling cells or organisms to respond swiftly and precisely to

stress (14, 15). In recent years, the significance of PTMs in the

context of sepsis-induced multi-organ dysfunction has increasingly

gained attention. Therefore, understanding the characteristics and

regulatory roles of these PTMs methods holds significant value for
Frontiers in Immunology 02
exploring diagnostic and therapeutic measures for sepsis-induced

multi-organ dysfunction.

In this comprehensive review, we have examined the

advancements in PTMs in sepsis, summarizing recent progress in

understanding how protein phosphorylation, acetylation,

ubiquitination, methylation, lactylation, and so on impact the

multi-organ dysfunction induced by sepsis (Figure 1). This paper

aims to elucidate the mechanisms by which various PTMs are

involved in sepsis pathogenesis and their applications in sepsis

treatment, providing valuable insights for interventions in sepsis

and its associated multi-organ dysfunction.
Role of post-translational
modifications in sepsis

Regulation of protein post-translational
modifications in sepsis

Phosphorylation
Protein phosphorylation, catalyzed by protein kinases,

represents a ubiquitous type of PTMs that plays a pivotal role in

the pathogenesis and progression of sepsis (16). In essence,

phosphorylation refers to the process whereby proteins, under the

catalysis of phosphorylases, transfer phosphate groups from

adenosine triphosphate (ATP) or guanosine triphosphate (GTP)
FIGURE 1

Overview of the composition and regulatory mechanisms of PTMs in sepsis. Sepsis and multiple organ dysfunction caused by the main way of
protein modification after translation for protein phosphorylation, acetylation, ubiquitination, methylation and lactylation, succinylation, citrullination,
GlcNAcylation may participate in the occurrence of sepsis development but has not yet been confirmed (draw by Figdraw).
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to specific amino acid residues (17). The pathogenesis of sepsis is

intricate and involves multifaceted pathophysiological alterations

across multiple systems and organs (18). Systemic inflammatory

response syndrome triggered by infection is a hallmark of sepsis

(19). While inflammation is critical for the eradication of

pathogens, unbridled inflammation can precipitate the

development of sepsis. Moreover, the expression of inflammatory

mediators is intimately associated with protein phosphorylation.

Research has revealed that recombinant homeodomain interacting

protein kinase 2 (HIPK2), a serine/threonine kinase, exhibits

elevated expression in inflammatory macrophages. Notably, mice

deficient in Hipk2 are more susceptible to cecal ligation and

puncture (CLP)-induced sepsis, as HIPK2 can bind to and

phosphorylate histone deacetylase 3 (HDAC3), inhibiting its

enzymatic activity. This inhibition, in turn, suppresses the activity

of P65 and curtails the activation of NF-kB, thereby mitigating

infection-related septic shock (20). Krüppel-like factor 4 (KLF4) is a

pivotal anti-inflammatory transcription factor that is reportedly

involved in the immune response to sepsis (21). In LPS-induced

RAW264.7 cells and CLP-induced septic mouse liver and lung

tissues, recombinant Toll-like receptor 4 (TLR4) facilitates the

phosphorylation of ERK1/2, leading to the downregulation of

KLF4 and resulting in increased expression of ITGA2B (22–24).

This underpins the inflammatory response in sepsis, with liver

damage before and after sepsis considered to be of significant

importance. Any intervention that mitigates liver damage and

fosters liver function recovery can contribute to reducing

mortality and morbidity rates. Furthermore, the JAK/STAT

pathway plays a crucial role in the systemic inflammatory

response induced by sepsis (25). Upon cytokine activation, JAKs

selectively phosphorylate STAT, leading to the suppression of the

JAK2/STAT3 signaling pathway. This suppression reduces the

levels of TNF-a, IL-6, and IL-1b within the body during sepsis,

diminishing the inflammatory response and sepsis-induced

multiorgan dysfunction (26, 27). Similarly, the NLRP3

inflammasome mediates the onset of numerous inflammatory

diseases, including sepsis-induced septic shock. Studies have

shown that in LPS-induced septic shock, Pin1 influences the

phosphorylation of p38 MAPK, activating NLRP3 inflammasome-

mediated pyroptosis (28). In summary, given the heterogeneity of

sepsis, its pathogenesis is complex. However, the hypothesis of

target phosphorylation potentially elucidates the primary

characteristic of sepsis, the inflammatory response. These findings

suggest a promising role for phosphorylation in the development of

well-defined therapeutic targets for sepsis.

Acetylation
Protein acetylation stands as a pivotal PTMs, intricately

involved in regulating vital physiological processes, including but

not limited to epigenetics (29). Its significance extends to

chromosomal recombination, transcriptional modulation of genes,

cellular metabolic regulation, dynamic control of protein stability,

and the orchestrated response to microbial infections (30, 31).

Aberrations in acetylations can precipitate unbridled gene

expression, subsequently altering enzymatic activities in

metabolism, influencing protein-protein interactions, and
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compromising protein stability (32). Such anomalies instigate

aberrant cell proliferation, thereby triggering the onset of

developmental and proliferative disorders. Dysregulation of

protein acetylation pathways becomes a player in sepsis

pathogenesis, influencing gene expression patterns, modulating

crucial signaling pathways, and ultimately contributing to the

dysfunctions observed in various organs during this critical

condition. In recent years, an increasing body of experimental

evidence has underscored the indispensable role of deacetylase

enzymes known as sirtuins in regulating inflammatory responses

and the progression of sepsis (33, 34).SIRT1 plays diametrically

opposing roles during the high and low inflammatory response

phases of sepsis (35). Its expression is typically subdued in the initial

stages of sepsis, yet the heightened glycolysis triggered by the

intense inflammatory response can lead to an accumulation of

niacinamide adenine dinucleotide (NAD+), thereby promoting the

upregulation of SIRT1 expression. Through deacetylating

inflammatory pathways involving factors like NF-kB/p65 and

high mobility group box 1 (HMGB1), SIRT1 exerts its anti-

inflammatory effects (36). In a mouse model of sepsis, through

deacetylation of NF-kB, SIRT1 renders it inactive, thereby

diminishing pro-inflammatory response levels. However, the

absence of SIRT1 promotes Akt acetylation, consequently

enhancing the production of inflammatory factors in murine

macrophages, potentially exacerbating the progression of sepsis in

mice (37, 38). SIRT2, in addition to its deacetylation role on NF-kB/
p65 akin to SIRT1 in acute inflammation, holds particular

significance in regulating microvascular inflammation and

promoting low inflammation in septic obese mice (39). SIRT5

competes with SIRT2 in its interaction with NF-kB/p65, as SIRT5
can interact with NF-kB/p65 in a deacetylase activity-independent

way, thereby impeding SIRT2’s deacetylation of p65 and fostering

the activation of NF-kB and its downstream signaling molecules

(40). In a rodent model of sepsis-induced acute kidney injury, a

reduction in the activities of SIRT1 and SIRT3 led to heightened

acetylation levels of SOD2, accompanied by oxidative stress and

mitochondrial impairment (41). Acting as an upstream deacetylase,

SIRT3 regulates the acetylation level of pyruvate dehydrogenase E1

component subunit alpha (PDHA1) in renal tubular cells,

participating in the occurrence and development of sepsis-

associated acute kidney injury (SAKI). Downregulation of SIRT3

expression in renal tissues and HK-2 cells after sepsis results in an

elevation of PDHA1 acetylation levels coupled with diminished

PDHA1 activity (42). Research has also revealed that SIRT6, SIRT1,

and NF-kB collaborate in orchestrating the metabolic

reprogramming of energy during the pathophysiological processes

of sepsis (43). Thus the function of different Sirtuins in sepsis

suggests that targeting Sirtuin family members at different stages of

sepsis can help to precisely control the progression of sepsis.

Moreover, in a rat model of sepsis-associated encephalopathy

(SAE), cognitive function declines, accompanied by increased

expression and acetylation levels of cyclophilin D (CypD) and

HMGB1, as well as elevated expression of inflammatory factors

such as IL-6 and TNF-a (44, 45). HMGB1, a crucial product of the

inflammatory response, can trigger neuroinflammation by

transporting and activating macrophages derived from the bone
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marrow into the brain, leading to postoperative cognitive

dysfunction (46, 47). The HMGB1 inhibitor sodium butyrate can

suppress the expression of HMGB1, IL-6, and acetylated HMGB1;

elevate the levels of brain-derived neurotrophic factor (BDNF); and

significantly ameliorate cognitive dysfunction induced by SAE (48).

Protein acetylation has emerged as a critical facet of sepsis and is

intricately interwoven with the complex tapestry of molecular

responses. These PTMs assume a central role in orchestrating

cellular reactions during the tumultuous cascade of events

characterizing sepsis. Its involvement extends beyond the

traditional realms, reaching into the intricate web of immune

responses, inflammatory signaling, and the delicate equilibrium of

cellular homeostasis.
Ubiquitination and SUMOylation

Ubiquitination refers to the attachment of small ubiquitin

proteins to target proteins, regulating protein stability, activity,

and interactions through this covalent modification (49, 50).

Research has revealed a significant increase in the ubiquitination

levels of proteins, particularly immune cells and inflammation-

related proteins, in sepsis (51, 52). Ubiquitination plays a pivotal

role in regulating inflammation by modulating the activity of

inflammatory signaling pathways (53–55). In a mouse model of

LPS-induced sepsis-induced lung injury, reducing TRIM27 was

found to alleviate sepsis-induced inflammation, oxidative stress,

and cell apoptosis by inhibiting PPARg ubiquitination and

decreasing NADPH oxidase 4 (NOX4) expression (56). Similarly,

this manifestation of sepsis can also lead to a significant decline in

cardiac function. Research has revealed increased expression of

CCAAT/enhancer-binding protein beta (CEBPB) in LPS-induced

mouse myocardial tissue. This heightened expression triggers

macrophage-mediated inflammation and the onset of systemic

inflammatory and microvascular injury (SIMI). However, the

ubiquit in modification of CEBPB by the constitutive

photomorphogenesis protein 1 homolog (COP1) results in

CEBPB degradation and the inhibition of macrophage

inflammatory responses (57). The ubiquitin modification of

CEBPB acts as a safeguard, protecting the heart from the ravages

of SIMI (58). On the other hand, ubiquitination plays a widespread

role in regulating appropriate immune responses (59). Recent

studies have revealed the crucial role of hypoxia-inducible factor-

1a (HIF-1a) in adaptive and cell-protective responses, in cell

survival, proliferation, apoptosis, inflammation, and angiogenesis

(60, 61). In the early stages of sepsis, activating transcription factor 4

(ATF4) regulates macrophage pro-inflammatory response

activation through direct targeting of HK2 or interaction with

HIF-1a to maintain its stability. Inducing ATF4 expression can

induce immune activation in tolerant macrophages, providing new

insights for immune reconstitution therapy in sepsis (62).

Endothelial cell dysfunction and immune dysregulation are

considered pivotal pathogenic features of sepsis (63). Research

has revealed that TRIpartite Motif-containing (TRIM), as a

subfamily of E3 ubiquitin ligases, participates in cell proliferation

and differentiation, as well as in maintaining endothelial function.
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TRIM8 regulates the activation of TNF-a and IL-1b through

mediating the multiubiquitination of TAK1 with K63 linkage,

thus modulating the NF-kB signaling pathway (64). TRIM2

alleviates sepsis-induced endothelial cell damage by inhibiting the

NF-kB pathway and the release of inflammatory factors (65).

TRIM47 acts as a stimulator of TNF-a-induced endothelial cell

activation and, as a potential E3 ubiquitin ligase, interacts with TNF

receptor associated factor 2 (TRAF2), mediating K63-linked

ubiquitination to activate the NF-kB signaling pathway (66).In

summary, protein ubiquitination plays a crucial role in sepsis and

the resulting multi-organ dysfunction. A deeper exploration of the

molecular mechanisms of ubiquitination will offer new perspectives

for understanding the pathological processes of sepsis, providing

more precise targets for future therapeutic strategies. With ongoing

scientific advancements, we anticipate uncovering the intricate

interplay between protein ubiquitination modification and sepsis.

In addition to ubiquitination, there are reactions similar to

ubiquitination modifications, such as small ubiquitin-like modifier

(SUMOylation). It regulates cell signaling, gene transcription, cell

proliferation, and apoptosis by covalently attaching SUMO proteins

to specific proteins, playing an important role in regulating

inflammation and immune responses in sepsis (67). Ubiquitin-

conjugating enzyme 9 (UBC9) is the sole SUMO ligase for

SUMOylation, and changes in UBC9 expression directly reflect

SUMOylation capacity (68). Studies have shown that LPS-induced

UBC9 gene knockout in mice increases mortality in a sepsis model,

and in vitro cell experiments have revealed that UBC9 deficiency

accelerates dendritic cell (DC) maturation and enhances

inflammatory responses. Similarly, UBC9DDC mice in the cecal

ligation and puncture (CLP) sepsis model exhibit higher mortality

rates than WT mice in the CLP sepsis model, with significantly

elevated levels of IL-18 and IL-1b in plasma. While SUMOylation

has no effect on DC, its absence may increase sepsis mouse

mortality by regulating DC inflammatory cytokine release and

abnormal T cell activation, confirming that SUMOylation may be

a protective factor in sepsis (69). Macrophage dysfunction is

considered a significant factor affecting immune homeostasis and

the inflammatory process in sepsis, and the role and related

mechanisms of SUMOylation in macrophage inflammation

during sepsis have been confirmed (70). SUMO specific peptidase

1 (SENP 1) is involved in the inflammatory response processes of

various cells, with notably increased expression of SUMO specific

peptidase 1 (SENP1)in RAW 264.7 cells induced by LPS. SENP1

promotes Sp3 expression through deSUMOylation and interaction

with NF-kB, enhancing LPS-induced macrophage inflammation

(71). Recent studies have reported that ginkgolic acid (GA)

increases inflammation and apoptosis in sepsis mouse

macrophages, leading to organ damage, possibly by inhibiting the

SUMOylation process and increasing NF-kB/p65 phosphorylation

and nuclear translocation. However, further validation using

SUMOylation activators is needed to investigate the interaction

of SUMOylation with macrophages in sepsis (72). Research on

SUMOylation has been limited due to a lack of specific inhibitors,

until the appearance of the first selective SUMO inhibitor, TAK981,

which has provided new insights into the clinical significance of

SUMOylation given its connection to cancer and sepsis (73).
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Youssef et al. have focused on the impact of TAK981 on endotoxin

immune responses, and results have shown that recurrent TAK981

enhances early TNF-a production. In the spleen, sepsis induces a

significant time and substrate specificity of SUMO1 and SUMO2/3,

both of which are inhibited by TAK981 (74). The therapeutic effects

of TAK981 in cancer treatment have entered clinical trials, making

new immunotherapies and anti-tumor treatments possible, and

providing new clinical opportunities for infectious diseases and

sepsis treatment (75). In conclusion, further research on the

mechanisms of SUMOylation in inflammation and sepsis will

help uncover the pathogenesis of diseases and provide an

important theoretical basis for developing new treatment strategies.

Although the mechanisms of ubiquitination and SUMOylation

are different, in some cases, SUMOylation can induce proteins to be

degraded through the ubiquitination pathway. E3 ubiquitin ligases

containing SUMO-interacting motifs can recognize and bind to

proteins modified by SUMOylation, thereby inducing unmodified

lysine residues to be degraded through the ubiquitination pathway

(76). Proteomic experiments have also confirmed that the

SUMOylation status can be altered by ubiquitination (77).

However, there have been no reports of relevant studies in sepsis,

so further research is necessary to elucidate the balance of

ubiquitination and SUMOylation in sepsis, especially in infection-

inflammatory events. Additionally, providing a more detailed

description of the key components of ubiquitination and

SUMOylation will help identify new molecular targets for early

diagnosis and treatment of sepsis.
Lactylation

As a byproduct of glycolysis, lactate has long been perceived as a

metabolic byproduct (78, 79). However, with scientific

advancements, researchers have embarked on the reassessment of

lactic acid, unveiling its crucial roles in serving as both fuel and

signaling molecules (80, 81), promoting vascular genesis (82, 83),

and inhibiting immune cells (84, 85). However, the molecular

mechanisms underlying the regulation of these biological

functions by lactate remain elusive. Recently, lactylation

modification has emerged as a novel protein alteration that

facilitates gene regulation through the covalent coupling of lactyl

groups with lysine residues in proteins (12, 86). As a PTM of both

proteins and metabolic byproducts, lactylation is often intricately

linked with energy metabolism and cellular redox status (87). It

plays a multifaceted role in the pathogenesis of sepsis, contributing

to a complex interplay in its mechanistic landscape. In clinical

practice, elevated lactate levels are intricately linked to both the

incidence and prognosis of SAKI (88). A surge in lactate serves as an

independent risk factor for patients suffering from SAKI (89).

Research has revealed that the escalation of endogenous lactate

and exogenous lactate supplementation intensifies the levels of

nonhistone Fis1 in renal tubular epithelial cells, exacerbating

SAKI. Conversely, reducing lactate levels and fission 1 protein

(Fis1) lactylation mitigates SAKI, revealing a novel mechanism

linking lactate and organ damage in sepsis (42). This study

underscores the significance of therapeutic strategies aimed at
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lowering blood lactate levels in septic patients. While research on

histone lactylation is more prevalent, beyond the investigation of

nonhistone Fis1 lactylation, macrophage-derived nonhistone

HMGB1 lactylation in sepsis has also been reported. Clinical

evidence indicates a significant increase in circulating HMGB1

levels, which is positively correlated with the severity of sepsis

and mortality rate (80, 90, 91). Studies have revealed that lactate

promotes the lactylation of macrophage HMGB1 in polymicrobial

sepsis and that reducing lactate production or inhibiting GPR81-

mediated signaling can decrease extracellular HMGB1 levels,

enhancing the survival outcomes of polymicrobial sepsis patients

(92). Importantly, the elevation of lactate levels in septic patients is

often accompanied by the release of inflammatory factors (93). This

inflammatory state is intricately linked to increased lactylation,

resulting in the formation of a complex regulatory network that

may play a pivotal role in the transmission and maintenance of

inflammatory responses. Additionally, research has revealed a

significant increase in histone H3K18 lactylation in the peripheral

blood mononuclear cells of septic shock patients. This increase

correlated positively with the APACHE II score, SOFA score on day

1, duration of ICU stay, duration of mechanical ventilation, serum

lactate level, and production of inflammatory cytokines. H3K18

lactylation may serve as a reflection of the severity of critical

illnesses and the presence of infection (94). While the exploration

of lactylation has only commenced within the past three years, it has

already demonstrated significant potential. A profound

understanding of the intricate interplay between lactylation,

inflammation, multiorgan dysfunction, and immune modulation

is emerging. This understanding holds promise for revealing novel

perspectives for the diagnosis, treatment, and prognosis of sepsis.

Subsequent research endeavors are poised to expand this field,

providing further insights into the intricate relationship between

lactylation modification and the pathogenesis of sepsis. The entire

research on lactylation is still in its infancy, with several unresolved

issues. For instance: 1. Whether lactylation is a natural consequence

of high lactate accumulation in sepsis, caused by tissue

hypoperfusion, abnormal cell metabolism, or impaired liver and

kidney function, or is it a meticulously controlled mode regulated

by time and space? 2. Clinical translation of lactylation in sepsis

poses significant challenges, as individual differences among

patients may affect the level and efficacy of lactylation. Sepsis is a

dynamic process, with potentially varying patterns of lactylation at

different stages, adding complexity to its application in clinical

practice. 3. Identifying lactylation sites across multiple systems and

establishing a comprehensive multi-species lactylation map library

can greatly advance research on lactylation. This will ultimately

enhance our understanding of lactylation function and pave the way

for further exploration in this field. Future studies will continue to

expand in this area, providing more insights into the intricate

relationship between lactylation and sepsis.
Methylation

Methylation is a pivotal mode of protein and nucleic acid

modification, with the ability to orchestrate the expression and
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silencing of genes (95). Methylation is intimately intertwined with a

spectrum of ailments, such as cancer (96), aging (97), and

neurodegenerative disorders (98), and has emerged as a focal

point within the realm of epigenetics. The most prevalent forms

of methylation are DNA methylation and histone methylation.

Notably, histone methylation, a significant PTM, primarily occurs

through the catalytic process of histone methyltransferases (HMTs),

which act upon the side chains of lysine and arginine residues (99).

This process is commonly associated with the modulation of

transcriptional activation or inhibition (100, 101). In sepsis, the

release of inflammatory factors and activation of immune cells may

induce changes in intracellular signaling pathways, influencing the

methylation status of proteins (102). A study involving human

monocytic cell lines revealed that LPS stimulation could induce

methylation of the tumor necrosis factor (TNF) promoter.

Simultaneously, this leads to the departure of nucleosomes from

the NF-kB binding site of the TNF promoter region. This epigenetic

modification promoted the association of NF-kB with the TNF

promoter, resulting in the upregulation of TNF transcription (103).

Another investigation revealed a close correlation between the DNA

methylation profile of monocytes in septic patients and interleukin

levels in circulating leukocytes. This association was mediated

through Toll-like receptors and downstream inflammatory

pathways, providing further evidence of the intricate relationship

between DNA methylation and inflammatory responses (104, 105).

These findings collectively underscore the relevance of DNA

methylation in the context of inflammatory reactions.

Furthermore, protein methylations may play a regulatory role in

modulating the functionality of immune cells by controlling gene

expression. During the progression of sepsis, the activation of

immune cells and the release of inflammatory factors exert a

widespread and sustained impact on the organism (106).

Methylations may act as modulators in this process, influencing the

transcriptional levels of genes and regulating the activity of immune

cells (103). Prolonged exposure to toxins can lead to a sustained

increase in TNF-a, resulting in the depletion of the transcription

factor megakaryocytic leukemia 1 (MKL1). MKL1 is essential for H3K4

dimethylation and trimethylation in the NF-kB promoter region

induced by LPS. Depletion of MKL1 directly leads to a reduction in

NF-kB expression levels, resulting in endotoxin tolerance (107).

Continuous endotoxin stimulation also induces the recruitment of

histone methyltransferase G9a to the TNF promoter region, causing

H3K9 dimethylation and recruiting DNA (cytosine-5)-

methyltransferase 1 (DNMT-1), subsequently leading to the

remethylation of the TNF promoter. After remethylation of the TNF

promoter, the promoter becomes insensitive to endotoxin stimulation,

and even exposure to endotoxin cannot induce demethylation

activation, resulting in the development of endotoxin tolerance in the

organism (108). In summary, research related to the epigenetics of

sepsis primarily consists of animal experiments or in vitro studies, with

limited data from in vivo experiments. The exploration of the complete

epigenome of sepsis patients has begun, but further in-depth research is

needed to gain a comprehensive understanding of the regulatory role of

methylations in sepsis. This deeper understanding holds the potential

to provide a novel theoretical foundation for the development of more

effective therapeutic strategies in the future.
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Citrullination,succinylation,GlcNAcylation

Beyond the aforementioned protein modifications, which have

been extensively studied, there exist other modifications of equal

importance that remain underexplored in the context of sepsis.

Citrullination constitutes a physiological post-translational

modification whereby, catalyzed by Ca2+-dependent peptidylarginine

deiminase (PAD), arginine is converted into citrulline (109, 110). This

process is critical for modulating chromatin remodeling and the

extracellular trap formation of immune cells. Citrullination of

histones, especially histone H3, has been exposed as a cog in the

wheel of neutrophil response to infection, embodying an array of

inflammatory signals (111, 112). The enzyme peptidylarginine

deiminase 4 (PAD4) activity is an essential component of histone

citrullination and chromatin decondensation, crucial steps required for

neutrophil extracellular trap formation (NETosis) (113, 114). The levels

of citrullinated H3 (CitH3) are dependent on PAD4 activity, as

evidenced by reduced levels of pro-inflammatory factors and

neutrophil infiltration in the lungs of PADI4-/- mice (115).

Interestingly, studies have shown that vitamin C can exert a

protective effect against NETosis and sepsis formation mediated by

PAD4 inhibition of CitH3 (116). Critically, specific inhibitors of PAD4

are in development and are widely used in the study of NETosis in

sepsis, which is important for gaining insight into the role of NETosis

formation in critically ill patients (117). Actually, Levels of CitH3

within the circulation have been also verified as early diagnostic

markers for sepsis, with burgeoning studies identifying a correlation

between systemic dysfunction in sepsis and elevated serum levels of

CitH3, reflecting the gravity of septic conditions (118–120). In a

murine model of sepsis, heightened levels of CitH3 are associated

with sepsis-induced acute respiratory distress syndrome and lung

dysfunction. CitH3 is also known to activate the caspase-1-

dependent inflammasomes in myeloid-derived macrophages and

dendritic cells, leading to acute lung injury (ALI). Conversely, studies

have corroborated that therapeutic administration of monoclonal

antibodies against CitH3 substantially ameliorates survival rates in

septic mice while mitigating ALI, potentially due to inhibition of

CitH3-activated caspase-1-dependent inflammasome pathways.

Targeting the CitH3-caspase-1 axis may represent a promising

therapeutic avenue for septic shock and sepsis-induced ALI (121).

Succinylation constitutes a process whereby succinyl groups are

covalently bonded to lysine residues via enzymatic or non-

enzymatic means, affecting protein structure and function, and

thereby regulating signaling pathways and cellular metabolism

intrinsic to life (122, 123). The role of succinylation in sepsis and

related ailments has been the subject of scant research. Studies in a

mouse model of burn-induced sepsis have revealed that glutamine

augments the activity of pyruvate dehydrogenase (PDH) in

macrophages; mechanistically, glutamine attenuates SIRT5-

dependent desuccinylation of PDHA1, thus reinstating PDH

activity, bolstering M2 polarization in macrophages, and

ameliorating burn-induced sepsis in mice. This research not only

affirms the fundamental role of glutamine in supporting M2

polarization in macrophages and treating burns and their

complications but also offers novel insights into the function of

succinylation in the context of sepsis (124).
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GlcNAcylation represents an essential mode of post-

translational modification. Through this adjustment, sugar

moieties are covalently bonded to specific residues on proteins by

enzymatic catalysis—forming glycosidic linkages (125, 126).

Engaged in a myriad of biological processes, glycosylation

modulates protein folding, cell signaling, differentiation, and

immune responses. In mammals, protein glycosylation manifests

primarily in two forms: N-GlcNAcylation and O-GlcNAcylation,

the latter of which, specifically the O-GlcNAcylation signaling, is

sensitive to diverse forms of stress-induced sepsis and shock under

various pathological conditions (127, 128). In the early stages of

sepsis, O-GlcNAc signaling enhancement ameliorates outcomes in

septic shock by preserving cardiovascular function, a phenomenon

tied to the recuperation of sarcoplasmic/endoplasmic reticulum

calcium ATPase2a (SERCA2a) levels (129). Similarly, O-GlcNAc

stimulation not only offers protection to adult rats with sepsis but

also improves prognoses in their juvenile counterparts (130, 131).

O-GlcNAc transferase (OGT), the pivotal enzyme for O-

GlcNAcylation, plays a significant role; its deficiency leads to

augmented innate immune activation and exacerbated septic

inflammation. A recent study unveiled that OGT-mediated O-

GlcNAcylation of serine-threonine kinase receptor-interacting

protein kinase 3 (RIPK3) hinders ectopic RIPK3-RIPK1 and

homotypic RIPK3-RIPK3 interactions, thereby curtailing

downstream innate immune and necroptotic signaling (132). This

research underscores the importance of O-GlcNAcylation in septic

inflammation and paves the way for potential therapeutic

interventions against sepsis.
Effect of RNA modifications in sepsis

Although both RNA modification and post-translational

protein modification involve the process of modifying

biomolecules, they occur separately in RNA and protein

molecules and are involved in distinct biological processes (133).

RNAmodification refers to the chemical alteration of nucleotides in
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RNAmolecules, a process that can regulate the stability, readability,

and functionality of RNA (134). Common modifications include

N6-methyladenosine (m6A) modification, 5-methylcytosine (m5C)

modification, and ADP-ribose nucleic acid (ADAR) modification,

among others (135). In sepsis, the levels of m6A modifications may

change, influencing the expression of genes associated with

immunity and inflammation. This modification affects the

development of sepsis by regulating the production of

inflammatory factors, activating cell signaling pathways, and

modulating the functionality of immune cells (Table 1) (140, 141).
N6-methyladenylate

Methylation, in addition to protein methylation, extends to

m6A methylation—a modification primarily occurring on

adenosine bases within RNA molecules. It plays a pivotal role in

regulating the stability, transport, translation, and degradation of

RNA (142, 143). In recent years, researchers have shown a keen

interest in the role of m6A modification in various physiological

and pathological processes (144). Within the context of sepsis,

alterations in the RNA levels of m6A modifications may occur,

influencing the expression of genes associated with inflammation.

In sepsis, alterations in the m6A modification of RNA may occur,

influencing the expression of inflammation-related genes (145).

Research indicates that m6A methylation can modulate the decay

and translation efficiency of Spi2a (136). Loss of RNA methylation

in macrophages exacerbates cytokine storms and sepsis-related

myocardial dysfunction. m6A modification also plays a role in

regulating the function of immune cells. Clinical studies have

identified genes such as WTAP and methyltransferase-like

protein 16 (METTL16), which, through the modulation of m6A

methylation, facilitate immune cell infiltration, accelerating the

onset and progression of sepsis in both healthy individuals and

late-stage sepsis patients (146). These genes provide potential drug

targets for the early detection, diagnosis, and treatment of sepsis.

Recent research has demonstrated a direct role for m6A
TABLE 1 Role of N6 methylation in sepsis.

PTMs Disease Main
Object

Mechanism Reference

N6-
methyladenylate

Sepsis-
induced
myocardial
injury

Mice;
Macrophages

Exposure to LPS upregulates the lysine acetyltransferase, KAT2B, to promote METTL14 protein
stability through acetylation at K398, leading to the increased m6A methylation of Spi2a in
macrophages. m6A-methylated Spi2a directly binds to IKKb to impair IKK complex formation and
inactivate the NF-kB pathway.

(136)

Sepsis-
induced
lung injury

Mice;
Macrophages

mitophagy induced the demethylation of the miR-138-5p promoter, which may subsequently
inhibit NLRP3 inflammasome, AM pyroptosis and inflammation in sepsis-induced lung injury.

(137)

Sepsis-
induced
myocardial
injury

Rat;
cardiomyocyte
(H9C2) cells

The m6A modified SLC7A11 mRNA was recognized by YTHDF2, which promoted the decay of
SLC7A11 mRNA, consequently up-regulating ferroptosis in sepsis-induced myocardial injury.

(138)

Sepsis-
induced
myocardial
injury

Rat;
cardiomyocyte
(H9C2) cells

HDAC4 had remarkable m6A modification sites on its 3'-UTR genome, acting as the downstream
target of METTL3. Besides, m6A reader IGF2BP1 recognized the m6A modification sites on
HDAC4 mRNA and enhanced its RNA stability.

(139)
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methylation in LPS-induced pulmonary inflammatory lesions.

Elevated m6A methylation levels of circN4BP1 were observed in

mice with sepsis-induced respiratory distress syndrome (ARDS).

CircN4BP1, by binding to miR-138-5p, influences macrophage

differentiation, thereby regulating the expression of zeste homolog

2 (EZH2) both in vivo and in vitro (137). Moreover, the mRNA

levels of the m6A-related enzymes METTL3, FTO, and YTHDF2

also significantly increased. Knocking out METTL3 markedly

reduced circN4BP1 expression, regulating downstream EZH2

expression, further influencing macrophage polarization, and

ameliorating the inflammatory response induced by sepsis-

induced ARDS (138). Despite our initial understanding of the

role of m6A methylation in sepsis, many unknown areas remain

that require further exploration. In the same way, METTL3 can

regulate sepsis-induced myocardial injury through an IGF2BP1/

HDAC4-dependent mechanism, and knockdown of METTL3

greatly inhibits myocardial cell damage (139). Research may focus

on specific targets of m6A methylation, elucidating the underlying

mechanisms, and exploring potential therapeutic strategies

targeting this modification in the future.

In the context of sepsis, investigations into RNA modifications

remain in their nascent stage. Despite the discovery of some

modifications associated with inflammation and immune

responses, a more profound understanding of their precise roles

in the pathophysiology of sepsis is imperative. The challenges in this

realm encompass both technical intricacies and the necessity for a

comprehensive comprehension of modification effects. With the

continual evolution of technology, we anticipate further insights

into the potential roles of RNA modifications in sepsis, thereby

offering insight into disease mechanisms and therapeutic strategies.
Interaction of different PTMs in sepsis

In conclusion, the ubiquity and dynamics of PTMs imply their

involvement in various aspects of sepsis pathogenesis, where

different types of PTMs interact and coordinate complex

pathophysiological functions (147). PTMs at different sites of the

same protein may have different effects on diseases. Various PTMs

processes do not exist in isolation; in many cellular activities,

proteins requiring various post-translational modifications act in

concert (148). Existing research has confirmed a close relationship

between lactylation and acetylation. Circulating HMGB1, as an

important damage-associated molecular pattern (DAMP) molecule,

plays a crucial role in the progression and late-stage mortality of

sepsis (149, 150). Studies have found that HMGB1 can

undergo lactylation and acetylation, participating in sepsis

development (92). Macrophages uptake extracellular lactate via

Monocarboxylate Transporters (MCTs), promoting lactylation of

HMGB1 through a p300/CBP-dependent mechanism. Lactate

inhibits HMGB1 acetylation through Hippo/Yap-mediated

deacetylase SIRT1 suppression and stimulates HMGB1 acetylation

through b-arrestin2-mediated acetyltransferase p300/CBP

recruitment to the nucleus via G protein-coupled receptor 81

(GPR81). Lactylated/acetylated HMGB1 is released from

macrophages by exosomes, increasing endothelial cell
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permeability. Decreased intracellular lactate production or

inhibition of the GPR81-mediated signaling pathway reduces

extracellular exosomal HMGB1 levels (92). Histones can be co-

modified by methylation and acetylation. The major acetylation and

methylation sites on histones H3 and H4 are conserved lysine

residues at the C-terminus. Histone acetylation modification occurs

throughout the cell cycle, while methylation modification often

occurs during the G2 phase and chromatin assembly process.

Studies show that in LPS-stimulated endothelial cells, the

acetylation levels of active histone aceH3K9 and aceH3K18 in the

VE-cadherin promoter decrease, while the acetylation levels

increase in cells treated with DNA methyl transferase inhibitor 5-

Aza 2-deoxycytidine(Aza) and histone deacetylase inhibitor

trichostatin (TSA), and the methylation levels of me2H3K9

decrease after treatment with Aza and TSA, indicating that the

protective effect of Aza and TSA combined therapy on the

endothelial barrier is the result of histone acetylation and

methylation modifications at the VE-cadherin promoter level

(151). These experiments demonstrate the widespread possibility

of interactions between various modifications, and the potential

synergistic or competitive relationships between multiple

modifications in regulating protein function in sepsis are worth

further exploration. In sepsis-induced multi-organ dysfunction, it is

necessary to continue exploring whether the occurrence of PTMs in

different organs and the ratios between different PTMs affect the

onset and progression of the disease.
Summary and perspectives

Sepsis is a systemic inflammatory response syndrome caused by

an infection that often leads to multiple organ dysfunction and is a

life-threatening condition (152). Due to the elusive nature of its

specific pathogenesis, the treatment of sepsis has remained a focal

point in the field of medicine. Currently, the therapeutic approach

for sepsis primarily emphasizes comprehensive interventions on

various fronts, including antibiotic therapy, fluid resuscitation,

hemodynamic support, immune modulation, and organ support

(153, 154). However, owing to the complexity of the

pathophysiology of sepsis, the limitations of conventional

treatment strategies are gradually becoming evident. Anti-

infective therapy is the foremost step in sepsis treatment, with the

early use of broad-spectrum antibiotics aiding in swiftly controlling

the source of infection and halting its further spread (155).

Nevertheless, due to the misuse of antibiotics and the escalating

issue of resistance, the effectiveness of anti-infective treatment is

progressively constrained. Furthermore, traditional anti-

inflammatory treatments, such as glucocorticoids, can partially

suppress the inflammatory response; however, their broad-

spectrum immunosuppressive effects have a range of side effects

(156). Therefore, the imperative to explore new treatment strategies

has emerged, and PTMs, as emerging therapeutic targets, have

garnered widespread attention. PTMs are crucial mechanisms

regulating the function of RNA molecules and proteins,

displaying remarkable diversity and close associations with

various diseases. Decades of research have confirmed the vital
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roles played by phosphorylation, acetylation, methylation,

ubiquitination, and others in numerous biological processes. As

described in this article, an increasing number of researchers are

exploring the potential significance of PTMs in sepsis and sepsis-

induced multiple-organ dysfunction (Figure 2). This opens up

valuable avenues for innovative research on the pathogenesis and

targeted treatment of sepsis-induced multiple organ dysfunction.

Currently, some studies have delved into drugs targeting PTMs

induced by sepsis. Historically, the ability to regulate histone and

non-histone acetylation with HDAC inhibitors (HDACi) has been

considered an effective anti-inflammatory mechanism (157).

Treatment with pan-HDACi and certain subtype-selective

HDACi can confer a survival advantage and reduce the

expression of pro-inflammatory mediators (158). The researchers

explored the potential renal protective effects of the selective class

IIa HDACi TMP195 in an LPS-induced AKI mouse model (159). In

experiments with bone marrow-derived macrophages (BMDMs),

the HDACi SAHA reduced oxidative stress and extracellular ATP

levels, ultimately dampening inflammasome activation, shedding

light on the therapeutic mechanism of SAHA in sepsis treatment

(160). The SUMO inhibitor TAK981 is undergoing clinical trials for

cancer treatment, providing a new therapeutic strategy for sepsis

(74). Another treatment approach is gene therapy, which involves

repairing or regulating specific PTMs-related genes through gene

editing techniques. Gene therapy is considered one of the most

promising new treatments. CRISPR/Cas9 has created cell and

animal models targeting many genes, opening doors to a new
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class of therapies. Studies have shown that using CRISPR/Cas9

gene knockout to simulate the ITCH-UBCH7 inhibitory state,

hereditary UbcH7 deficiency affects ITCH phosphorylation in

regulating RIPK2 ubiquitination, which disrupts the binding of

E3 ubiquitin ligase to E2 binding enzyme, prolonging inflammatory

signal transduction (161). While CRISPR/Cas9 technology may be

the simplest and most effective way to conduct sepsis-related

research, further development is needed due to the limitations in

targeting genes and the instability of the technology for CRISPR/

Cas9 in sepsis therapy (162). Research on sepsis is ongoing and has

made some progress. While effective drugs for treating sepsis have

yet to be found, promising clinical trials are underway for IkBa
kinase inhibitors (SAR113945) in treating inflammatory diseases,

suggesting that effective IkBa kinase inhibitors may become

valuable treatments for sepsis-related inflammatory responses in

the near future (163). With a deepening understanding of gene

regulation in sepsis, we have reason to believe that more clinical

studies will be implemented to explore effective approaches for

sepsis treatment. Research on the role of PTMs in sepsis has made

some progress, yet the specific molecular mechanisms involved

await further clarification. Researchers can analyze the PTM

activities of key proteins in regulatory pathways, their

relationships with sepsis, and the underlying mechanisms

involved. Based on this foundation, proactive intervention

measures targeting sepsis can ultimately ameliorate its symptoms.

Although PTMs present immense potential as novel therapeutic

targets for sepsis, they currently encounter a series of challenges. At
FIGURE 2

Modification in the molecular mechanism of sepsis-induced organ injury. Involvement of sepsis common organs including the brain, heart, lungs,
liver, kidney, intestine, etc., and different modification happens in different organs. Ac, acetylation; Cit, citrullination; P, phosphorylation; La,
lactylation; Ub, ubiquitination(draw by Figdraw).
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present, research on the PTMs underlying organ dysfunction

induced by sepsis primarily relies on animal models and in vitro

experiments (164, 165). However, these models may not fully

replicate the complex pathophysiological processes of human

sepsis, thus the reliability and generalizability of existing research

results are questionable (166–168). Therefore, the development of

animal models more suitable for simulating human sepsis,

combined with in vitro organ models, is essential to more

accurately investigate the role of PTMs in organ failure. While

some PTMs changes related to sepsis have been identified,

understanding of how these changes affect organ function and

their interactions in different organs remains limited (169).

Through in-depth investigation of the signaling pathways and

molecu lar mechanisms regula t ing post - t rans la t iona l

modifications, uncovering their specific roles in sepsis-induced

organ dysfunction can provide a clearer theoretical basis for the

development of relevant drugs and treatment strategies.

The research of PTMs is a rapidly evolving field. With the

continuous advancement of high-throughput omics technologies

and highly sensitive mass spectrometry techniques, novel PTMs are

being successively reported, providing important tools for a deeper

understanding of cellular functions and disease mechanisms (170–

172). However, unraveling the intricate world of protein

modifications within the human body still requires relentless

efforts. Now, the limitations of PTMs technologies mainly

manifest in technical challenges (173), including 1. insufficient

resolution and sensitivity, some detection methods may lack the

necessary resolution and sensitivity to accurately detect and identify

low-abundance protein post-translational modifications. 2.

specificity issues, certain detection methods may have specificity

problems, leading to false positives or negatives in post-

translational modifications. 3. complex sample handling, complex

samples may contain various types of PTMs, requiring highly

specific detection methods to distinguish different types of

modifications. Additionally, there are potential biases such as: 1.

data interpretation bias, researchers’ subjective awareness, and

preconceptions may affect the interpretation and analysis of

PTMs data, leading to erroneous conclusions. Furthermore,

integrating data from genomics, transcriptomics, proteomics, and

metabolomics can help comprehensively understand the role of

PTMs in sepsis-induced organ dysfunction. 2. sample preparation

bias, improper sample handling, and preparation may lead to loss or

increase of PTMs, affecting the accuracy of research results. Sepsis is

a complex disease involving multiple cells and tissues, thus

requiring various types of samples such as blood, tissues, and

cells. However, sample collection and processing may be subject

to limitations such as insufficient sample quality and quantity, as

well as errors during collection that could affect the reliability of

research results. 3. publication bias, publication bias may impact the

reporting of research results, with researchers more likely to publish

positive results, while negative results are less likely to be published,

potentially leading to a misunderstanding of the overall situation in

the research field. In short, continuous development and

improvement of detection technologies are needed to overcome
Frontiers in Immunology 10
these limitations, in order to more comprehensively understand the

functions and mechanisms of proteins. This is crucial for an in-

depth study of how these PTMs reveal the mechanisms of life,

screen clinical biomarkers, identify drug targets, and more.

In summary, the future of sepsis treatment heralds an era of

comprehensive therapeutic strategies, where the combined

application of traditional treatments and emerging PTM

interventions holds promise for providing patients with more

comprehensive and personalized therapeutic approaches. Through

continuous and in-depth research, we aspire to pave the way for

new avenues in sepsis treatment, bringing about improved clinical

outcomes for patients.
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