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Introduction: The programmed cell death (PCD) plays a key role in the

development and progression of lung adenocarcinoma. In addition, immune-

related genes also play a crucial role in cancer progression and patient prognosis.

However, further studies are needed to investigate the prognostic significance of

the interaction between immune-related genes and cell death in LUAD.

Methods: In this study, 10 clustering algorithms were applied to perform

molecular typing based on cell death-related genes, immune-related genes,

methylation data and somatic mutation data. And a powerful computational

framework was used to investigate the relationship between immune genes and

cell death patterns in LUAD patients. A total of 10 commonly used machine

learning algorithms were collected and subsequently combined into 101 unique

combinations, and we constructed an immune-associated programmed cell

death model (PIGRS) using the machine learning model that exhibited the best

performance. Finally, based on a series of in vitro experiments used to explore the

role of PSME3 in LUAD.

Results: We used 10 clustering algorithms and multi-omics data to categorize

TCGA-LUAD patients into three subtypes. patients with the CS3 subtype had the

best prognosis, whereas patients with the CS1 and CS2 subtypes had a poorer

prognosis. PIGRS, a combination of 15 high-impact genes, showed strong

prognostic performance for LUAD patients. PIGRS has a very strong prognostic

efficacy compared to our collection. In conclusion, we found that PSME3 has

been little studied in lung adenocarcinoma and may be a novel prognostic factor

in lung adenocarcinoma.
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Discussion: Three LUAD subtypes with different molecular features and clinical

significance were successfully identified by bioinformatic analysis, and PIGRS was

constructed using a powerful machine learning framework. and investigated

PSME3, which may affect apoptosis in lung adenocarcinoma cells through the

PI3K/AKT/Bcl-2 signaling pathway.
KEYWORDS

lung adenocarcinoma, precision medicine, machine learning, programmed cell death,
immunotherapy efficacy
Introduction
Lung cancer is by far the most devastating and prevalent

malignancy with the highest cancer-related mortality rate and is

the leading cause of tumor-related deaths (1, 2). Of these, lung

adenocarcinoma (LUAD) is the most common histologic subtype

(3, 4). Lung adenocarcinoma (LUAD) is the most common

pathologic subtype of lung cancer, accounting for approximately

40% of all lung cancer cases (5). Treatment modalities for LUAD

include a variety of approaches, including cell death therapy, gene

therapy, immunotherapy, conventional radiotherapy and

chemotherapy (6, 7). Despite significant advances in combination

therapy strategies for LUAD, the average 5-year survival rate for

LUAD is approximately 15% (8). This calls for a search for effective

combination therapy strategies for the treatment of LUAD.

Programmed cell death (PCD), also known as regulatory cell death,

plays a key role in maintaining tissue homeostasis and eliminating

damaged or unwanted cells (9). PCD consists of ferroptosis, apoptosis,

pyroptosis, autophagy, necroptosis, cuproptosis, parthanatos, entotic

cell death, netotic cell death, lysosome-dependent cell death,

alkaliptosis, oxeiptosis, netosis, immunogenic, anoikis, paraptosis,

methuosis, entosis, mpt-driven necrosis and disulfidptosis (9–11).

Apoptosis is the process by which the body removes injured or

unwanted cells and plays a crucial role in various physiological

processes. The most critical feature of Necroptosis is the formation

of necrosomes, which is a multi-step process (12, 13). Entotic cell death

is induced by actinomyosin-dependent cellular internalization (entosis)

and is executed through lysosomal degradation (10, 14). Pyroptosis,

characterized by cell swelling, lysis, and release of large amounts of pro-

inflammatory factors, is a type of inflammation that regulates cell death

(15). Parthanatos is a distinct and highly programmed cell death that

occurs through over-excitation of the nuclease PARP-1 (16). In

addition, the role of other forms of PCD, such as ferroptosis,

cuproptosis, and disulfidptosis in LUAD has been widely discussed

(17–20). However, the study of these forms of PCD in LUAD

remains unclear.

In order to stop lung adenocarcinoma cells from avoiding death

and proliferating, a thorough comprehension of these cell death

patterns is crucial for creating more efficacious therapies.
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Explaining various death patterns offers vital understanding into

the underlying processes of lung adenocarcinoma. Describing diverse

patterns of cell death, their reactions to immunotherapy, alterations

in the tumor’s microenvironment, and their predictive value for lung

adenocarcinoma patients could provide fresh insights into the

emergence and development of lung adenocarcinoma and the

prospects of immunotherapy. In this study, we integrated

transcriptomic, epigenetic, and somatic mutation data from LUAD

patients, used 10 clustering algorithms to identify the three subtypes,

and analyzed the differences between the subtypes to characterize key

events in the development of LUAD. In addition, we successfully

constructed a model with strong prognostic efficacy (PIGRS) using 10

machine learning, and 101 combined machine learning algorithms.

This study informs precision medicine for LUAD patients.
Methods

Data collection

Clinical information, transcriptome expression, somatic

mutations, and copy number variation (CNA) and DNA

methylation data for LUAD patients were obtained from the

TCGA website (https://portal.gdc.cancer.gov/) (21). After

integrating gene expression, methylation, mutation, and copy

number variation data from LUAD patients, a final multi-omics

dataset of 418 patients was selected for subsequent analysis. In

addition, we obtained clinicopathologic information and genome-

wide expression data from the Gene Expression Omnibus (GEO)

database for two other LUAD cohorts, GSE31210 (n=226) and

GSE50081 (n=127), as well as immunotherapy cohorts (GSE91061

and GSE78220) (22–25). From http://researchpub.gene.com/

IMvigor210CoreBiologies IMvigor210 dataset (26). To improve

comparability between datasets, all RNA-seq data were converted

to transcripts per million (TPM) format and corrected for batch

effects using the "combat" function of the "sva" package. All data

were log-transformed prior to analysis. Single-cell data were

processed as in our previous analysis (27). TIDE scores for LUAD

patients predicting ICB response were calculated on the TIDE

website (http://tide.dfci.harvard.edu) (28).
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Identification of immune-related and PCD-
related genes

From IMMPORT (29), we extracted immune-related genes

(IRGs) (Supplementary File S1). We collected 20 PCD patterns

and key regulatory genes from the literature, including 14 genes

related to disulfidptosis and 39 genes related to MPT-driven

necrosis, etc (20, 30, 31) (Supplementary File S2).
Identification of molecular subtypes

In this study, we used the R package “MOVICS” to establish a

new classification of LUAD based on multi-omics data of

PCD.mRNA expression, IRG.mRNA expression, DNA

methylation, and somatic mutation data in a similar way as

Chu.et.al (32, 33). We analyzed the clustering prediction index

(CPI). We analyzed the clustering prediction index (CPI) and the

disparity statistic to determine the optimal number of cancer

subtypes (34). We used 10 clustering algorithms (CIMLR,

ConsensusClustering, SNF, iClusterBayes, PINSPlus, moCluster,

NEMO, IntNMF, COCA, and LRA) to categorize the multi-omics

data, and after integrating the results of the 10 clusters, we

ultimately decided to classify LUAD patients into three types.
Identification of different
molecular signatures

In order to reveal the underlying biology, the 3 subtypes we

established were characterized by gene set variation analysis

(GSVA) using GO terms (35). The first 10 GO pathways and the

network of relationships between the subtypes were visualized. We

evaluated the infiltration of the 3 subtypes using the CIBERSORT

algorithm (36). Heatmaps revealed differences in immune cell

infiltration. In addition, differences in the expression levels of

immune checkpoints between the three subtypes were analyzed,

further revealing the link between subtype and immunity. In

addition, we used the built-in functionality of the MOVICS

package to calculate the fraction of the genome altered by copy

number amplification or deletion (FGA) (37). In addition, we also

calculated the TMB for each subtype.
Identification of different subtypes of
drug sensitivity

To evaluate the response of different subtypes to the drugs,

human cancer cell lines (CCLE) from GDSC (https://

www.cancerrxgene.org/) were used as a training cohort and the R

package “pRRohetic” was used to predict the corresponding

sensitivities (38). The half maximal inhibitory concentration

(IC50) was calculated by ridge regression and set as a metric to

compare different agents. We used three common drugs

(“Cisplatin”, “Paclitaxel”, “Sorafenib”) to measure the predictive
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effect. To validate the accuracy of our molecular classification

prediction predictions, we utilize the “combat” function in the sva

package to remove the batch effects in the GSE50081 and GSE31210

datasets, and integrate them into a unified dataset, called META,

which serves as an external dataset for validation. We used the NTP

algorithm to molecularly classify the external dataset and calculate

the difference in prognosis between the different classifications (39).
Constructing prognostic models

We use 10 machine learning algorithms for a total of 101

machine learning combinations (40, 41). The 10 machine learning

are SVM, Lasso, GBM, RSF Enet, Stepwise Cox, Ridge, CoxBoost,

SuperPC, and PplsRcox. we constructed the immune-associated

programmed cell death model (PIGRS) by Lasso + GBM. We

ranked each model according to its C-index and defined the

model with the highest C-index as the best model, as in our

previous strategy, and a detailed description of each algorithm

and the specific implementation of the various combinations can

be found in a previous study (25). To confirm the predictive utility

of PIGRS, we calculated the area under the receiver operating

characteristic curve (AUC) using the timeROC software package

(42). In addition, we collected model indices from previous

researchers and compared the PIGRS with the previous models,

which showed that our PIGRS has strong prognostic efficacy.
Pathway enrichment analysis

In order to investigate the genes that showed significant

differential expression between the high and low PIGRS groups,

this study used “limma” to analyze the differences between the two

groups (FDR < 0.05 and log2 fold change (FC) > 1). We used the

“clusterProfiler” package for gene set enrichment analysis (GSEA)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis

(43). In addition, we also used the “GSVA” package to perform gene

set variation analysis (GSVA) to further reveal the underlying

mechanisms among different subgroups (35).
Analysis of genomic variation among
PIGRS risk subgroups

Mutation with built-in tumor heterogeneity (MATH) is a

method to quantify intra-tumor heterogeneity (ITH) based on the

distribution of mutant alleles. The prognostic significance of

MATH has been investigated in a wide variety of tumors,

including head and neck, colorectal, and breast cancers (44–47).

In this study, we calculated the MATH score for each LUAD patient

according to the previously described method and performed

survival analysis based on their MATH score (48). We utilized

the R package “maftools” to study somatic mutations associated

with PIGRS and generated waterfall plots showing mutations in

LUAD patients in the high and low PIGRS groups. In addition, we

calculated the Tumor Mutational Burden (TMB) score for each
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LUAD patient and explored the relationship between high and low

PIGRS groups and TMB and survival analysis.
Cell culture and transfection

Lung adenocarcinoma cell lines A549 and H1299 were mainly

purchased from the cell bank of the Chinese Academy of Sciences

(Shanghai, China). We used A549 and H1299 cells for in vitro

culture experiments, cultured in DMEM medium and RPMI 1640

medium (Gibco, ThermoFisher Scientific, United States)

supplemented with 10% fetal bovine serum, 1% penicillin and

streptomycin (Gibco). Small interfering RNA (siRNA) targeting

(proteasome activator subunit 3) PSME3 and interfering RNA

control were purchased from Gemma Genetics (Shanghai, China).

For transient transfection, A549 and H1299 cells were transfected

with siRNA using transfection reagent (Lipofectamine 2000) for

12h, followed by functional assays and subsequent experiments.

siRNA sequence and primer sequence (Supplementary Table 3).
Cell proliferation

Cell proliferation and colony formation assay assay A549 and

H1299 cells were cultured in 96-well plates (3,000 cells/well) 24

hours after transfection with PSME3 siRNA. The proliferative

capacity of the treated cells was assayed at 4, 24, 48 and 72 hours.

10% Cell Counting Kit-8 (CCK8) reagent (Bio-sharp, Hefei, China)

was added to each plate according to the kit instructions, and the

OD450 values were analyzed by an enzyme marker (BioTek, United

States). Regarding clonal spot experiments, 2000 cells were

inoculated in cell culture plates and allowed to grow until visible

colonies were formed. Then we fixed the clones with

paraformaldehyde for 15 min, stained the clones with 1% crystal

violet for 20 min, and counted the number of clones (>50 cells).
Transwell detects cell migration
and invasion

Transwell migration and wound healing assay A549 and H1299

cells were transfected with PSME3 siRNA for 24 h and cultured in

24-well culture plates with 8 mm pore membrane inserts to measure

cell migration capacity. 4 × 104 cells were inoculated in the upper

chamber of a transwell with 200 ul of serum-free medium, and 800

ml of medium containing 10% FBS was added to the lower chamber.

After 48 h of incubation, cells migrating across the membrane were

fixed with 4% paraformaldehyde, stained with 1% crystal violet and

counted under a light microscope (50×).
RT-qPCR and western blot analysis

Total RNA was extracted using TRIzol reagent (Invitrogen).

The SYBR Green qPCR blend (Vazyme, China) facilitated the

synthesis of cDNA for immediate PCR analysis. Dissolve protein
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samples in Lithium Dodecyl Sulfate (LDS) Sample Buffer

(Invitrogen). Aliquots of the total protein extract are separated on

10% SDS-PAGE gels (30 min at 90 V and 90 min at 120 V) and

transferred to a polyvinylidene fluoride membrane. The transfer

was performed at 100 V for 2 hours using a Bio-Rad transfer device.

The membrane is then closed in 5% BSA solution for 1 hour at

room temperature. The appropriate primary antibodies are

incubated at 4°C overnight. Primary antibodies were as follows:

Akt and p-Akt (Ser473) (Cell Signaling Technology, USA: 1:1000);

b-actain and PSME3 (Santa Cruz, USA: 1:1000).
Statistical analysis

All statistical analyses were performed using R software (version

4.1.0). Wilcoxon test was used for comparing two groups, while

Spearman or Pearson correlation was used for correlation matrices.

The Log-rank test was used to The Log-rank test was used to assess

survival differences through K-M curves, where statistical

significance was defined as p-value < 0.05. The Log-rank test was

also used to assess survival differences through K-M curves.
Results

Identification of three molecular subtypes
based on the TCGA-LUAD cohort

The flowchart of this study is shown in Figure 1. We collected

genes related to cell death from the literature(Figure 2A), and

subsequently, we included immune-related genes in our analysis.

After matching cell death-related genes, immune-related genes,

methylation, and mutation data, 417 TCGA-LUAD samples were

included in the subsequent analysis. The number of clusters was

estimated using the clustering prediction index (CPI) and gap

statistics (Supplementary Figure 1A). Ten conventional

algorithms in the R package “MOVICS” were used to categorize

the patients into three predefined multi-omics subtypes (CS), which

were ultimately consolidated into robust classifications by

integrating consensus. The results of the contour analysis also

illustrate the moderate similarity of the samples in each cluster,

with contour scores of 0.85, 0.48, and 0.77 for CS1, CS2, and CS3,

respectively (Supplementary Figure 1C). Based on the ten

algorithms, LUAD patients were categorized into three subtypes:

the CS1, CS2 and CS3 (Figure 2B). Survival analyses showed a

significant difference in CS3 prognosis among these three subtypes

in overall survival and progression-free period (P = 0.001;

Figures 2C, D). CS3 patients had a relatively better prognosis,

whereas CS1 patients had the worst prognosis.
Assessing the characteristics of
different subtypes

Genetic mutations and CNV play key roles in tumor

development and progression (49). Therefore, the present study
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compared the genetic alterations between the different subtypes.

First, we compared the differences in individual gene mutations

among the three subtypes. TTN, TP53, MUC16, CSMD3, and RYR2

were the five genes with the highest mutation frequencies in LUAD

patients. Mutation frequencies were higher in the CS1 and CS2

groups compared to the CS3 group (Figure 3A). Tumor mutation

Burden (TMB) is widely used in clinical practice (50, 51). The CS1

group had the highest TMB, while the CS3 group had the lowest

TMB (Figure 3B). We also assessed the three subtypes of CNV by

calculating the FGA score to investigate chromosomal instability.

We found that CS3 had better chromosomal stability and

significantly lower copy number loss or gain compared to the

other subtypes (Figure 3C). To further understand the differences

between the three subtypes, we performed gene ontology (GO)

terminology pathway enrichment to identify subtype-specific

activated signaling pathways. We observed the presence of

DNA_DEPENDENT_DNA_REPLICATION, CELL_CYCLE_

DNA_REPLICATION, and DNA_REPLICATION in patients

with CS1. As for MoS2, ATP_SYNTHESIS_COUPLED_

ELECTRON_ TRANSPORT , M ITOCHONDR IAL _

RESPIRATORY_CHAIN_COMPLEX_ASSEMBLY and

NADH_DEHYDROGENASE_COMPLEX_ASSEMBLY were

enriched. Meanwhile, CS3 was significantly enriched for the
Frontiers in Immunology 05
ac t i v a t i on o f immune - r e l a t ed pa thways , in c lud ing

CD4_POSITIVE_ALPHA_BETA_T_CELL_ACTIVATION,

CD4_POSITIVE_ALPHA_BETA_T_CELL_DIFFERENTIATION,

and MACROPHAGE_ ACTIVATION (Figure 3D).
Immune infiltration of different subtypes

To explore the immune infiltration of the three subtypes, we

investigated the distribution of immune cells and the abundance of

immune checkpoint expression in the three subtypes. patients in the

CS3 group had the highest levels of immune checkpoint expression

and immune cell infiltration, whereas patients in the CS1 group had

the lowest levels of immune checkpoint expression and immune cell

infiltration (Figure 4A; Supplementary Figures 2A–C). As for the

mRNA levels of immune checkpoints, we found that CS1 contained

higher CTLA4 levels and the highest PD-1 levels (Figure 4B). We

also analyzed the drug sensitivity of the three subtypes to cisplatin,

paclitaxel, and docetaxel. patients in the CS2 cohort were most

sensitive to sorafenib and paclitaxel, whereas those in the CS1

cohort had the highest sensitivity to cisplatin (Figures 4C–E). In

addition we collected results on mRNA expression profiles and

response to anti-PD-1 therapy in the 3 cohorts. Patients in the 3
FIGURE 1

Flowchart of this study.
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cohorts were first categorized into three CSs, with CS3 resulting in

better clinical therapeutic benefit (Supplementary Figures 3A–C).

We identified the top 200 up-regulated biomarkers for the three

subtypes using “limma” (P < 0.05, Supplementary Figure 1D).

Subsequently, we selected the META dataset (containing

GSE31210 and GSE50081). The NTP method was used to predict

the prognosis of each dataset based on the specific upregulation of

biomarkers in each subtype (Figure 4F). As shown, the NTP results

indicated that CS3 had the best prognosis in all externally validated

datasets, whereas CS1 and CS2 had a poorer prognosis, which was

consistent with the initial subtype prediction (Figure 4G). These

results indicate that our subtyping method is reliable.
Machine learning to build PIGRS

We took the intersection of cell death genes and immune-related

genes to obtain 31 genes (Supplementary Figure 4A). Based on the 31
Frontiers in Immunology 06
prognostically relevant immune and cell death genes (PIRGs), this

study used machine learning to construct prognostic models from

these genes. Using the TCGA dataset, we constructed 101 prognostic

models and evaluated the performance of each model in three

independent validation sets-GSE31210, GSE50081, and META. We

note that the “Lasso + RSF”, “RSF”, “CoxBoost + RSF”, “Stepcox

[backward] + RSF”, and “Stepcox [both] + RSF”models have very high

C-Indexes in the TCGA dataset, but their performances degrade in the

remaining three validation sets. This suggests an overfitting

phenomenon. However, the GBM model contains a total of 31

genes, whereas the Lasso + GBM model contains only 15 genes but

achieves comparable prediction, and in order to ensure that the models

have consistently strong predictive power across all four datasets, we

chose the “Lasso + GBM” combination, which creates a model with an

average C-Index of 0.686 across the four datasets (Figure 5A). The

Lasso algorithm selected 15 PIRGs (Figure 5B), and the GBM

algorithm assessed their relative impact in the model (Figure 5C).

Finally, we derived a Lasso + GBM model consisting of 15 PIRGs.
FIGURE 2

Identification of three subtypes and assessment of clinical prognosis of different subtypes. (A) Veen plot demonstrating 20 cell death genes;
(B) multi-omics characterization of the three subtypes; (C) OS survival prognosis of the three subtypes; (D) PFI prognosis of the three subtypes.
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Kaplan-Meier analysis showed that all 15 PIRGs had a significant

impact on the prognosis of LUAD patients (Supplementary Figure 4B).

Using the expression of these 15 PIRGs for each patient and weighting

them according to their relative influence, the model calculated a risk

score for each individual. We named this risk model the cell death,

immune-related gene model (PIGRS).

The median PIGRS was the dividing line that classified patients

into two different groups. Patients in the high PIGRS group had a

significantly worse prognosis compared to the low PIGRS group,

not only in the training set TCGA (Figure 5D), but also in the two

external validation cohorts, i.e., the GSE31210 (Figure 5E),

GSE50081 (Figure 5F), and META (Figure 5G) cohorts. The

clinical trilinear table can be found in Table 1.
Frontiers in Immunology 07
Comparison of PIGRS with other models

Based on the ROC analysis, PIGRS was able to distinguish well

between one-, two-, three-, four-, and five-year AUCs of 0.821,

0.823, 0.797, 0.852, and 0.879, respectively, in TCGA-LUAD; 0.693,

0.695, 0.674, 0.665, and 0.669 in GSE31210; 0.705, 0.679, 0.668,

0.622, and 0.637 in GSE50081 0.705, 0.679, 0.668, 0.622, and 0.637

in GSE50081; and 0.693, 0.695, 0.674, 0.665, and 0.669 in META

(Figure 6A). To compare the prognostic efficacy of PIGRS with

existing LUAD models, we integrated previous studies that used

different biologically significant features, such as m6A (52), copper

death (53), necrotic apoptosis (54), Necrotic apoptosis (55),

ubiquitin proteasome (56), Autophagy (57) and immune

checkpoints (58) etc. Notably, PIGRS exhibited better C-index

performance than almost all models in the TCGA-LUAD,

GSE31210, GSE50081, and META datasets (Figures 6B–E). In

conclusion, these findings confirm the idea that PIGRS is a more

effective prognostic model for LUAD.
Pathway enrichment analysis of PIGRS

To investigate the biological processes associated with PIGRS in

more depth, we performed enrichment analysis. GSVA analyzed the

Hallmark pathway that was differentially enriched between the two

groups (Figure 7A). Kyoto Encyclopedia of Genes and Genomes

(KEGG) results are shown in Figure 7B. Regarding the organismal

system, PIGRS were mainly enriched in Bile secretion, Progesterone-

mediated oocyte maturation, and Salivary secretion. In Human

Diseases, PIGRS were most concentrated in Human PIGRS are most

concentrated in Human T cell leukemia virus 1 infection, Pertussis and

Platinum drug resistance. PIGRS are particularly abundant in the Cell

adhesion molecules pathway. In Cellular progessing, PIGRS was

mainly enriched in Phagosome, Cell cycle, Cellular senescence and

p53 signaling pathways. In addition, we utilized GSEA to identify

potential pathways associated with PIGRS. In Figures 7C, E, the high

PIGRS group was significantly enriched in oncogenic-related pathways

such as Small Lung cancer, cell cycle, and p53 signaling pathway. In

contrast, the low PIGRS group was mainly enriched to some immune-

related biological processes, which explained its better prognosis

(Figures 7D, F).
Mutational status of PIGRS

First, there was a significant difference in tumor mutational

Burden (TMB) between the high and low PIGRS groups, and the

tumor mutational load was significantly higher in the high-risk score

group than in the low-risk score group (Figure 8A). Then the

correlation between PIGRS and TMB was explored, and a

Spearman correlation analysis was used, which revealed that there
TABLE 1 TCGA-LUAD Clinical characteristics.

Characteristics High
(N=208)

Low
(N=209)

P-value

Gender

male 105 (50.5%) 85 (40.7%) 0.056

female 103 (49.5%) 124 (59.3%)

Stage

I 90 (43.3%) 137 (65.6%) 5.7e-05

II 62 (29.8%) 39 (18.7%)

III 45 (21.6%) 21 (10.0%)

IV 10 (4.8%) 9 (4.3%)

unknown 1 (0.5%) 3 (1.4%)

T stage

T1 58 (27.9%) 88 (42.1%) 0.022

T2 117 (56.3%) 100 (47.8%)

T3 24 (11.5%) 12 (5.7%)

T4 8 (3.8%) 8 (3.8%)

TX 1 (0.5%) 1 (0.5%)

N stage

N0 118 (56.7%) 157 (75.1%) 2.5e-05

N1 46 (22.1%) 29 (13.9%)

N2 42 (20.2%) 16 (7.7%)

N3 1 (0.5%) 0 (0%)

unknown 1 (0.5%) 7 (3.3%)

M stage

M0 140 (67.3%) 120 (57.4%) 0.078

M1 10 (4.8%) 9 (4.3%)

unknown 58 (27.9%) 80 (38.3%)
Bold values represent P-values.
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was a significant positive correlation between PIGRS and TMB (R =

0.184, P< 0.001, Figure 8B). After integrating the TMB scores, LUAD

patients in TCGA were divided into four groups. Survival analysis

showed that patients with high TMB and low risk had a significant

survival advantage, and the low TMB and high-risk groups exhibited

a significant survival disadvantage (Figure 8C). Intra-tumor

heterogeneity (ITH) is caused by genetic mutations (59). A well-

known genomic feature of cancer resulting from the accumulation of

mutations.ITH has been shown to be associated with increased

malignancy and chemotherapy resistance (60). In this study, we

used the Mutant Allele Tumor Heterogeneity (MATH) algorithm to

measure ITH in LUAD patients; higher MATH scores were

associated with higher ITH. The MATH score was higher in

LUAD patients in the high PIGRS group (Figure 8D). Then the

correlation between PIGRS and MATH was explored, and Spearman

correlation analysis was used, and a significant positive correlation

was found between PIGRS andMATH (R = 0.13, P< 0.01, Figure 8E).

We further combined ITH with PIGRS, and we found that patients in

the high MATH and low PIGRS groups had a significant survival
Frontiers in Immunology 08
advantage, and the low MATH and high PIGRS groups showed a

significant survival disadvantage suggesting that the combination of

these two metrics could better assess the prognosis of LUAD patients

(Figure 8F). It is well known that genetic mutation is a condition for

tumorigenesis. In the TCGA database, we visualized and correlated

somatic mutation data based on PIGRS combined with high PIGRS

and low PIGRS groups. The three genes with the highest mutation

frequencies in the high PIGRS group were TP53 (61%), TTN (53%),

and CSMD3 (44%) (Figures 8G, H).
Immunologic properties of PIGRS

To assess the immune infiltration status of LUAD samples in

this study, we used the ESTIMATE algorithm to calculate stromal

scores, immune scores, ESTIMATE scores, and tumor purity for the

PIGRS risk subgroup. The immunity score and ESTIMATE score

were significantly higher in the low PIGRS group, while the tumor

purity was higher in the high-risk group (Figure 9A). To further
FIGURE 3

Assessment of mutation status and pathway analysis across different subtypes. (A) Veen plot demonstrating 20 cell death genes; (B) multi-omics
characterization of the three subtypes; (C) OS survival prognosis of the three subtypes; (D) PFI prognosis of the three subtypes.
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analyze the differences in specific immune cell infiltration between

the high- and low-PIGRS groups, we quantified the abundance of

immune cell infiltration in each sample using six algorithms

(TIMER, CIBERSORT, MCPCOUNTER, EPIC, XCELL,

quantisep) (Figure 9B). The results showed more immune

infiltrating cells in the low PIGRS group. Next to explore the

differences in immune checkpoint expression between the two

subgroups, we examined the expression of immune checkpoints,

which showed higher expression in the low PIGRS group

(Figure 9C). We assessed immune escape between the two groups

using TIDE, which showed that the high PIGRS group may have

immune escape (Figure 9D).
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Immunotherapeutic effects of PIGRS

To comprehensively assess the role of PIGRS in LUAD

immunotherapy, we analyzed IPS scores obtained from the TCIA

database. Higher IPS scores predicted a better response to ICI

therapy, including PD-1 inhibitor and CTLA4 inhibitor therapy,

and were classified into four categories: ips_ctla4_pos_pd1_pos,

ips_ct la4_pos _pd1_neg, ips_ct la4_neg_pd1_pos, and

ips_ctla4_neg_pd1_neg. Our results showed that all four

categories were significantly elevated in the low-PIGRS group,

suggesting that patients in the low-PIGRS group responded better

to anti-CTLA4 therapy and the combination of anti-pd -1 and anti-
FIGURE 4

Assessment of the immune microenvironment in different subtypes. (A) Heatmap showing the expression of immune checkpoint genes and the level
of tumor-infiltrating lymphocytes in each subtype; (B) Expression levels of CTLA4 and PDCD1; (C-E) IC50 values of commonly used
chemotherapeutic agents; (F) Heatmap of NTPs generated according to subtype-specific up-regulation of biomarkers identified in the LUAD cohort;
(G) km survival curves of the META cohort.
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CTLA4 than did the high-PIGRS group of patients (Figure 10A). In

addition, we analyzed a cohort of uroepithelial cancers treated with

anti-PD-L1 therapy (IMvigor210), and the low-PIGRS group had a

significant survival advantage compared with the high-PIGRS

group (Figure 10B). Also, patients in the low PIGRS group were

more sensitive to immunotherapy (Figures 10C, F). In addition,

stronger predictive ability was demonstrated in Stage I & II and

Stage III & IV patients (Figures 10D, E). Next, in the GSE78220

cohort, low PIGRS also had a stronger ability to predict prognosis

and immunotherapy benefit (Figures 10G-I). The Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm was used to assess

patient response to immunotherapy and showed better

responsiveness in the low PIGRS group (P [Fisher’s exact test] <

0.0001; Figures 10J, K). The Submap algorithm was performed on
Frontiers in Immunology 10
another group of melanoma patients receiving immunotherapy

(GSE91061), and the results also showed a better response to PD-

1 therapy in the low PIGRS (Bonferroni corrected p < 0.01,

Figure 10L). These results demonstrate that the low PIGRS group

is more likely to receive immunotherapy.
Single-cell validation of PIGRS markers

We collected single-cell RNA sequencing data from 10 LUAD

patients using the single-cell sequencing data in Bischoff et al. Using

marker genes for different cell types, we labeled cells into 6 major

clusters, namely T cells, fibroblast cells, macrophages/monocytes,

endothelial cells, epithelial cells, NK cells, and B cells (Figure 11A).
FIGURE 5

Multiple machine learning constructs for PIGRS. (A) Heatmap showing 101 machine learning; (B) Lasso screening genes; (C) GBM algorithm showing
the importance of different genes; (D-G) km survival curves for high and low PIGRS (D) TCGA; (E) GSE31210; (F) GSE50081; (G) META cohort.
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Enrichment heatmaps showed the marker genes and pathways

enriched to for each cell population (Figure 11B). The

distribution of the 15 genes in different cell types was

demonstrated with violin plots and feature plots (Supplementary

Figures 5A–C). We further used the AUCell , UCel l ,

AddModuleScore, singsore, and ssGSEA algorithms at the

scRNA-seq level to to quantify PIGRS scores at the scRNA-seq

level. All algorithms showed that PIGRS scores were higher in

macrophages, fibroblasts and lower in T and B cells (Figures 11C,

D). Based on the PIGRS scores activity, we divided the cells into

high and low PIGRS scores groups and identified differentially

expressed genes (DEGs) between the two groups for GSEA

enrichment analysis. The results showed that various cell death-
Frontiers in Immunology 11
related pathways were enriched in the high PIGRS scores group

(Figures 11E–G). These results validated the markers of PIGRS.
PSME3 promotes lung
adenocarcinoma progression

In the Lasso + GBM algorithm in 101 Machine Learning,

PSME3 is among the 15 most important genes and has not been

fully investigated in LUAD. Therefore, we followed up with a series

of cellular experiments on PSME3 in lung adenocarcinoma. RT-

qPCR and Western Blot results showed that PSME3 expression of
FIGURE 6

Model comparisons. (A) Evaluation of PIGRS for predicting 1-, 2-, 3-, 4-, and 5-year survivability in patients; (B-E) PIGRS compared with
published models.
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mRNA and protein in BEAS-2B was lower than that in A549

and H1299 cells (Figures 12A, B). To investigate the specific

mechanism by which PSME3 affects lung adenocarcinoma, we

detected that p-AKT was down-regulated after knockdown of

PSME3 by Western Blot assay, suggesting that PSME3 is involved

in the regulation of these pathways. And Bcl-2 was down-regulated

and cleaved PARP was up-regulated after knocking down PSME3,

suggesting that PSME3 may affect the apoptotic process of lung

adenocarcinoma through the PI3K/AKT pathway (Figure 12C). In

A549 and H1299 cell lines, siPSME3-1 and siPSME3-2 were

selected for further study because of their transfection efficiency

of more than 70% (Figures 12D, F). Cell proliferation was detected

by CCK8 assay, and knockdown of PSME3 significantly inhibited
Frontiers in Immunology 12
proliferation of A549 and H1299 cells (Figures 12E, G). The results

of cell scratch assay showed that knockdown of PSME3 significantly

inhibited the migratory ability of A549 and H1299 cells

(Figures 12H, I). The results of Transwell assay detected the

migratory and invasive ability of cells, which was significantly

decreased after knockdown of PSME3 (Figures 12J, K). The

results of colony-formation assay showed that the proliferation

ability of cells was significantly inhibited after knocking down

PSME3 (Figures 12L, M). In conclusion, knockdown of PSME3

significantly inhibited cell proliferation, migration and invasion,

and promoted apoptosis of lung adenocarcinoma cells. In terms of

immunity, PSME3 shows a significant positive correlation with

some immune checkpoints (Supplementary Figure 6A).
FIGURE 7

Functional enrichment analysis of the PIGRS group. (A) GSVA enrichment analysis in the PIGRS group; (B) KEGG enrichment analysis in the PIGRS
group; (C, E) GSEA enrichment analysis in the high PIGRS group; (D, F) GSEA enrichment pathway in the low PIGRS group.
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Discussion

Despite significant efforts to develop comprehensive treatment

strategies, the prognosis for patients with LUAD remains poor, with

a 5-year survival rate of 15 percent (8). Exploring potential

mechanisms and prognostic biomarkers may help precision

medicine for cancer patients. Further discovery of potential

mechanisms of tumor progression could lead to the development

of new therapeutic strategies for lung adenocarcinoma.

In this study, we first collected 20 cell death and immunity-

related genes. Then, we successfully established three molecular

subtypes using ten clustering algorithms, which were associated
Frontiers in Immunology 13
with cell death, immunity, DNA methylation and somatic

mutations. And among these three subtypes, patients in the CS3

group had a better prognosis than those in the CS1 and CS2 groups.

Consistent results were also obtained in independent external

datasets. In terms of gene mutations, the frequency of gene

mutations was higher in the CS1 and CS2 groups than in the CS3

group, which may explain the poorer prognosis of the CS1 and CS2

groups.The frequency of TP53 gene mutations was higher in the

CS2 group than in the CS1 group, whereas the frequency of TTN

gene mutations was the highest in the CS1 group. TTNs are

frequently detected in solid tumors with a high mutation rate and

are associated with responsiveness to checkpoint blockade in solid
FIGURE 8

Genomic variation and intra-tumor heterogeneity in different PIGRS subgroups. (A) Violin plots demonstrating TMB differences between the high and
low PIGRS groups; (B) correlation between TMB and PIGRS; (C) Kaplan-Meier curves analyzing OS by combining the TMB score and PIGRS risk
score. (D) Violin plot showing the difference in mutant allele tumor heterogeneity (MATH) scores between the high PIGRS and low PIGRS groups.
(E) Correlation between MATH and PIGRS; (F) Kaplan-Meier curves analyzing OS by combining MATH score and PIGRS risk score. (G) Mutation
analysis of the high PIGRS group. (H) Mutation analysis of the low PIGRS group. ***p < 0.001.
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tumors (61). TTN mutations may be a potential predictive

biomarker for LUAD patients treated with ICIs (62). TP53

mutations are considered to be the most common gene-specific

changes in human cancers and occur in almost all types of human

tumors (63–65). TP53 plays a critical role in the control of cell cycle

progression, senescence, DNA repair and aging, cell death and cell

metabolism (66–68). The TMB of CS1 group was higher than the

other groups, while the TMB of CS3 group was lower than the other

groups. Exploring the functional differences among the three

subtypes by GO enrichment analysis, we found that CS3 was

mainly associated with immune-related pathways. In addition,
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considering that chemotherapy is the standard treatment for lung

cancer, we estimated the chemosensitivity of each sample based on

the IC50 value. The results showed that patients in the CS2 group

were most sensitive to Sorafenib and Paclitaxel, while patients in the

CS1 group were most sensitive to Cisplatin.

Machine learning algorithms are now widely used with clinical

prediction (69). In this study, 20 cell death and immune-related

genes were comprehensively analyzed for the first time. And by

integrating machine learning techniques, a novel model, namely

PIGRS, was developed. Multiple independent cohorts demonstrated

that PIGRS has significant prognostic value and its predictive ability
FIGURE 9

Exploration of the tumor immune microenvironment. (A) Stroma score, immunity score, ESTIMATE score, and tumor purity were used to quantify
the different immune statuses between the high and low risk groups; (B) Heatmap demonstrating the situation of the six immune infiltration
algorithms; (C) Differential expression of the various immune checkpoints in the high- and low-risk groups; (D) Differences in TIDE expression.
*p<0.05,**p<0.01,***p < 0.01,****p < 0.0001.
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is higher than that of the previously published LUAD prognostic

model. Our results suggest that PIGRS can be a valuable tool for

guiding treatment decisions and improving patient prognosis.

By enrichment analysis, we found significant correlations

between the high PIGRS group and DNA replication, cell cycle,
Frontiers in Immunology 15
and other proliferation-related biological processes, whereas the

low PIGRS group was strongly associated mainly with some

immune-related pathways. These findings provide partial

insight into the more unfavorable prognosis observed in the

high PIGRS group.
FIGURE 10

Predicting and validating the immunologic efficacy of PIGRS. (A) IPS scores of high and low PIGRS groups; (B) Survival curves of high and low PIGRS
groups in the IMvigor210 cohort. (C) Box line plot depicting the difference in risk scores between CR/PR patients and SD/PD patients in the
IMvigor210 cohort. (D, E) km curves for the high and low PIGRS groups in the IMvigor210 staging. (F) Proportion of CR/PR or SD/PD patients
receiving immunotherapy in the high and low risk groups of the IMvigor210 cohort. (G) Survival curves for high and low PIGRS in the GSE78220
cohort. (H) Proportion of patients with CR/PR or SD/PD who received immunotherapy in the high and low PIGRS groups in the GSE78220 cohort.
(I) Box line plot depicting the difference in risk scores between CR/PR patients and SD/PD patients in the GSE78220 cohort. (J) The TIDE algorithm
predicts response to immunotherapy between the high and low ERGRS groups. (K) Proportion of R or NR patients receiving immunotherapy in the
high and low PIGRS groups of the TCGA-LUAD cohort. (L) Submap algorithm predicting response to immunotherapy between the high and low
PIGRS groups. ns, p >0.05,*p < 0.05,***p<0.001,****p < 0.0001.
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Our study revealed significant differences in somatic mutations

between high and low PIGRS cohorts. Interestingly, the high PIGRS

group exhibited significantly higher TMB, which has emerged as a

novel prognost ic biomarker strongly associated with

immunotherapy response. We established a correlation between

TMB and PIGRS and found a potential link between mutational

load and immunotherapy response, providing a new perspective on

checkpoint blockade therapy. In addition, our analysis showed that

the high PIGRS group exhibited intra-tumor heterogeneity scores

and that there was a positive correlation between PIGRS and

MATH scores. Furthermore, our analysis showed that the low
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PIGRS group exhibited increased immune cell infiltration and

higher expression levels of immunomodulators, including classical

immune checkpoint molecules. However, patients in the low PIGRS

group exhibited significantly higher levels of StromalScore,

ImmuneScore, ESTIMATEScore and lower tumour purity

compared to patients in the high PIGRS group. This suggests a

complex interaction between PIGRS and the tumor immune

microenvironment. IPS data downloaded from TCIA can provide

predictive scores for evaluating a patient ’s response to

immunotherapy (70, 71). Higher IPS in the low PIGRS group

suggests that patients with low PIGRS may have a more favorable
FIGURE 11

Validation of PIGRS markers. (A) t-SNE plot showing the cell types identified by marker genes. (B) Heatmap showing the 5 most important marker
genes in each cell cluster. (C, D) Bubble map (C) and violin map (D) showing the enrichment scores of the PIGRS gene set for each cell type using
AUCell, UCell, singscore, ssGSEA, and AddModulescore scores for the enrichment of the PIGRS gene set for each cell type. (E-G) Enrichment
analysis of GSEA in the high PIGRS.Score group including Ferroptosis pathway (E), Necrosis pathway (F), Apoptosis pathway (G).
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response to ICI therapy. This study demonstrates the potential

relevance of PIGRS in assessing immunotherapy response. And by

SubMap algorithm results showed that the low PIGRS group had a

higher response to immunotherapy. For patients with advanced

LUAD, systemic therapy is the only option to improve survival. In

addition to the use of immunotherapy-related drugs, we also tend to
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use some chemotherapeutic drugs, of which in the vast majority of

cases, the low PIGRS group will have better therapeutic effects than

the high PIGRS group, thus improving the survival time of LUAD

patients.TIDE results also proved this point.

PSME3, also known as Proteasome Activator Complex Subunit

3, plays a crucial role in regulating essential cellular processes. In
FIGURE 12

PSME3 affects the biological behavior of LUAD cells in vitro. (A) RT-qPCR to detect the expression of PSME3 mRNA. (B) The expression of PSME3
protein was detected by Western Blot. (C) Detection of b-actin, PSME3, AKT, p-AKT (Ser473), cleaved PARP, and Bcl-2 in PSME3 knockdown-treated
A549 and H1299 cells by Western Blot. (D, F) RT-qPCR to detect the efficiency of Si-PSME3 transfection. (E, G) Growth curves of PSME3
knockdown-treated A549 and H1299 cells were determined using CCK8. (H, I) Cell scratch assay to detect the invasive ability of A549 and H1299
cells after PSME3 knockdown treatment. (J, K) Transwell assay to detect the invasion ability of A549 and H1299 cells after PSME3 knockdown
treatment. (L, M) Colony formation assay was performed to detect the proliferation of A549 and H1299 cells. (“***” indicates p < 0.001).
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pancreatic cancer, PSME3 targets the cellular myeloid tumor (C-

Myc) gene to stimulate lactate secretion. In pancreatic cancer,

PSME3 targets the cellular myeloma oncogene (c-Myc) to

stimulate lactate secretion (72). The Wang and others report

PSME3 promotes lung adenocarcinoma development by

regulating the TGF-b/SMAD signaling pathway (73). Dong and

colleagues made a report Comprehensive analysis of PSME3: from

pan-cancer analysis to experimental validation (74). In this study,

we verified that interfering with PSME3 resulted in decreased

proliferative capacity of LUAD cells by CCK8, Transwell and

clonal origin assays, and verified that PSME3 may affect apoptosis

of lung adenocarcinoma cells through the PI3K/AKT/Bcl-2

signaling pathway by Western Blot, and found that PSME3 was

associated with the bioinformatic immune checkpoints were

significantly positively correlated, suggesting that PSME3 may be

a novel target in the immunotherapy of lung adenocarcinoma.

Overall, our findings suggest that PIGRS may serve as a valuable

biomarker for predicting genomic patterns and immunotherapeutic

responses in LUAD patients. Admittedly, limitations of our work

remain. The current results highlight the need for prospective

clinical trials to further validate the clinical applicability of our

PIGRS. The mechanisms underlying the poor prognosis of patients

at high PIGRS risk that we obtained should be further explored in

wet trials. In addition, further animal experiments are needed to

explore the functional role of PSME3 in lung adenocarcinoma,

which could help to provide stronger clues to guide

clinical application.
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