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Acute myeloid leukemia (AML) is a hostile hematological malignancy under great

danger of relapse and poor long-term survival rates, despite recent therapeutic

advancements. To deal with this unfulfilled clinical necessity, innovative cell-

based immunotherapies have surfaced as promising approaches to improve anti-

tumor immunity and enhance patient outcomes. In this comprehensive review,

we provide a detailed examination of the latest developments in cell-based

immunotherapies for AML, including chimeric antigen receptor (CAR) T-cell

therapy, T-cell receptor (TCR)-engineered T-cell therapy, and natural killer

(NK) cell-based therapies. We critically evaluate the unique mechanisms of

action, current challenges, and evolving strategies to improve the efficacy and

safety of these modalities. The review emphasizes how promising these cutting-

edge immune-based strategies are in overcoming the inherent complexities and

heterogeneity of AML. We discuss the identification of optimal target antigens,

the importance of mitigating on-target/off-tumor toxicity, and the need to

enhance the persistence and functionality of engineered immune effector

cells. All things considered, this review offers a thorough overview of the

rapidly evolving field of cell-based immunotherapy for AML, underscoring the

significant progress made and the ongoing efforts to translate these innovative

approaches into more effective and durable treatments for this

devastating disease.
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1 Introduction

Acute Myeloid Leukemia (AML) is a very assertive and

genetically diverse hematologic malignancy that can be life-

threatening if not treated (1). Flow cytometry is the primary

diagnostic tool for assessing surface antigens on leukemia cells, as

simple morphology is insufficient for lineage determination (2).

Special histochemical stains are also necessary, while peripheral

blood can aid in diagnosis, a bone marrow biopsy is essential for

evaluating morphology, cell surface markers, and for cytogenetic

and molecular analysis. For a diagnosis, peripheral blood or bone

marrow must have a blast count of 20% or above, except in specific

cases with certain chromosomal abnormalities (e.g., t(15;17), t(8;21),

inv(16), or t(16;16)) (3). The prognosis for AML is unfavorable, with

cure rates of 5-15% in patients over 60 years old and 35-40% in those

under 60 years old (4). AML genetic changes make cells grow faster,

stop leukemic cells from maturing, and slow down programmed cell

death (5). This causes cancerous cells to replace healthy erythroid,

myeloid, and megakaryocytic progenitors (6). Clinically, AML

manifests with low blood cell counts, including anemia, infections,

bleeding, and bruising, alongside general symptoms, metabolic

irregularities, and various complications (7). Cytogenetic and

molecular events significantly impact AML subgroup classification

and clinical management (8). AML is classified into two subtypes

under the 5th edition of the World Health Organization’s (WHO)

classification of hematolymphoid tumors: AML defined by

differentiation and AML with defining genetic abnormalities (9).

Genetic abnormalities remain essential diagnostic criteria.

Over the past 35 years, several studies have established a

therapeutic induction protocol, now deemed the gold standard for

patients not participating in clinical trials (10). This “3 + 7”

protocol, which marries anthracycline and cytarabine, has

emerged as the most potent intervention for AML. The primary

objective of this therapeutic approach is eradicating leukemic cells

from both the circulatory system and the bone marrow (BM) (11,

12). In certain instances of AML, however, high-dose cytarabine or

hematopoietic stem cell transplantation (HSCT) may be effective

ways to treat the disease (13). While many patients respond well to

first-line therapy and find symptomatic relief, merely a little portion

achieve long-term survival due to chemotherapy-resistant relapses

(14). Additionally, challenges like drug resistance, limited therapy

options for specific patient groups, and the urgent need for more

effective targeted therapies present significant obstacles in AML

treatment (15). Furthermore, it is possible to have difficulties

obtaining and financing medical care and effectively handling the

adverse effects of treatment. These deficiencies underscore the

urgent need to address these gaps to improve outcomes for

individuals battling AML (16). Despite advancements in the

treatment of AML, particularly in higher-risk populations,

progress in prolonging survival remains slow. Complete remission

(CR) rates have increased since targeted treatments were introduced

in conjunction with chemotherapy; however, relapse rates have not

significantly changed, with over 60% of patients experiencing

relapse, leading to a median disease-free survival (DFS) of less

than one year (17). This emphasizes the urgent must recognize
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more effective therapeutic targets and enhance the efficacy of

targeted therapies. While consolidation therapy has demonstrated

benefits in improving overall survival (OS), its efficacy varies among

patients, and maintenance therapy’s place in AML is still debatable

(18). Few maintenance therapies, aside from arsenic trioxide and

retinoic acid in acute promyelocytic leukemia, have shown adequate

effectiveness to be adopted as standard treatment (17). Current

induction therapies often fail to completely eliminate leukemic

clones, necessitating additional post-remission approaches,

especially for patients with adverse biological features (19).

Allogeneic hematopoietic cell transplantation (allo-HSCT) is the

most effective post-remission therapy but is associated with

significant toxicities that may outweigh its benefits in certain

patient groups. Furthermore, the detection of minimal residual

disease (MRD) is crucial for identifying patients more likely to

relapse and may inform maintenance treatment decisions (20).

Historical maintenance strategies have often utilized drugs

comparable to those employed in consolidation and induction,

limiting their effectiveness. However, emerging clinical trials are

exploring novel targets and maintenance approaches that

incorporate targeted therapies based on specific mutational

statuses, potentially offering improved safety and efficacy (21).

Addressing these challenges through the identification of better

targets and the refinement of targeted therapies is vital for

advancing treatment outcomes in AML.

The evolving landscape of cancer treatment is shifting towards

targeted therapies that enhance the host’s immune system to mount

effective antitumor responses against malignancies (22).

Immunotherapy, in particular, has experienced remarkable

progress, solidifying its position as a cornerstone of cancer

management alongside established methods such as surgery,

chemotherapy, and radiotherapy (23). Immunotherapy has

become an effective treatment approach against various human

cancers, leveraging the immune system’s power to eliminate

malignant cells (24). This method is broadly classified into two

categories : active and passive immunotherapy. Active

immunotherapy primarily involves utilizing dendritic cell

vaccines, which stimulate the ability of the immune system to

identify and target cancer cells (25). Conversely, passive

immunotherapy encircles a range of strategies that directly

enhance or modify immune cells to combat cancer (26). These

include chimeric antigen receptor T (CAR-T) cell therapy, natural

Killer (NK) cell therapy, and T cell receptor-engineered T (TCR-T)

cell therapy. Moreover, passive immunotherapy extends to utilizing

checkpoint inhibitors, which disengage the immune system’s

brakes, enabling it to combat cancer more effectively. Passive

immunotherapy also uses oncolytic viruses, which only infect and

kill cancer cells, and monoclonal antibodies, which attack specific

proteins in cancer cells (27, 28). By harnessing these

immunotherapeutic strategies, there is potential for better results

for AML patients, particularly in those with relapsed or refractory

disease. This study aims to examine the most current developments

in AML immune cell treatments, evaluate the current obstacles in

this area, and introduce developing approaches that could improve

treatment efficacy.
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2 Immune cell therapy targeting
specific antigens for AML

HSCT has proven highly effective in curing AML, yet it carries

risks of transplant-related complications and fatalities. As a result,

many patients succumb to disease progression or recurrence as a

result of unfavorable side effects or treatment resistance (29).

Unfortunately, not all patients qualify for HSCT, and relapse

following transplantation continues to be the main reason for

treatment failure. Consequently, exploring innovative AML

treatments is vital (30). Harnessing the immune system to

eradicate leukemic cells shows a great potential therapeutic

approach, with successful implementations in HSCT and non-

HSCT settings. Immunotherapies that use immune cells, like

CAR-T cells, TCR-T cells, and CAR-NK cell therapy, have proven

to be very efficient at treating AML invulnerable to chemotherapy

(31). This section will explore various cell-based immunotherapies,

examining their unique mechanisms and potential applications in

AML treatment.
2.1 CAR-T cell therapy

CAR-T cells have revolutionized the therapeutic environment

for individuals with lymphoma, acute lymphoblastic leukemia

(ALL), and multiple myeloma (MM), demonstrating remarkable

clinical success and significantly improving patient survival rates.

The US Food and Drug Administration (FDA) has authorized

CAR-T cell products for these signs, highlighting their therapeutic

potential (32). On the other hand, CAR-T cells need to be used right

away to treat AML, where treatment resistance (10–40%) and

relapse are still big problems, especially for people who can’t get

allogeneic HSCT (33). Since the arrival of cutting-edge technology,

CAR-T cell engineering is making significant strides in AML

treatment. The focus on enhancing specificity, reducing toxicity,

and improving efficacy is set to transform our procedure to AML

therapy (34). One of the recent advances in CAR-T cell therapy for

AML involves targeting specific antigens like CD33, CD123, FLT3,

and CLL-1, among others. Clinical trials are currently in progress to

assess the security and performance of CAR-T cells in relation to

these targets (35).

Several challenges it has to be addressed to treat AML using

CAR-T cells effectively. These include the absence of an appropriate

antigen uniformly expressed on leukemic cells, the intricate

microenvironment of AML, and the need for suitable cell sources

(36). Both preclinical and clinical studies have zeroed in on several

antigens, such as CD33, CD123, CLL-1, and CD13, among others,

as potential targets (37). Recent research has introduced the

development of fourth-generation CAR-T cells, engineered with

an immune modulator, which exhibit enhanced effectiveness and

durability, potentially overcoming the tumor microenvironment

(38). Exploring CAR-T cell therapy in AML treatment has unveiled

new targets, notably leukocyte immunoglobulin-like receptor B4

(LILRB4) and Sialic acid-binding Ig-like lectin 6 (Siglec-6). These

targets demonstrate a high degree of selectivity and low toxicity
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compared to normal hematopoietic cells (39). In refractory AML

patients, compound CAR (cCAR) T-cells targeting multiple AML

antigens, like CLL1 and CD33, have exhibited robust anti-tumor

activity. This approach holds the potential to eliminate leukemia

progenitor cells, paving the way for complete remission (40). Bi-

specific CAR-T cells, intended to reach both CD13 and T cell

immunoglobulin and mucin-containing-3 (TIM3), have shown

assurance in potentially eradicating AML while minimizing toxic

damage to human BM stem cells (41). A study by Sauer et al.

underscores the effectiveness of CD70-specific CAR-T cells against

AML, preserving normal HSCs and striking a harmony between

safety and effectiveness (42).

Over 190 clinical trials are underway to make CAR-T cell

biology more efficient and identify new targets, suggesting a

promising future for CAR-T cell therapy in treating AML (34). A

number of strategies are being investigated to improve the efficacy

of CAR-T cell therapy, such as employing nanobodies to target

specific antigens like CD13 and TIM3 (43). Studies conducted in

vivo and in vitro have demonstrated that CAR-T cells target surface

protein., including CD7, CD13, CD25, CD32, CD33, CD38, CD44,

CD45RA, CD47, CD70, CD96, CD123, CLL-1, NKG2D ligand,

Lewis Y antigen, Folate receptor b, FLT-3, CLEC12A, and TIM3,

effectively eliminate AML cells (44) (Table 1).
2.2 TCR-T cell therapy

TCR-T therapy employs T-cell receptors (TCRs) from naive T

cells for specificity, as opposed to relying on antibody-based CARs.

These T cells are a source of TCRs that target tumor cells and

subsequently modified to enhance their expression and

functionality (126). The initial step in generating TCR-modified T

cells involves isolating TCRs that exhibit precise recognition of

leukemia-specific antigen (LSA) or leukemia-associated antigen

(LAA) epitopes (127). These TCRs can be identified in T-cell

clones that effectively target leukemia cells, sourced from patients’

BM or blood, or derived from healthy donor T cells stimulated with

LSA or LAA peptides that restrict major histocompatibility complex

(MHC) class I/II (127). Wilms’ Tumor Gene (WT1) is consistently

expressed in myeloid leukemia cells, including those affected by

myelodysplastic syndrome (MDS), AML, and chronic myeloid

leukemia (CML). Notably, cytotoxic T lymphocytes (CTLs)

specific to WT1 have been recognized in the blood of leukemia

patients. Consequently, WT1 emerges as a desirable objective for

CTL stimulation in leukemia immunotherapy (127–129).

The UMIN000011519 trial provided preliminary evidence that

WT1-specific TCR-transduced autologous T cells are effective for

refractory AML or high-risk MDS in HLA-A*24:02 patients (109,

130). Two of the eight participants exhibited decreased embryonic

cells in their BM, suggesting a reversal in leukemia progression.

Notably, WT1-specific TCR-T cells persisted in five patients, four

surviving beyond 12 months. No toxicity-related adverse effects in

healthy tissues were noticed in any participants (130). Numerous

tumor-associated antigens (TAAs) and possible objectives have

been recognized in preclinical TCR-T treatment investigations for

AML (131, 132). Recently, additional leukemia-specific TCRs have
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TABLE 1 Clinical studies performed with targeting antigens as immunotherapy in AML treatment.

Type of cell-
based
Immunotherapy

Targeted
Antigen

Function AML Type Clinical
Phase

Outcome/
limitation

References

CAR-T cell CD7 Lymphocyte
development

R/R AML Phase I/II • Non-myeloablative
treatment of CD7+ AML

(45, 46)
[NCT04762485]
[NCT04033302]

CD19 Transmembrane
proteins that Facilitate
survival of B-
cell development.

t (8;21) in AML Phase II/III • Minimal residual
disease
• Leukemia relapse
• Biased allocation of
patients
• incompleteness of
immunophenotypic
records

(47, 48)
[NCT04257175]

CD25 Type I
transmembrane protein

R/R AML Terminated • No active
clinical trial

(49–51)
[NCT02588092]

CD33 Modulate immune
cellular processes (such
as phagocytosis,
cytokine release,
and apoptosis.

R/R AML Phase I/II • ADCC through dual
targeting
• Survival
• Safety Profile
• Complete remission
• Hematologic and
Hepatic toxicity
• Limited Long-
term Efficacy

(52–56)
[NCT05445765]
[NCT06326021]
[NCT06420063]

CD34 Regulates cell
differentiation,
adhesion, trafficking,
and proliferation.

– – • No active
clinical trial

(57–59)

CD38 Regulates calcium
levels, NAD+
homeostasis, & Cyclic
ADP-ribose hydrolase.

R/R AML Phase I/II • Enhanced
cytotoxicity.
• Got rid of CD38-
positive blasts without
harming lymphocytes or
monocytes
inadvertently.

(60–62)
[NCT04351022]

CD44v6 Displays many
functions in healthy
and diseased tissues by
binding to hyaluronan,
selectins,
& osteopontin.

Phase I/II • Monocytopenia
• Dose limiting
toxicity.
• Inhibited
proliferation
• Induced
differentiation and
apoptosis
• Eradicated AML LSC
in PDX assays by
affecting LSC trafficking
to the BM niche.

(63–67)

CD45RA A unique marker for
subpopulations of
leukemia stem cells.

AML Observational • Anti-LSC/
Effective treatment

(68)
[NCT06297551]

CD47 (IAP) binds to the SIRPa
protein’s N-terminus
on immune cells to
inhibit phagocytosis
and provide a “do not
eat” signal.

AML Phase I • Induced
macrophage-mediated
LSC killing.
• Prevent the
development of
leukemia in vivo.
• Improved
phagocytosis
• Improving the
leukemic engraftment of
AML cells in mice with

(69–75)

(Continued)
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TABLE 1 Continued

Type of cell-
based
Immunotherapy

Targeted
Antigen

Function AML Type Clinical
Phase

Outcome/
limitation

References

NOD/SCID.
• Eliminated AML
LSC
• • Resulting in long-
term disease-free
survival in PDX assays.
• Effective treatment
• Drug resistance

CD56 Identification of two
main NK-cell subsets:
CD56bright

and CD56dim

R/R AML Terminated • No active
clinical trial

(76)

CD70 Upon activation, the
TNF receptor ligand is
transiently up-regulated
on immune cells.

Newly
Diagnosed AML

Phase I • Reducing LSCs
• Gene signatures that
are trigged in relation to
apoptosis and
myeloid differentiation.

(77, 78)
[NCT04662294]
[NCT04227847]

CD117 (c-kit) Cell signal transduction
is facilitated by the type
III receptor
tyrosine kinase.

R/R AML Phase II • Eradicated disease (79)
[NCT00707408]

CD123 IL-3 receptor a-chain R/R AML Phase I/II • Reducing off-tumor
toxicities
• Myelosuppression
• Myelotoxicity
• Toxicity related to
targeting blood vessels.

(56, 80–83)
[NCT03585517]
[NCT03114670]
[NCT02159495]

CD174 (Lewis-
Y, LeY)

o A carbohydrate
antigen
o Normal function in
embryogenesis, tissue
differentiation, tumor
metastasis, and
inflammation.
o Overexpressed in
hematological
malignancies.

high-risk AML Phase I • The viability and
security of CAR-T cell
treatment
• Durable in vivo
persistence
• Transient cytogenetic
remission
• Transient reduction
of blasts
• Stable disease

(84–86)
[NCT01716364]

CD276 (B7-H3) Overexpressed in a
sizable portion of AML
patients’
leukemic blasts.

R/R AML Unknown statue • Stimulated the
expansion and killing of
T cells.
• Stimulated the signal
receptor of T cells.
• Safety profile in
preclinical models
• Effective antigen-
dependent cytotoxicity
in AML xenograft and
in vitro models

(87)
[NCT04692948]

CLL1 (CLEC12A) Alters the state in
which cells are
activated during
inflammatory processes.

Newly diagnosed
& R/R AML

Phase I • Reduced Dose
Limiting Toxicities
(DLTs)
• Anti-leukemic
activity
• Extended survival
• Effective and safe
therapy
• long-term prognosis
of R/R AML

(88–90)
[NCT03066648]

FLT3 (CD135) R/R AML Phase I/II

(Continued)
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TABLE 1 Continued

Type of cell-
based
Immunotherapy

Targeted
Antigen

Function AML Type Clinical
Phase

Outcome/
limitation

References

A class III cytokine
receptor expressed on
the surface of
malignant blasts.

• In xenograft models,
potential suppression of
leukemia proliferation
• Eliminated primary
AML blasts.
• Using
transplantation to
rebuild the patients’
hematopoietic
compartment High
clinical value in the
treatment of AML

(91–96)
[NCT05023707]
[NCT05017883]

IL1RAP (IL1R3) Indispensable for
transmission of IL-
1 signaling

AML Not Applicable • Anti-leukemic effects
in xenograft models
• Toxicity problems

(97)
[NCT04169022]

ILT3 (LILRB4) An antidote to T cell
growth and activation

AML M4/M5 Early Phase I • Reduced tumor
burden in an in vivo
xenograft model without
discernible negative
effects on
normal hematopoiesis.

(98)
[NCT04803929]

MUC1 Interact with receptor
tyrosine kinases at the
cell membrane and
localize to the nucleus.

R/R AML Phase I/II • Effective depletion of
AML cells in vivo
without affecting normal
hematopoiesis
• Limited number of
patient samples

(99)

NKG2D-ligands Bind directly to a wide
range of ligand
molecules that are
expressed on the
surface of
cancerous cells.

Phase 1 • Improved CAR T-
cell persistence
• clinical responses

(100)
[NCT02203825]

Siglec-6 Connected to immune
cells’
inhibitory signaling

Primary,
secondary AML

Phase I/II • Quick and effective
removal of Siglec-6+
AML blasts

(101)

WT1 A zinc-finger
transcription factor is
essential for the
development and
maturation of cells.

R/R AML Phase I • Significantly
enhancing the survival
of mice with AML
• Limited to patients
with HLA-A*02:01
• Restricting
broader application.

(102–104)

TCR-T cell

MiHA HA-1H Polymorphic peptides
presented by
HLA molecules.

high-risk AML Phase I • Decreased overall
feasibility and efficacy.
• Lack of TCR-T-cell
expansion
• Recurrent
• Refractory

(105–107)
[NCT03326921]

PRAME Inhibits cell
differentiation, growth
arrest, & apoptosis

R/R AML Terminated • No active
clinical trial!

(103, 108, 109)

WT1 Zinc-finger
transcription factors are
important for cell
development
and differentiation.

R/R AML Phase I/II • Immune reactivity
• Immune escape
• On-target toxicity
• Reduced the risk of
leukemic relapse.
• Excellent safety

(110–114)
[NCT01621724]
[NCT02550535]

(Continued)
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been discovered, which bind to Formin-like protein 1 (FMNL1) and

are restricted to MHC class I/II (133). Furthermore, cancer-testis

antigens (CTAs), minor histocompatibility A (HA)-1, telomerase

reverse transcriptase (TERT), and surviving have been recognized

as TAAs and are under preclinical investigation (134, 135). HMMR/

Rhamm-TCRs have been recognized as well in patients with ALL

and AML (136), expanding the repertoire of potential targets for

TCR-T therapy in leukemia.
2.3 NK cell therapy

In patients with AML, the NK cell role is often compromised,

giving cancer cells the ability to avoid immune detection. NK cell
Frontiers in Immunology 07
immunotherapy represents a procedure to counteract NK cell

inhibition, thereby enhancing their capability to eradicate cancer

cells (137). Apart from antibody-mediated cell cytotoxicity

(ADCC), NK cells utilize the release of cytolytic granules and

cytokines to induce target cell destruction (138, 139). Romee et al.

showed that NK cells display memory-like traits, evidenced by

increased IFN-g production after pre-activation with IL-12, IL-15,

and IL-18, followed by a 1-3 week resting period before exposure to

cytokines or K562 leukemia cells (140). These findings have sparked

investigations into diverse cell sources to identify possible

contenders for NK cell generation in adoptive cellular therapy.

Among the cell sources being explored are cord blood, peripheral

blood mononuclear cells (PBMCs), NK-92 cell lines, hematopoietic

stem and progenitor cells, and induced pluripotent stem cells (141).
TABLE 1 Continued

Type of cell-
based
Immunotherapy

Targeted
Antigen

Function AML Type Clinical
Phase

Outcome/
limitation

References

record with no
discernible on-target or
off-tumor effects No
severe adverse events.
• Improved feasibility
of clinical management
of the protocol-specified
population
• Myelosuppression
• Transient decreases
of leukemic cells in
bone marrow
• Difficulties in the
recruitment of patients.

CAR-NK-cell

CD33/CLL-1 Modulate immune
cellular processes (such
as phagocytosis,
cytokine release,
& apoptosis.

R/R AML Phase I/II • Several clinical trials
are underway with so
far promising results.

(89, 115, 116)
[NCT02944162]
[NCT05665075]
[NCT05215015]
[NCT05601466]

CD112 Immune
checkpoint inhibitor

Phase I • Effective novel
immunotherapy
for AML.

(117, 118)

CD123 (IL3Ra) Regulates the
proliferation, survival,
and differentiation of
hematopoietic cells.

R/R AML Phase I • Inhibited
leukemogenicity in PDX
assays.
• Promising anti-
leukemic activity
• No CRS or
neurologic toxicity

(82, 119–122)
[NCT02159495]
[NCT04230265]

CAR-70/IL15 Upon activation,
immune cells exhibit a
temporary upregulation
of the TNF
receptor ligand.

R/R AML Phase I/II • No complete
clinical trial

[NCT05092451]

NKG2D
ligand (NKG2DL)

Attach to a broad range
of ligand molecules that
are expressed on the
surface of
cancerous cells.

R/R AML Phase I • Small number in PB
• Low ADCC activity
• Irradiation before
injection
• Tumorigenicity
• Safety concerns

(123–125)
[NCT05734898]
[NCT04623944]
ADCC, Antibody-Dependent Cellular Cytotoxicity; CAR, Chimeric Antigen Receptor; CD, Clusters of differentiation; CR, Complete Remission; DLTs, Dose Limiting Toxicities; HLA, Human
Leukocyte Antigens; IL, Interleukin; LSC, Leukemia stem cells; MRD, Minimal residual disease; NK, Natural killer; NOD, Nonobese diabetic; PB, Peripheral Blood; PDX, Patient-Derived
Xenograft; R/R, relapsed/refractory; SCID, Severe Combined Immunodeficiency; TCR, T-cell receptor.
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In order to increase the cytotoxicity and selectivity of NK cells,

genetic modification through the incorporation of CAR constructs

is employed (142). While CAR-T therapy is efficient for B-cell ALL

and lymphoma, its use in AML treatment is challenging due to

limitations and adverse effects like cytokine release syndrome (CRS)

(34). In place of T cells that have been changed, NK cells with a

short lifespan present a more cost-effective production option and

exhibit fewer harmful side effects (143). The efficiency of CAR-NK

cells in different types of cancer models is currently under active

investigation. Although they show promise in the preclinical stage

of AML treatment, their application is limited (144). Like T cells,

NK cells able to be changed to carry identical CAR, enabling CAR-

NK cells to target cancer cells for destruction. Regarding the source

of CAR-NK cells, preclinical research revealed that primary human

donor CD123-CAR-NK cells were less effective as CAR effector

cells, while CD123-CAR-NK-92 cell lines demonstrated superior

performance (145).

The challenge of identifying leukemia-specific markers that can

be effectively targeted by CAR-NK cells arises from the shared

phenotypic characteristics between AML and normal HSCs (143,

146). One potential target is the myeloid differentiation marker

CD33, which is present in leukemia stem cells (LSCs), and over 85%

of AML patient blasts (147, 148). In a preclinical study, the NK cell

line YT was validated to target CD33+ AML cell lines via gene

transfer of a humanized chimeric T cell receptor (cIgTCR) based on

CD33 (149, 150). A subsequent phase I clinical trial confirmed the

consideration of safety infusing irradiated CD33 CAR-NK-92 cells

in three patients with relapsed or refractory AML, although nothing

noteworthy therapeutic efficacy was noted (151). Additional

probable targets for CAR-NK-92 cells include CD4 and CD7

antigens found on AML blasts. Preclinical and clinical research

has focused on engineering CAR-NK-92 cells to target and

eliminate CD4+ and CD7+ AML cells, specifically (152–154).

Also, researchers achieved another source on which they could

apply CAR structure to employ new cells like NK cells, NKT cells,

and macrophage cells (155). For example, The expression level of

CD47 is higher in AML stem cells and associated with suboptimal

prognosis in adult AML patients (69). Recent advancements in

synthetic biology and the expanding comprehension of the CD47/

SIRPa axis may offer new possibilities for using engineered

macrophages in clinical settings. This axis is a primary pathway

that inhibits macrophage phagocytosis and activation. Therefore,

CD47-CAR-macrophages hinder the CD47/SIRPa axis and also

self-activate to launch an assault the CD47-positive cancer

cells (156).
3 Challenges in immune cell therapy
for AML

Immunotherapy holds immense potential in the management of

AML, yet several challenges must be addressed to optimize its clinical

efficacy (157). These challenges can be generally categorized into two

groups: disease-specific and treatment-related. Disease-specific

challenges include the heterogeneity of antigens in AML, the

absence of appropriate antigens, and the BM microenvironment,
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which is often influenced by the existence of AML blasts (158). On

the other hand, treatment-related challenges primarily revolve

around ethical concerns, the potential development of cytokine

release syndrome, and the continuance of cells post-injection

(159) (Figure 1).
3.1 Leukemia-related challenges

AML offers a substantial challenge due to its tumor

heterogeneity, primarily linked to the existence of LSCs. These

LSCs perpetuate the disease through self-renewal, quiescence, and

treatment-resistance mechanisms (160). Furthermore, the absence

of stem cell characteristics in differentiated cells contributes to a

negative impact on the surrounding environment of the tumor,

consequently influencing tumor biology (161). The dynamic nature

of antigen expression, which may diminish or cease during

treatment, can lead to treatment insensitivity. AML ’s

heterogeneity arises from unique chromosomal abnormalities,

gene mutations, or gene fusions, further complicating its

management and therapy (162).

The challenge in treating AML is its limited efficacy and the lack

of distinct surface antigens, crucial for protecting healthy

hematopoietic cells. The identification of an antigen target it is

essential to the biology of AML and is unique to malignant cells

poses a formidable challenge (163). In contrast, CAR-T cell therapy

has demonstrated significant progress has been made in In

effectively treating diffuse large B-cell lymphoma (DLBCL), MM,

and ALL. This success is attributed to its ability to selectively target

specific surface antigens (CD19, CD22, and BCMA) (164).

However, the intrinsic variability and heterogeneity of tumors

present a significant hurdle in predicting patient responses,

resulting in a high recurrence rate of 75%. Relapse and treatment

resistance, occurring in 10-40% of cases, remain the primary

complications post-treatment, thereby emphasizing the urgent

need for innovative therapies (165).

Furthermore, the AML bone marrow microenvironment

features various cells that suppress T-cell activity, including

macrophages, regulatory T-cells (Treg), myeloid-derived

suppressor cells (MDSC), and dendritic cells (DC) (166). Notably,

Treg cells exhibit abnormally high expression of CD39, and

increased CD73 levels have been linked to an unfavorable

prognosis. Moreover, MDSC levels in BM may function as a

prognostic indicator for AML (3, 167).

The proliferation of AML cells is triggered by reduced CXCL12

expression in bone marrow stromal cells, while WNT ligands from

osteoblasts enhance leukemia cell survival (168). In addition to

indoleamine 2,3-dioxygenase (IDO), other immunosuppressive

substances, like indoleamine 2 and reactive oxygen species (ROS),

contribute to immune evasion in AML (169–171). In tumor-bearing

mice, the cytotoxicity ability of CD8+ T lymphocytes was

discovered to be inhibited due to elevated ROS levels in immature

myeloid cells generated from these animals compared to tumor-free

animals (172). Similarly, an investigation conducted on human

peripheral blood and BM from AML patients indicated that

monocytic AML cells activated poly-ADP-ribose polymerase-1-
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1460437
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kheirkhah et al. 10.3389/fimmu.2024.1460437
dependent apoptosis to kill T-cells and NK cells by secreting ROS

(173). Moreover, patients with AML exhibit higher expression levels

of enzymes engaged in producing immunosuppressive products

such as IDO. These enzymes possess the capacity to prevent T-cell

reactions by causing the high expression of Treg cells (174).

AML blasts can trigger the release of pro-inflammatory cytokines,

like tumor necrosis factor-a (TNF-a), IL-1b, and IL-6, in monocytes.

Myeloid or lymphoid progenitor cells release two key pro-

inflammatory cytokines, including IL-15 and IFN-g, which play a

crucial function in eradicating leukemia cells (175, 176). Low serum

IL-15 levels immediately following allogeneic HSCT have been

associated with leukemia recurrence (177). As tumors progress,

elevated levels of IL-10 display strong immunosuppressive effects,

inhibiting T-cell proliferation and the generation of cytokines like

IFN-g and IL-2. In the cancer field, IL-10 has been demonstrated to

possess a dual biological effect, either elevating tumor development or

inhibiting it (178–180).

In the tumor microenvironment, AML cells enhance the

expression of immunomodulatory factors that impede the CTLs

activation. These factors include transforming growth factor-b
(TGF-b), arginase II, prostaglandin E2 (PGE2), CTL-associated

protein 4 (CTLA-4), lymphocyte activation gene 3 (LAG3), and

TIM3 on T-cells (35). As an instructional method to avoid immune

surveillance systems, AML cells may induce T-cell exhaustion (181).

AML relapse can occur when CD8+ and CD4+ T cells express

higher levels of programmed cell death protein 1 (PD-1) following
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allogeneic HSCT, leading to T-cell exhaustion (182). Notably,

merging T-cell therapy with drugs targeting the PD-1 immune

cell has shown impressive effectiveness in treating leukemia,

resulting in enhanced cytolytic activities, the memory of CD8+ T

cells, and IFN-g production (183). Therefore, inhibitory receptor-

blocking strategies could be valuable treatment approaches for

leukemia, as they augment the immune system’s collaborative

ability (109).

Downregulation of activation ligands in addition to high

expression of inhibitory receptors for NK on AML cell surface

can result in cytotoxic dysregulation of NK cells. NK cells’

antileukemic replies may also be impacted through various AML

receptor-ligand interactions or immunosuppressive factors

secretion (184). A mouse model revealed that melding NK cells

with exogenous IL-15 could boost immune effector cells to

eliminate leukemia following allogeneic HSCT (137, 185). In the

NCT01885897 phase I trial, leukemia patients relapsing after

allogeneic HSCT showed improved CD8+ T cell and NK cell

capabilities with ALT-803 (186). Furthermore, leukemia cells

capable of avoid the immune system by decreasing levels of IL-1b
and granulocyte colony-stimulating factor (G-CSF), which are

inflammatory growth factors (187).

Despite significant expansion of infused cells in vivo, substantial

therapeutic results are often impeded by inhibitory effects of self-

HLA ligands in certain tumors, especially AML (188). Moreover,

because autologous NK cells are obtained from heavily pre-treated
FIGURE 1

The challenges in AML can be categorized into two main groups. The first group pertains to leukemia-related challenges, encompassing issues of
heterogeneity. The second group is associated with challenges related to immunotherapy methods, which may include on-target/off-tumor effects
in the type of treatment method, as well as HLA matching in TCR-T cell therapy.
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patients, their growth and operational capabilities may not be as

high as expected (189). There is a strong rationale for investigating

the potential of NK cells as agents to combat leukemia. Different

approaches are under development to get over the current

limitations of autologous NK cell lineages. Lirilumab, an anti-KIR

antibody, is meant to suppress signals causing inhibition by

preventing interactions with MHC class I ligands, resulting in an

upregulation of NK cells’ killing capacity (190). Additionally, the

application of combination therapy, involving autologous NK cells

and various anti-tumor agents, has been demonstrated to augment

therapeutic responses against tumors (184). This rationale is

supported by evidence from in vitro experiments, animal models,

and clinical trials.
3.2 Immunotherapy-related challenges

Immunotherapy presents several challenges and benefits across

different modalities, including CAR-T cell therapy, TCR-T cell

therapy, NK cell therapy, and other immunotherapies. CAR-T

cell therapy can lead to severe side effects like CRS and

neurotoxicity, and it has limited efficacy in solid tumors because

of antigen escape (191). TCR-T cell therapy confronts problems like

the need for suitable TCRs and the risk of autoimmunity, alongside

complex manufacturing processes (192). NK cell therapy, while

capable of rapid responses, often suffers from a short-lived effect

and inhibition by the tumor microenvironment (193). Other

immunotherapies, like checkpoint inhibitors, can trigger immune-

related unfavorable incidents and encounter resistance mechanisms

due to tumor heterogeneity (194). Despite these challenges, these

therapies also offer significant benefits. CAR-T cells provide a

targeted approach with the potential for durable remissions, while

TCR-T cells can recognize a broader range of antigens and be

personalized for individual patients. NK cells benefit from a quick

innate immune response and a lower risk of graft-versus-host

disease (191). Additionally, other immunotherapies can enhance

the immune response and be effectively combined with traditional

treatments, showcasing their potential in revolutionizing cancer

therapy (195). In this part, we discuss the challenges of cell-

based immunotherapy.

3.2.1 CAR-T cells challenges
Immunotherapeutic approaches face challenges like high “on-

target off-tumor” toxicity, potentially fatal CRS, and neurological

issues that hinder their effective use (146, 196). CAR-T cells can

attach to substances on the cell surface without requiring antigen

processing or HLA expression. A critical aspect of the production

process involves choosing the right option surface antigen to target

(197). The perfect target would have little to no expression on

healthy tissues in order to avoid toxicity and high expression on

tumor cells, exceeding CAR-T cell activation thresholds (198).

Despite extensive research on the immunopathology of AML, a

specific AML target remains difficult to achieve (199, 200).

However, the significant danger of on-target/off-tumor activity

needs to be taken care of. Prolonged myelosuppression is a
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concern, as most AML blast surface antigens are co-expressed by

mature myeloid cells, HSCs, and other relevant tissues (200, 201).

Some phase I trials have reported severe toxicities and fatalities. For

instance, patients receiving CAR-T cells targeting CD33, an antigen

present in most leukemic blasts and normal myeloid lineages,

experienced severe pancytopenia and CRS. Additionally, excellent

preclinical outcomes of CD44V6 CAR-T were accompanied by

monocytopenia, likely because of the common expression of

CD44v6 in circulating monocytes (202, 203). Secondary T cell

lymphoma that develops after CAR-T cell therapy is rare but a

noteworthy issue. The rising incidence of secondary primary

malignancies, particularly myeloid neoplasms, after CAR-T cell

therapy requires attention, as several reports indicate the

emergence of SMNs, including MDS and AML, following this

treatment. These observations suggest that prior chemotherapy

and the immunosuppressive environment may elevate this risk

(204, 205). The proportion of SMN after CD19 CAR-T cell

therapy varies significantly, with rates reported ranging from

0.9% to 12.9%. These differences may have resulted from complex

and multifactorial etiologies (205). Therefore, secondary

malignancies pose a significant problem, and further research of

the mechanisms participant and methods of minimizing these risks

is imperative. CAR-T cell therapy has become a ground-breaking

medical intervention for various diseases, but the development of

secondary T-cell lymphomas and other cancers cannot be ignored.

3.2.2 TCR-T cells challenges
Nevertheless, some TCR-T cell immunotherapies are currently

employed to handle AML, these treatments face specific challenges

(109). Until a thorough assessment of on-target/off-tumor toxicity,

toxicity associated to dose, in vivo durability of TCR-T cells, and

potential immune evasion by AML post-TCR-T injection is

completed, TCR-T cell therapy usage will stay restricted (192).

TCR-T cells eliminate leukemia cells by participating in their

engineered TCRs with antigens presented by HLA molecules on

the surfaces of these cells. Therefore, identifying neoantigens and

matching HLA between donor and patient is a significant obstacle

(134). One obstacle in this approach is the restriction of TCR-T cells

to HLA, which is often downregulated in AML recurrence (108).

However, cytokines like IFN-a, IFN-b, and IFN-g are essential for
enhancing MHC-I expression, and inserting IFN-g into the C-

domain of a TCR could circumvent MHC molecule down-

regulation (206). Animal models have demonstrated that

modifying TCR-T cells with pro-inflammatory cytokines like IL-

15, IL-18, or IL-12 enhances persistence and exhibits a favorable

safety profile when used against tumors (207, 208).

The potential of on-target and off-tumor toxicity in treatments

employing adoptional swap of antigen-specific TCR-T cells raises

concerns. Adoptional swap of autologous TCR-T cells has been

associated with neurotoxicity and cardiac toxicity as off-target

toxicity side effects in two clinical investigations (209, 210).

Another challenge in TCR-T cell therapy is the restricted T cell

capacity to strive and proliferate in vivo over extended periods,

which reduces therapeutic efficacy (211). To improve T-cell

persistence in vivo, several strategies, such as genetic modification
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of T-cell signaling and cytokine or pharmacological provocation of

T cells, can be employed (212). An effective method for enhancing

the growth and longevity of TCR-T cells is to incorporate the

intracellular domain (ICD) of signaling components (such as CD28

or 4-1BB) onto CD3Ύ, rather than altering the TCR affinity (213,

214). These engineered TCR-T cells have shown improved

effectiveness, extended in vivo lifespans, and improved

proliferation (215, 216). Studies suggest that administering

antigen-specific T-cells with cytokines enhances T-cell persistence

and induces T-memory stem cell (TSCM) generation.

Consequently, low-dose decitabine treatment of TCR-T cells may

also augment phenotypic indicators of TSCM (217).

3.2.3 NK cells challenges
In NK cell-based therapy, both autologous and allogeneic

sources face challenges connected to prompt ex vivo expansion,

low clinical-grade activation, and an absence of in vivo persistence

(218). Combining many cytokines can play a crucial role in the

activation (IL-18 and IL-21), proliferation (IL-2 and IL-15), and

effector function (IFN-g and TNF-a) of NK cells (219). The IL-15

super agonist complex, ALT-803, has proved to be a safe agent in

the first in-human phase I study, emphasizing senior AML patients

who relapsed following HSCT (220). In a research aimed at pre-

activating NK cells with IL-2, significant in vitro cytolytic activity

and in vivo persistence were observed, but no notable clinical

reactions were seen. However, persistent NK cell-mediated ADCC

without in vitro cytokine reactivation indicates that combining

monoclonal antibodies with autologous adoptive NK cell transfer

warrants further assessment and investigation (189, 221). Safety

concerns arise from the necessity to irradiate products derived from

immortalized NK lymphoma cell lines, which are utilized to

cultivate NK cells, before infusion (222). Moreover, even with

ADCC, the killing capacity of NK-92 cell lines may be

constrained due to the absence of CD16 (FCI) and other

activating killer cell immunoglobulin-like receptors (KIRs) (223).

Induced pluripotent stem cells are optimal for acquiring NK cells,

provided their rapid proliferation. However, they also exhibit lower

CD16 levels, which might impair their ability to eliminate cancer

cells. This challenge could be addressed through genetic engineering

(224). Recently, innovative NK cell-based immunotherapies, like

adoptive transfer and CAR-NKs, have been assessed in AML

clinical trials (225). The challenges associated with NK cell

therapy are depicted in Figure 1.
4 Clinical trial targets of cell-based
immunotherapy for AML

AML treatment encompasses conventional chemotherapy,

targeted medications, HSCT, and immune-based cell therapies.

Each approach has its benefits and drawbacks. Conventional

chemotherapy protocols for AML have been well-established and

serve as the primary treatment for recently diagnosed cases. However,

these agents can cause organ damage and hematopoietic system
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suppression, especially in elder patients. Emerging targeted drugs

such as gilteritinib (FLT3 inhibitor) (226), enasidenib (IDH2

inhibitor) (227), ivosidenib (IDH1 inhibitor) (228), and venetoclax

(BCL-2 inhibitor) (229) have demonstrated promising outcomes, but

their cost may limit access for some patients. HSCT remains a feasible

choice, especially for young patients with suitable donors, but carries

risks of severe complications like graft-versus-host disease (GVHD)

and infections (230). To develop effective targeted immunotherapies,

finding an appropriate target antigen is essential. Cheever et al. listed

the characteristics of a perfect antigen for targeting including

immunogenicity, clinical effects, and an important part in the

differentiation and proliferation of malignant cells. Its expression

ought to be limited to cancerous cells; all cancerous cells, including

cancerous stem cells, should express it (231). A significant ratio of

patients should exhibit positive antigen tests, and malignant cells

should have the antigen on their surface, consisting of several

antigenic epitopes (232). In Table 1, we discussed the clinical

studies of cell-based immunotherapy.
5 New potential targets of AML for
cell-based immunotherapy

Based on the challenges mentioned above, various solutions

were considered. One crucial solution involves identifying a new

target capable of specifically and accurately attacking cancer cells,

while also preventing the protection of the stromal cells in the BM

niche. The progression of treatments for AML has been hindered by

the diversity and high frequency of disease relapse, emphasizing the

critical demand for novel therapeutic options. Researchers are

investigating diverse strategies for managing AML, and while

some are more promising than others, each can cause valuable

treatments (233) (Figure 2).

Computat ional models have recent ly emerged as

useful instruments for the in silico and systematic analysis of

significant biological mechanisms and patient remarks in cancer

immunotherapy. These models are according to empirical

justifications and mathematical simulations with clinical data

input (234). However, computational modeling of CAR-T cell

therapy remains in its early phases, and there are limited

applications for model-informed response prediction. For

instance, utilizing information from xenograft mouse models, a

multiscale pharmacokinetic-pharmacodynamic model based on

physiological principles was created to quantitatively investigate

the connection between CAR affinity, antigen abundance, tumor

cell depletion, and CAR-T cell expansion (235, 236). Other

approaches model factors influencing CAR-T cell dynamics, such

as ecological dynamics regulating expansion and exhaustion,

signaling variability in cell states, lymphodepletion effects on

expansion, and competition between CAR-T and normal T-cells

(237, 238). Recently, Liu et al. created a model retrospectively to

describe clinical kinetics of CAR-T cells in relation to reaction

status, patient populations, and tumor types (236). However,

computational models often lack comprehensive analysis of
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clinical trial data, and a predictive model based on clinical data to

forecasts of patient responses to CAR-T cell treatment are mostly

lacking (239) (Figure 3).

The significance of the optimized interaction among AML

blasts, the hematopoietic niche, and immune cells has been

demonstrated to play a critical function in AML expansion and

progression in recent years (240). The mechanisms behind the

capacity of AML cells to evade the immune system and induce

systemic tolerance have been better understood (241). These

tolerogens provide an immunosuppressive microenvironment that

impairs anti-leukemia immune responses and decreases the

effectiveness of both traditional and novel treatments (242).

Clinically applicable novel medications, examples include

immune checkpoint and macrophage checkpoint inhibitors, have

emerged to target these pathways and enhance anti-tumor

immunity (243). In the present clinical trials primarily focus on

lineage-restricted antigens, but newer approaches, such as split and
Frontiers in Immunology 12
dual targeting, aim to target leukemia-specific intracellular antigens

(244). Bispecific antibodies and adapter CAR-T cells offer

temporary exposure, improved safety, and multitargeting

capabilities against antigen-escape variants. Bispecific antibodies

encompass several types, such as bispecific T-cell engagers (BiTEs),

bispecific killer-cell engagers (BiKEs), dual-affinity retargeting

antibodies (DARTs), and tandem diabodies (TandAbs). These

antibodies feature two antigen recognition sites that help redirect

tumor cells toward immune cells (245). To overcome the AML’s

molecular variability and the inherent variety of AML blasts, a

combined or sequential approach involving immunotherapy,

chemotherapy, and molecular therapy is likely to be the most

effective (246). This three-pronged strategy aims to control the

disease and prevent relapse. To improve AML cure rates, it is also

essential to develop new methods for tracking MRD and identifying

potential recurring clones at an early stage, in addition to early

response biomarkers and genomic profiling (247). Extending the
FIGURE 2

The updated targets for AML cell-based immunotherapy encompass a range of potential candidates, including cell surface antigens, proteins
involved in various signaling pathways, key factors in cell metabolism, and epigenetic modulators.
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utilization of CAR-T cells to target intracellular antigens could

benefit a broader range of cancer patients. Despite this, clinical trials

for immunotherapy and chemotherapy combinations are yet in

their early years, these treatments hold promise for AML patients.

Through complement-dependent cytotoxicity, innate immune

system activation, and ADCC, immune agents cause AML cell

death (248, 249).

In the last ten years, single-cell technologies have undergone a

dramatic evolution, producing a wealth of single-cell expression

data that precisely delineates the transcriptomic topography of both

cancerous and healthy cells (250). This rich data reservoir, largely

unexplored, is capable of creating new treatments, especially in the

background of CAR-T cell development and novel antigen

predictions (251). These advancements facilitate precise on- and

off-tumor antigen predictions, providing unparalleled resolution

and distinct perspectives into both malignant and healthy cells. For

example, the AML antigens CD33 and CD123 did not meet our

stringent overexpression standards for malignant hematopoietic

stem and progenitor cells (HSPCs), most likely because of their

expression in healthy HSPCs as well (80, 252). Furthermore,

endothelial and other lung cell types exhibited high CD123

expression levels, potentially leading to on-target off-tumor

toxicity. An investigation was conducted using a group of 15

AML patients to find potential antigens for CAR-T cell treatment.

In order to accomplish this, a technique called single-cell RNA

sequencing (scRNA-seq) (198, 252). A comprehensive

transcriptome atlas was created by utilizing publicly accessible

datasets. This atlas includes more than 28,000 malignant and

healthy BM cells taken from patients, as well as over 500,000

healthy cells from nine important human tissues (252). The atlas

underwent screening to identify cell surface antigens that are
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expressed on cancerous cells but have low expression on healthy

cells, specifically T lymphocytes (253). Through the use of stringent

criteria, researchers have successfully identified two CAR-T cell

targets in AML that were previously unknown: CD86 and the

colony-stimulating factor 1 receptor (CSF1R) (254, 255). CAR-T

cells were produced against both targets and assessed for

effectiveness using primary AML blasts and other patient-derived

models, both in vitro and in vivo (252). For in vitro safety studies,

we used advanced primary cell cultures of cell types that express the

target. These cultures showed a higher ability to distinguish between

different cell types compared to well-known anti-CD33 CAR-T cells

(252). To address concerns regarding safety, various in vivo models

were employed. These results establish the foundation for the

clinical advancement of the CAR candidates and emphasize the

potential for practical application of an objective scRNA-seq-based

screening technology (252).

Recent innovations in immune-based therapies for AML

concentrate on utilizing the immune system to tackle the disease.

These approaches focus on targeting intrinsic and surface antigens of

cancer cells, additionally modifying the leukemic microenvironment

to reduce immune evasion like HLA loss and T-cell exhaustion during

cancer progression (256). For example, in study on dual CAR-T, a new

combination platform of twofold aiming by an antibody-T cell

receptor (AbTCR) and a chimeric costimulatory signaling receptor

(CSR) to two different antigens, wherein the cancer cells express both

antigens simultaneously, but not together on normal cells. In this

study two different antigensWilm’s tumor 1 protein (WT1) and CD33

were targeted that both are highly expressed onmost AML cells. These

data suggest that this amalgamation of a AbTCR CAR and CSR might

work well as a tactic to lessen toxicity and enhance specificity and

clinical results in adoptive T cell therapy in AML (257). So, the search
FIGURE 3

Find the potential targets for AML immunotherapies.
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for novel targets and therapies for AML underscores the necessity for

innovative strategies. Integrating single-cell technologies and

computational modeling presents promising pathways for

identifying effective CAR-T cell targets. A multi-faceted approach

combining immunotherapy, chemotherapy, and advanced tracking

methods is crucial for improving treatment efficacy and minimizing

relapse rates.

Advancements in genomics and precision medicine have

profoundly shaped the strategic selection of targets for immune

therapies, revealing intricate genetic and molecular foundations of

diseases, notably cancer. This knowledge permits the precise

identification of particular genetic aberrations and molecular

routes susceptible to immune therapies, increasing their

effectiveness while reducing off-target effects. The employment of

high-throughput sequencing technologies enables comprehensive

analysis of tumor genomes, which identifies tumor-specific

modifications that give rise to neoantigens. These neoantigens

serve as optimal targets for immune interventions because of their

tumor specificity and recognition by the immune system as foreign

entities (258). Furthermore, computational tools leveraging

genomic data proficiently predict potential neoantigenic

mutations based on the affinity of altered peptides for major

histocompatibility complex (MHC) molecules, essential for

antigen presentation to T cells (259). A notable correlation can be

observed between high tumor mutational burden (TMB) and the

proliferation of neoantigens, positioning tumors with elevated TMB

as prime candidates for immune checkpoint inhibitors. Genomic

sequencing quantifies TMB, thus directing the deployment of these

inhibitors. For example, elevated TMB is linked with enhanced

responses to checkpoint inhibitors since mutation-rich tumors are

more likely to generate recognizable neoantigens (260).

Additionally, microsatellite instability (MSI) suggests a heightened

mutational load and an abundance of neoantigens, rendering such

tumors suitable for immune therapy (261). Genomic assessments

can pinpoint mutations essential for the survival of cancer cells

(oncogenic drivers). Attacking these drivers with immune therapies

through direct targeting or blocking reliant pathways has proven

efficacious. For example, although direct drug targeting of KRAS

gene mutations has been challenging, immune therapies tailored to

attack KRAS-mutant cells are under development. Integrating

genomics into precision medicine also aids in unearthing novel

immune targets by analyzing the genetic landscape of tumors (262).

Identifying mutations in pathways such as the JAK/STAT pathway

has catalyzed the development of therapies that enhance immune

checkpoint blockade efficacy by thwarting immune evasion

mechanisms (263). Advances in transcriptomics have further

enabled the exploration of gene expression in the tumor

microenvironment, revealing the presence and activity of immune

cells such as T cells, macrophages, and regulatory T cells. This

information will help with the decision-making of appropriate

immune therapies, including checkpoint inhibitors or adoptive

cell therapies (227, 264). Single-cell sequencing technology, which

analyzes gene expression at the cellular level within the tumor

microenvironment, assists in pinpointing specific cell populations

that may promote or inhibit an immune response, thereby guiding
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immune modulator selection (265). Furthermore, genomics has

facilitated the creation of biomarkers that guide the selection and

fine-tuning of immune therapies. Biomarkers such as MSI and

specific gene expression profiles tailor immune therapies to

individual patients, ensuring that treatments are optimally

matched to their unique genetic profiles (266). Precision medicine

employs genomic insights to categorize patients by the molecular

attributes of their tumors-this stratification aids in selecting optimal

immune therapies that enhance effectiveness and diminish side

effects (267). Personalized cancer vaccines, which are designed to

target unique neoantigens within a patient’s tumor, provoke specific

immune reactions. However, some tumors have evolved resistance

to these therapies. Genomic analysis exposes resistance

mechanisms, such as mutations that disrupt antigen presentation

or elevate immune-suppressive pathways. Comprehending these

mechanisms fosters the development of combination therapies that

triumph overy such resistance. The integration of genomic

information with immune profiling enables the development of

multifaceted therapies. These therapies address various elements of

tumor biology, thereby improving clinical outcomes and lessening

unwanted effects (268, 269). However, despite these advances,

significant challenges remain in applying genomics and precision

medicine in selecting immune therapy targets (266). The inherent

heterogeneity of tumors and the dynamic interactions within the

immune system and tumor microenvironment often hinder the

consistent identification of stable, effective targets (270).
6 Conclusion

In conclusion, this work highlights the promising potential of

various immunotherapeutic strategies in targeting AML while

emphasizing the need for a more thorough comprehension of the

tumor microenvironment and its interactions with immune cells. In

the past three to five years, significant advancements in AML

immunology, coupled with technological breakthroughs, have led

to innovative therapeutic strategies for AML-targeted T cells. Despite

the plethora of continuing investigations, T-cell immunotherapies for

myeloid malignancies continue to be available in their nascent stages,

poised to evolve and refine AML immunotherapeutic in the coming

years. A targeted investigation of biomarkers at various phases-pre-

therapy, on-therapy, and relapse—will accelerate clinical

advancements, improve immune toxicity management, validate

new checkpoints and AML-specific targets, elucidate mechanisms

of immune resistance, and identify likely responders. Identifying and

implementing these treatments in optimal clinical settings, such as

MRD and low-mortality illness, will be essential. Innovative

techniques like mass cytometry, single-cell RNA and DNA

sequencing, and single-cell cytokine analysis will provide critical

insights into non-T-cell compartments in immune responses and

tumor microenvironments, guiding sequential or combinatorial

immune therapy strategies. Overall, this comprehensive

understanding of immunotherapy’s role in AML, alongside

biomarker-guided strategies, positions us for an exciting and

potentially fruitful decade ahead for AML immunotherapies.
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Glossary

ADCC Antibody-dependent cell-mediated cytotoxicity
Frontiers in Immunol
ALL Acute lymphoblastic leukemia
AML Acute myeloid leukemia
BCL-2 B-cell Lymphoma 2
BCMA B-cell maturation antigen
CAR Chimeric antigen receptor
cCAR Compound CAR
CD Cluster of differentiation
CLEC12A C-type lectin domain family 12 member A
CLL1 C-type lectin-like molecule-1
CML Chronic myeloid leukemia
CRS Cytokine release syndrome
CSF1R Colony-Stimulating Factor 1 Receptor
CTAs Cancer-testis antigens
CTL Cytotoxic T lymphocyte
CTLA-4 Cytotoxic T-lymphocyte-associated protein 4
CXCL12 C-X-C motif chemokine ligand 12
DC Dendritic cells
DLBCL Diffuse large B-cell lymphoma
FLT3 Fms-like tyrosine kinase 3
FMNL1 Formin-like protein 1
G-CSF Granulocyte colony-stimulating factor
GVHD Graft-versus-Host Disease
HA-1 Minor histocompatibility antigen A-1
HLA Human leukocyte antigen
HMMR/Rhamm Hyaluronan-mediated motility receptor
HSC Hematopoietic stem cell
HSCT Hematopoietic stem cell transplantation
IDH Isocitrate Dehydrogenase
IDO Indoleamine 2,3-dioxygenase
IFN Interferon
ogy 22
IFN-g Interferon-gamma
IL Interleukin
KIRs Killer cell immunoglobulin-like receptors
LAA Leukemia-associated antigen
LAG-3 Lymphocyte-activation gene 3
LILRB4 Leukocyte immunoglobulin-like receptor B4
LSA Leukemia-specific antigen
LSC Leukemia stem cell
MDS Myelodysplastic syndrome
MDSC Myeloid-derived suppressor cells
MHC Major histocompatibility complex
MM Multiple myeloma
MRD Minimal Residual Disease
NK Natural Killer
NKG2D Natural killer group 2, member D
PBMC Peripheral blood mononuclear cell
PD-1 Programmed cell death protein 1
PD-L1 Programmed death-ligand 1
PGE2 Prostaglandin E2
ROS Reactive oxygen species
Siglec-6 Sialic acid-binding Ig-like lectin 6
TAA Tumor-associated antigen
TCR T-cell receptor
TERT Telomerase reverse transcriptase
TGF-b Transforming growth factor-beta
TIM3 T cell immunoglobulin and mucin-domain containing 3
TNF-a Tumor necrosis factor-alpha
Treg Regulatory T-cells
TSCM T-memory stem cells
WT1 Wilms’ Tumor
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