
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Yong Cao,
Capital Medical University, China

REVIEWED BY

Ravi Manjithaya,
Jawaharlal Nehru Centre for Advanced
Scientific Research, India
Heather M. Wilkins,
University of Kansas Medical Center Research
Institute, United States
Bowen Sun,
First Affiliated Hospital of Harbin Medical
University, China

*CORRESPONDENCE

Xin Chen

xinchentianjin@163.com

RECEIVED 05 July 2024
ACCEPTED 10 September 2024

PUBLISHED 02 October 2024

CITATION

Zhu Y, Zhang J, Deng Q and Chen X (2024)
Mitophagy-associated programmed neuronal
death and neuroinflammation.
Front. Immunol. 15:1460286.
doi: 10.3389/fimmu.2024.1460286

COPYRIGHT

© 2024 Zhu, Zhang, Deng and Chen. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 02 October 2024

DOI 10.3389/fimmu.2024.1460286
Mitophagy-associated
programmed neuronal death
and neuroinflammation
Yanlin Zhu1,2,3, Jianning Zhang1,2,3, Quanjun Deng1,2,3

and Xin Chen1,2,3*

1Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China, 2Tianjin
Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration
of Nervous System, Tianjin, China, 3Tianjin Key Laboratory of Injuries, Variations and Regeneration of
Nervous System, Tianjin, China
Mitochondria are crucial organelles that play a central role in cellular metabolism

and programmed cell death in eukaryotic cells. Mitochondrial autophagy

(mitophagy) is a selective process where damaged mitochondria are

encapsulated and degraded through autophagic mechanisms, ensuring the

maintenance of both mitochondrial and cellular homeostasis. Excessive

programmed cell death in neurons can result in functional impairments

following cerebral ischemia and trauma, as well as in chronic neurodegenerative

diseases, leading to irreversible declines in motor and cognitive functions.

Neuroinflammation, an inflammatory response of the central nervous system to

factors disrupting homeostasis, is a common feature across various neurological

events, including ischemic, infectious, traumatic, and neurodegenerative

conditions. Emerging research suggests that regulating autophagy may offer a

promising therapeutic avenue for treating certain neurological diseases.

Furthermore, existing literature indicates that various small molecule autophagy

regulators have been tested in animal models and are linked to neurological

disease outcomes. This review explores the role of mitophagy in programmed

neuronal death and its connection to neuroinflammation.
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Introduction

Mitochondria are essential organelles responsible for cellular metabolism and function,

generating the majority of the cell’s energy while also regulating cell growth and apoptosis.

Damage to these structures can lead to cellular defects and is associated with various

diseases (1). Often referred to as the cell’s power source, mitochondria produce most of the

ATP required by cells, making them indispensable for eukaryotic life. However, during the
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functioning of mitochondria, a significant amount of reactive

oxygen species (ROS) are generated, which can damage

mitochondrial DNA (mtDNA) (2). When mitochondria are

damaged, they can release high levels of Ca2+ and cytochrome c

into the cytoplasm, triggering cell apoptosis. Mitophagy, a vital

mechanism for maintaining mitochondrial quality, ensures the

clearance of damaged mitochondria, which is crucial for

preserving cellular and metabolic homeostasis and, ultimately, cell

survival (3). Depending on the signals that target damaged or excess

mitochondria for degradation, mitophagy can be categorized into

four main types: ubiquitin-dependent mitophagy, ubiquitin-

independent or receptor-mediated mitophagy, lipid-based

mitophagy, and micromitophagy. Of these, ubiquitin-dependent

and ubiquitin-independent mitophagy are the most prevalent

(4) (Figure 1).
Ubiquitin−dependent mitophagy

As early as 2006, it was discovered that phosphatase and tensin

homolog (PTEN)-induced kinase 1 (PINK1) and Parkin operate

within the same pathway, playing a crucial role in maintaining

mitochondrial function (5, 6). Under normal conditions, PINK1 is

imported into the mitochondria via the outer membrane

translocase (TOM) complex and the inner membrane translocase

(TIM23) complex, facilitated by its amino-terminal mitochondrial

targeting sequence. Once inside, PINK1 enters the inner

mitochondrial membrane (IMM) complex (7). In the

mitochondrial matrix, the mitochondrial processing peptidase

(MPP) cleaves the N-terminal mitochondrial targeting sequence

of PINK1, while presenilin-associated rhomboid-like protein

(PARL) further cleaves the M-segment of PINK1 (8, 9). The

remaining PINK1, now with an unstable N-terminus, is released
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into the cytoplasm, where it is degraded by the proteasome pathway

involving cytoplasmic ubiquitin ligase E3 components N-recognin 1

(UBR1), UBR2, and UBR4. During this process, Parkin E3 ubiquitin

ligase, typically in an inactive state, remains in its natural self-

inhibitory conformation within the cytoplasm (10). When

mitochondria are damaged, a decrease in mitochondrial

membrane potential (MMP) triggers the self-phosphorylation of

PINK1 at Ser228 and Ser402 residues. This self-phosphorylation

event recruits the E3 ubiquitin ligase Parkin to the mitochondria,

altering its spatial conformation and converting it into an active E3

ubiquitin ligase (11). Activated Parkin ubiquitinates several

mitochondrial proteins, including mitofusin 1 (Mfn1), mitofusin

2 (Mfn2), voltage-dependent anion-selective channel protein

(VDAC), and dynamin-1-like protein (DRP-1) (12). These

ubiquitinated proteins on the outer mitochondrial membrane

(OMM) then recruit various autophagic receptors, such as

sequestosome 1 (P62/SQSTM1) (13), neighbor of BRCA1 gene 1

(NBR1) (14), calcium binding and coiled-coil domain 2

(CALCOCO2/NDP52) (15), tax1 binding protein 1 (TAX1BP1)

(16), and optineurin (OPTN) (17). Microtubule-associated protein

light chain 3 (LC3) recognizes these receptors through the LC3-

interacting region (LIR) motif and subsequently transports the

dysfunctional mitochondria to autophagosomes. These

autophagosomes then fuse with lysosomes, allowing the degraded

mitochondria to be processed and cleared from the cell (18).

Additionally, multiple signaling pathways influence mitophagy

by regulating the expression of PINK1/Parkin. Autophagy and

Beclin 1 regulator 1 (AMBRA1) is essential for the effective

activation of PINK1-PRKN (Parkin) signaling during

mitochondrial depolarization. In the absence of AMBRA1, the

autophagic response to mitochondrial damage is impaired (19).

The PINK1/Parkin pathway acts as a signal transduction

mechanism, labeling damaged mitochondria with ubiquitin chains
FIGURE 1

In ubiquitin-dependent mitophagy, a decrease in MMP leads to the accumulation of PINK1 on the OMM, which promotes the recruitment and
phosphorylation of Parkin. Activated Parkin ubiquitinates mitochondrial proteins, which are then recognized by receptors such as P62, NBR1, OPTN,
TAX1BP1, and CALCOCO2. These receptors interact with LC3 through their LIR domain, thereby inducing mitophagy. In contrast, in ubiquitin-
independent mitophagy, mitophagy receptors like BNIP3, NIX, PHB2, and FUNDC1 are directly anchored to the OMM and mediate mitophagy by
directly interacting with LC3, without the need for ubiquitination.
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and recruiting mitophagy receptors. These receptors guide the

autophagosome membrane to envelop the ubiquitinated

mi tochondr i a , wh i ch a r e th en e l im ina t ed th rough

autophagosome-lysosome pathways (20). Several factors have

been found to modulate this pathway. For instance, LncRNA H19

can inhibit the PINK1/Parkin signaling pathway, thereby alleviating

cardiac defects associated with obesity (21). In diabetic retinopathy,

high glucose levels promote apoptosis of retinal pigment epithelial

(RPE) cells and inhibit mitophagy by downregulating ROS-

mediated PINK1/Parkin signaling (22). Stomatin-like protein 2

(STOML2) interacts with and stabilizes PINK1, amplifying

PINK1/Parkin-mediated mitophagy, which in turn promotes the

growth and metastasis of hepatocellular carcinoma (HCC) (23).

Follicle-stimulating hormone (FSH) protects granulosa cells (GCs)

from hypoxic damage by activating PINK1/Parkin-mediated

mitophagy (24). Conversely, inhibiting extracellular signal-

regulated protein kinases (ERK)1/2 signaling can block

docosahexaenoic acid (DHA)-mediated mitophagy (25).

Melatonin has also been shown to mitigate the aging of renal

tubular epithelial cells induced by glyphosate and hard water by

upregulating PINK1/Parkin-dependent mitophagy (26).
Ubiquitin-independent mitophagy
(receptor-dependent)

In contrast to PINK1/Parkin-mediated ubiquitination of

mitophagy, several proteins located on OMM contain LC3-

interacting region (LIR) motifs and act as autophagy receptors.

These receptors are typically expressed on the OMM surface and

can directly bind to LC3 without the need for ubiquitination,

thereby initiating mitophagy (27). LC3-I is typically converted to

LC3-II during mitophagy, and the LC3-II/I ratio is commonly used

to reflect changes in mitophagy levels. A higher LC3-II/I ratio

indicates a higher level of mitophagy (28). Key receptors that

facilitate this process include Bcl2-interacting protein 3 (BNIP3),

BNIP3-Like (BNIP3L)/NIP3-like protein X (NIX), prohibitin 2

(PHB2), and FUN14 domain containing 1 (FUNDC1) (29).

BNIP3, encoded by the Bnip3 gene located on human

chromosome 10q26.3 and initially referred to as “NIP3”, is

believed to be part of the Bcl-2 family, which regulates cell death.

It contains an atypical BH3 domain, characteristic of certain Bcl-2

family proteins (30). BNIP3 is a pro-apoptotic protein that

functions through the mitochondrial pathway and can induce cell

death in various cell lines (31, 32). It serves as an integral node for

regulating mitophagy via endosomes and proteasomes (33). In

patients with EB virus-positive diffuse large B-cell lymphoma,

silencing of CD30 leads to mitochondrial dysfunction and inhibits

mitophagy. This inhibition, in turn, reduces the expression of

BNIP3, resulting in the accumulation of damaged mitochondria

and promoting tumor cell apoptosis (34). In rheumatoid arthritis

(RA) patients, the activation of fibroblast-like synoviocytes (FLS)

under hypoxic conditions involves BNIP3-mediated mitophagy.

Additionally, autophagy can eliminate ROS and inhibit the HIF-

1a/NLRP3 pathway, thereby reducing hypoxia-induced FLS

pyroptosis (35). DHA regulates mitophagy through the PPARg-
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LC3-BNIP3 pathway, inducing apoptosis in cells, reducing

adipocyte numbers, and inhibiting lipid accumulation (36).

Furthermore, 6-Gingerol exerts a protective effect against

placental injury in preeclampsia by reducing oxidative stress and

inhibiting excessive mitophagy caused by mitochondrial

dysfunction (37).

BNIP3L/NIX is an OMM protein that belongs to the Bcl2 family

of BH3-only proteins. BNIP3L acts as a mitophagy receptor by

binding to LC3 through its N-terminal LIR motif (38). This

interaction with ATG8 family proteins in LC3 initiates mitophagy

(39). In a study involving mice, pretreatment with a NIX enhancer

before corticosterone exposure increased mitophagy and synaptic

density in the hippocampus, leading to improved performance in

spatial memory tasks (40). Direct phosphorylation of NIX by

PRKA/PKA can reverse NIX-induced mitophagy, causing BNIP3L

to translocate from the mitochondria to the cytoplasm (41). FBXL4

interacts with BNIP3 and NIX, controlling their stability; a

deficiency in FBXL4 ubiquitin ligase increases NIX levels,

promoting mitosis (42). The interaction between mitochondrial-

bound NIX and autophagosome-localized LC3 forms a

mitochondria-NIX-LC3-autophagosome complex, which has been

implicated in excessive mitophagy following spinal cord injury

(SCI). Inhibiting NIX may serve as a neuroprotective strategy in

such cases (43). In NIX-/- platelets, MMP decreases, mitochondrial

reactive oxygen species (mtROS) levels rise, oxygen consumption

declines, and adenosine triphosphate (ATP) production is

impaired, leading to platelet dysfunction and increased risk of

thrombosis (44). In patients with ulcerative colitis, the absence of

NIX impairs the clearance of damaged or dysfunctional

mitochondria in the intestinal epithelium, exacerbating the

disease through dysregulated mtROS production (45).

FUNDC1 is a complete OMM protein with an N-terminal LC3-

interacting region (LIR) motif, serving as a receptor for hypoxia-

induced mitophagy (46). Under normal physiological conditions,

FUNDC1-mediated mitophagy is regulated by phosphorylation at

Tyr18 by SRC kinase and at Ser13 by casein kinase 2 (CK2), as well

as by the inhibition of phosphatase activity through the interaction

of Bcl2-like 1 (BCL2L1) with phosphoglycerate mutase 5 (PGAM5).

Hypoxia stimulation leads to the degradation of BCL2L1, activating

PGAM5, which catalyzes the dephosphorylation of FUNDC1 at

Ser13, thereby increasing the interaction between FUNDC1 and

LC3 (47). Mutations or deletions in the LIR motif of FUNDC1

impair its ability to mediate mitophagy. In cells lacking ATG5,

FUNDC1-mediated mitophagy, particularly in response to hypoxia,

is significantly inhibited, indicating that this process is dependent

on ATG5 (48). Under hypoxic conditions, FUNDC1-mediated

upregulation of mitophagy activates the ROS-HIF1a pathway,

promoting the proliferation of pulmonary artery smooth muscle

cells, which ultimately leads to pulmonary vascular remodeling and

hypoxic pulmonary arterial hypertension (49). The mitochondrial

E3 ligase MARCH5 degrades FUNDC1, reducing mitochondrial

sensitivity to hypoxia-induced mitophagy (50). Dysfunction in

mitochondrial quality control caused by FUNDC1 deficiency in

adipose tissue exacerbates diet-induced obesity and metabolic

syndrome through MAPK activation, white adipose tissue

remodeling, and subsequent inflammatory responses (51).
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Exercise increases FUNDC1 expression, which helps prevent

coronary endothelial cell aging and protects elderly mice from

myocardial ischemia/reperfusion injury. Additionally, FUNDC1

plays a protective role in neurons following SCI by inducing

mitophagy, inhibiting mitochondrial-dependent apoptosis, and

enhancing mitochondrial function (52).

Prohibitin 2 (PHB2) and PHB1 together form the

mitochondrial inhibitory protein complex, where PHB2 directly

binds to LC3-II, and PHB1 interacts with LC3-II through PHB2. A

significant downregulation of PHB2 leads to a reduced rate of

mitochondrial clearance (53). In patients with cholestatic liver

injury, hepatocellular mitophagy induced by bile acids requires

the interaction of PHB2 with LC3 and SQSTM1 (54). An increase in

MicroRNA-24-3p levels can downregulate PHB2, which helps

inhibit autophagy in myocardial fibroblasts and alleviates

myocardial fibrosis (55). Under high glucose conditions, TIPE1

destabilizes PHB2 in renal tubular epithelial cells, promoting

mitophagy and exacerbating tubular injury (56). Conversely,

overexpression of PHB2 promotes mitophagy and delays aging in

mouse myocardial cells (57).

In addition, the AMP-activated protein kinase (AMPK)/

mammalian target of rapamycin (mTOR) s pathway plays a

critical role in shifting cells from synthetic metabolism to

catabolic metabolism and serves as a key regulatory pathway for

autophagy. ULK1, a conserved substrate of AMPK, is involved in

this process. Activation of AMPK promotes mitophagy by

enhancing mitochondrial division (58).
Lipid based mitophagy

Mitochondrial lipids, such as cardiolipin (CL), ceramide, and

sphingosine-1-phosphate (S1P), serve as mitophagic signals that

facilitate the clearance of damaged mitochondria by interacting

with the mitophagic machinery (59).

In healthy mitochondria, CL plays a crucial role in lipid–protein

interactions necessary for mitochondrial function (60). LC3

possesses a putative CL binding site at its N-terminal a-helices,
which is crucial for the direct interaction between the OMM and the

mitophagosome, ultimately facilitating mitophagy (61). Ceramide

selectively targets mitochondria to LC3B-II-containing

autophagolysosomes. LC3B-phosphatidylethanolamine is lipidated

to form LC3B-II, which then binds to ceramide on the OMM,

indicating that the ceramide–LC3B-II interaction is a key factor in

triggering lethal mitophagy (62). S1P is directly involved in LC3

lipidation and interacts with PHB2, playing a significant role in the

regulation of mitophagy (63).
Micromitophagy

Micromitophagy is a mechanism for the targeted removal of

damaged mitochondrial components through the formation of

mitochondria-derived vesicles (MDVs) that bud off and are

subsequently transported to lysosomes (64). MDVs are cargo-
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selective vesicles released from mitochondria independently of the

mitochondrial fission machinery. Oxidative stress stimulates MDVs

formation, and these vesicles are enriched with oxidized

mitochondrial proteins (65). Although MDVs formation and

transit to lysosomes occur independently of the autophagic

proteins ATG5 and LC3, this process requires the involvement of

PINK1 and Parkin (66). Ultimately, MDVs fuse with lysosomes to

complete the hydrolysis and degradation of their contents.
Transmitophagy

Transmitophagy is a specialized mode of mitochondrial

degradation in neurons with long axons. Under normal

physiological conditions, axonal mitochondria of long-projection

neurons are enclosed in axoplasmic membranes, which are then

shed and degraded by neighboring cells (67). This process, where

neuronal mitochondria are internalized and degraded by astrocytes,

is known as transmitophagy (68). Mitochondria can traverse cell

boundaries (69), and in neurons with long axons, they may be

transferred to adjacent astrocytes for degradation (67). A

significantly greater proportion of retinal ganglion cell

mitochondria are degraded in the optic nerve head (ONH) than

in the cell soma. Some axonal mitochondria are not degraded cell-

autonomously within retinal ganglion cell axons via traditional

mitophagy but are instead processed by resident astrocytes

through a process termed transcellular degradation of

mitochondria, or transmitophagy (70). The internalization of

neuronal mitochondria is notably increased in astrocytes isolated

from Alzheimer’s disease (AD) mouse brains, indicating the

presence of neuron-astrocyte transmitophagy in AD (68). It has

also been shown that the mitophagy of degenerating dopaminergic

terminals begins in dopaminergic spheroids and concludes in the

surrounding astrocytes. Neuron-astrocyte transmitophagy is critical

for preventing the release of damaged mitochondria into the

extracellular space and for mitigating the neuroinflammatory

activity characteristic of Parkinson’s disease (PD) (71).
Mitophagy in neurons

The human brain, despite accounting for only 2% of the body’s

volume, is responsible for 25% of its oxygen consumption. These

high energy demands make the brain particularly vulnerable to

damage during acute or chronic hypoxia or ischemia. Bioenergy

depletion is also a known contributor to neuronal death in a range

of neurodegenerative diseases. Beyond ATP production, neuronal

mitochondria play a crucial role in Ca2+ buffering (3). The high

demand for mitochondria in neurons is evident from the elevated

mitochondrial density at presynaptic endings, postsynaptic

densities, nodes of Ranvier, and growth cones, all of which rely

on mitochondrial function to sustain neuronal activity (72). As

neurons are non-proliferating cells that do not undergo mitosis,

their mitochondria are especially susceptible to accumulating

oxidative damage over time. Additionally, high levels of Ca2+
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1460286
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2024.1460286
influx into neurons may exacerbate this stress. Unsurprisingly,

mitochondrial damage and mitophagy dysfunction are linked to

several age-related neurodegenerative diseases, including PD, AD,

and Huntington’s disease (HD) (73).
Role of mitophagy in programmed
neuronal death

While limited neuronal death is a highly regulated and

necessary homeostatic mechanism for maintaining the functional

development of the central nervous system, pathological neuronal

loss in mature central nervous systems can lead to irreversible

declines in motor and cognitive functions (74). Programmed

neuronal death, including apoptosis, necroptosis, pyroptosis, and

ferroptosis, is closely associated with central nervous system (CNS)

diseases, including acute CNS injuries such as intracerebral

hemorrhage, subarachnoid hemorrhage, traumatic brain injury,

and neurodegenerative diseases like AD and PD. Mitochondria

play a pivotal role in CNS diseases by mediating various cell death

pathways (75). The regulation of mitophagy is critical in controlling

ROS levels, mtDNA release, OMM rupture, MMP loss, and Ca2+

imbalance in neurons (Figure 2). Moderate mitophagy is essential
Frontiers in Immunology 05
for maintaining mitochondrial function and cellular homeostasis.

Therefore, understanding the relationship between mitophagy and

programmed neuronal death is crucial.
Mitophagy and neuronal apoptosis

Mechanisms of mitophagy and
neuronal apoptosis

Apoptosis, also known as programmed cell death, is a self-

destructive cellular mechanism involving multiple biological events.

Mitochondria play a crucial role in regulating apoptosis pathways.

Apoptosis depends on the Bcl-2 protein family, with two key pro-

apoptotic proteins, Bcl-2 associated X protein (BAX) and Bcl-2

antagonist killer 1 (BAK1), which induce cell apoptosis through

OMM (76). BAX and BAK1 are essential for neuronal apoptosis

(77, 78), and they interact with VDAC2 to ensure their ability to

penetrate the OMM and exert their effects (79, 80). In healthy cells,

cytochrome c functions as a component of the electron transport

chain within the mitochondrial intermembrane space. Upon

mitochondrial damage, the permeability of the OMM increases,

leading to the release of apoptotic factors such as cytochrome c. The

depletion of cytochrome c in mitochondria increases ROS
FIGURE 2

After mitochondrial damage, several critical events can occur, including the release of mtDNA, rupture of the OMM, loss of MMP, and an increase in
Ca2+ levels. If mitophagy is insufficient, these conditions can lead to neuronal apoptosis via the BAX and BAK1 pathways; increase the ratios of p-
RIP1/RIP1, p-RIP3/RIP3, and p-MLKL/MLKL, thereby promoting neuronal necroptosis; elevate neuronal IL-18 and IL-1b levels, inducing pyroptosis;
and significantly reduce GPX4 levels, leading to ferroptosis. Conversely, excessive mitophagy can result in the overexpression of BNIP3, Beclin-1,
PINK1, Parkin, and Glu, which may induce neuronal apoptosis. It can also cause the overexpression of PINK1, Parkin, and VDAC, increase the LC3 II/I
ratio, decrease mTOR levels, and ultimately induce neuronal ferroptosis.
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production, exacerbating mitochondrial dysfunction and

promoting cell apoptosis. Mitophagy plays a protective role by

transporting defective mitochondria to lysosomes for degradation,

eliminating ROS, and inhibiting apoptosis (81, 82). Excessive

accumulation of Ca2+ in the mitochondrial matrix can cause

matrix expansion, leading to the rupture of the OMM and the

subsequent release of cytochrome c (83). Additionally, the release of

mtDNA can act as a trigger for inflammation. PINK1/Parkin-

mediated mitophagy prevents the release of mtDNA into the

cytoplasm by removing damaged mitochondria, thereby

alleviating cGAS/STING-induced neuroinflammation and

neurodegeneration (84).

Targeted treatment to mitophagy-mediated
neuronal apoptosis

Activating PINK1/Parkin-mediated mitophagy can mitigate

neuronal apoptosis induced by prion PrP106-126 (20) and

cadmium (85). Compounds such as salidroside (Sal) (86), DHA

(87), and triiodothyronine (T3) (88) have been shown to enhance the

PINK1/Parkin pathway. Additionally, DJ-1 can activate the ERK1/2

pathway and improve mTOR signaling in dopaminergic neurons

(89); Tissue-type plasminogen activator (tPA) increases AMPK

phosphorylation and boosts FUNDC1 expression (90), while the

LncRNA MEG3 promotes FUNDC1 expression through the Rac1-

ROS axis (91). Furthermore, dexmedetomidine enhances the PINK1/

Parkin pathway by activating AMPK (92). These pathways

collectively promote mitophagy, reduce ROS production, prevent

mitochondrial-dependent neuronal apoptosis, and exert

neuroprotective effects. 2,2’,4,4’-Tetrabromodiphenyl ether (PBDE-

47) induces mitochondrial abnormalities by impairing PINK1/

Parkin-mediated mitophagy, leading to excessive apoptosis and,

consequently, promoting neuronal loss and subsequent

neurobehavioral defects. Melatonin counteracts PBDE-47-induced

damage by activating the AMPK/ULK1 signaling pathway, thereby

restoring mitophagy and preventing neuronal apoptosis (93).
Mitophagy and neuronal necroptosis

Mechanisms of mitophagy and
neuronal necroptosis

Necroptosis is a form of regulated programmed cell necrosis.

Tumor necrosis factor-a (TNF-a) is the most widely studied

inducer of necroptosis. Upon binding to its receptor, TNF-a
induces a conformational change in the TNF receptor, which

recruits several proteins to the cytoplasmic portion of the

receptor. These proteins include Tumor necrosis factor receptor

type 1-associated death domain protein (TRADD), receptor-

interacting serine/threonine-protein kinase 1 (RIPK1), cellular

inhibitor of apoptosis-1 (cIAP1), cIAP2, and TNFa receptor-

associated factors (TRAFs). In the absence of caspase 8, these

proteins form membrane complexes that induce the formation of

RIPK1-RIPK3 necrosomes. This leads to mitochondrial

hyperpolarization, lysosomal membrane permeabilization, and

ROS production, ultimately activating Mixed Lineage Kinase

Domain-Like protein (MLKL), which disrupts the plasma
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membrane and results in cell death (94). Necroptosis is closely

associated with ATP depletion, ROS accumulation, calcium

overload, and the opening of mitochondrial permeability

transition pores (MPTP) (95). For example, increased expression

of RIPK3 can suppress the AMPK pathway and inhibit Parkin-

mediated mitophagy. The loss of mitophagy enhances the opening

of mitochondrial permeability transition pores (MPTP), ultimately

leading to cellular necroptosis (96). Tricalcium phosphate (TCP)

has been shown to enhance the kinase activity of RIP1, RIP3, and

MLKL, thereby promoting cell necroptosis. ROS scavengers can

inhibit the increase in the p-RIP1/RIP1, p-RIP3/RIP3, and p-

MLKL/MLKL ratios caused by TCP particles (97). Mitochondria,

as the primary organelles responsible for ATP production and a

major source of ROS, play a crucial role in necroptosis. Mitophagy,

regulated by PINK1, influences the expression of MLKL and,

consequently, necroptosis (98).

Targeted treatment to mitophagy-mediated
neuronal necroptosis

RIPK3 can reduce Parkin phosphorylation levels, thereby

decreasing the interaction between Parkin and LC3, which is

typically induced by hypoxic injury. This inhibition of mitophagy

by RIPK3 plays a critical role in cell death mechanisms. During

ischemia-reperfusion (I/R) injury, RIPK1 is phosphorylated,

leading to the subsequent phosphorylation of RIPK3, which

promotes the activation of MLKL. Once activated, MLKL

executes the cell death program. PGAM5, a mitochondrial

membrane protein, acts as an important protective gene against

ischemic injury. It serves as an anchor for the RIP1-RIP3-MLKL

complex within mitochondria, promoting mitophagy and

protecting cells from necroptosis (99). Sterile alpha and toll/

interleukin 1 receptor motif-containing protein 1 (SARM1) is a

central determinant of axonal degeneration. Its upregulation

enhances the RIPK1-RIPK3-MLKL signaling axis, thereby

promoting neuronal necroptosis. Rapamycin has been shown to

enhance mitophagy and alleviate neuronal necroptosis, particularly

in conditions involving SARM1 aggregation, such as acrylamide-

induced dying-back neuropathy (100). In patients with PD, ROS

generation and mitochondrial depolarization can trigger neuronal

necroptosis. This process can be inhibited by inactivating RIP1.

Necrostatin-1 (Nec-1), a known inhibitor of RIP1 kinase activity,

increases the levels of TOMM20 and PHB1 proteins, which are

involved in mitochondrial function. This increase is accompanied

by the upregulation of LONP1, a mitochondrial protease that plays

a role in the PINK1-dependent mitophagy pathway. By enhancing

mitophagy, Nec-1 prevents MLKL phosphorylation and the

subsequent plasma membrane rupture associated with p-MLKL,

thereby mitigating neuronal necroptosis (101).
Mitophagy and neuronal pyroptosis

Mechanisms of mitophagy and
neuronal pyroptosis

Pyroptosis is a recently identified pro-inflammatory mode of

cell death, triggered by various inflammation-related caspases. The
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assembly and activation of inflammasome complexes in response to

intracellular and extracellular pathological signals lead to the

activation of inflammatory caspases 1, 4, 5, and 11, ultimately

causing mitochondrial outer membrane permeability (MOMP)

and subsequent cell death (102). The hallmark event of pyroptosis

involves the processing of IL-18 and IL-1b, and the activation of the

pore-forming protein gasdermin-D (GSDMD), which culminates in

cell membrane rupture and the release of IL-18 and IL-1b (103).

While canonical GSDMD is cleaved by caspases 1, 4, 5, and 11,

another variant, gasdermin-E (GSDME), is cleaved by caspase-3,

linking non-inflammatory apoptosis to pyroptosis. GSDME-

dependent pyroptosis also results in the release of pro-

inflammatory cytokines IL-1b and IL-18 (104). Current research

suggests a negative feedback loop between mitophagy and

pyroptosis (105). Inflammasome-mediated activation of caspase-1

inhibits mitophagy, aggravating mitochondrial damage. Conversely,

the absence of the key mitophagy regulator Parkin exacerbates

mitochondrial damage, promoting pyroptosis (106). This

mechanism may be associated with pyroptosis-induced

mitochondrial ROS release and disruption of membrane integrity.

Additionally, potassium efflux and cytochrome c are crucial in the

regulation of mitophagy and pyroptosis (107).

Targeted treatment to mitophagy-mediated
neuronal pyroptosis

Anesthesia and surgery can lead to insufficient PINK1-mediated

mitophagy, which in turn activates the caspase-3/GSDME

pyroptosis signaling axis, ultimately resulting in postoperative

cognitive dysfunction (POCD). Overexpression of PINK1 has

been shown to alleviate cognitive impairment and reduce caspase-

3/GSDME-dependent pyroptosis (108). SNAP25 plays a key role in

promoting PINK1-dependent mitophagy, rescuing defects in the

PINK1/Parkin pathway, facilitating the conversion of LC3-I to LC3-

II, preventing abnormal accumulation of P62, and suppressing the

activation of the caspase-3/GSDME axis. These actions collectively

hinder neuronal pyroptosis and offer neuroprotection against

POCD (109). Tumor necrosis factor a-induced protein 1

(TNFAIP1) impairs mitophagy and triggers excessive neuronal

pyroptosis by inhibiting SNAP25 expression. A deficiency in

TNFAIP1 function enhances PINK1/Parkin-dependent mitophagy

in HT22 cells, thereby preventing caspase-3/GSDME-dependent

pyroptosis. Conversely, increased TNFAIP1 function inhibits

mitophagy and promotes pyroptosis (110). PINK1/Parkin-

mediated mitophagy may act as an endogenous neuroprotective

mechanism during the pathological progression of cerebral

ischemia/reperfusion (CI/R) by modulating NLRP3-mediated

pyroptosis. Glycosides have been shown to activate key

mitophagy markers, such as LC3-II/LC3-I and P62, and the

PINK1/Parkin mitophagy pathway, which alleviates neuronal

pyroptosis following middle cerebral artery occlusion/reperfusion

(MCAO/R) induced oxygen-glucose depletion/reoxidation

(OGD/R) in rats (111). Following traumatic brain injury (TBI),

levels of IL-1b, IL-18, cleaved caspase-1, GSDMD, and TNF-a
increase. The expression of the PINK1/Parkin pathway is enhanced

by human umbilical cord mesenchymal stem cell-derived exosomes,

significantly inhibiting the levels of pro-inflammatory cytokines and
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improving secondary neuronal pyroptosis after TBI (112).

Dexmedetomidine has been shown to reduce postoperative

cognitive impairment in aged rats by promoting PINK1-mediated

mitophagy and suppressing caspase-1/GSDMD-induced pyroptosis

in hippocampal neurons (113).
Mitophagy and neuronal ferroptosis

Mechanisms of mitophagy and
neuronal ferroptosis

Ferroptosis is an iron-dependent form of cell death

characterized by the toxic accumulation of lipid peroxides on the

cell membrane (114). This process is marked by the loss of activity

of the lipid repair enzyme glutathione peroxidase 4 (GPX4),

accompanied by the buildup of lipid ROS (115). The production

of mitochondrial ROS can promote lipid peroxidation, leading to

ferroptosis; however, treatment with mitochondria-targeted

lipophilic antioxidants can significantly rescue cells from GPX4

inactivation-induced ferroptosis (116). ATP consumption activates

AMPK, which effectively inhibits ferroptosis by phosphorylating

and inactivating acetyl-CoA carboxylase (ACC) (117). Additionally,

mitochondrial biosynthetic products involved in cellular

metabolism influence the ferroptosis pathway (118). Mitophagy

reduces ferroptosis through the ROS/heme oxygenase-1 (HO-1)/

GPX4 axis. Inhibition of BNIP3/Parkin or PINK1/Parkin-mediated

mitophagy exacerbates ROS release, lipid peroxidation, and cellular

ferroptosis (119). Moreover, the phosphorylation of FUNDC1 can

disrupt mitophagy and mitochondrial quality control, ultimately

leading to cellular ferroptosis (120). Dihydroorotate dehydrogenase

(DHODH), a mitochondrial enzyme located on the outer surface of

the mitochondrial inner membrane, plays a crucial role in this

process. Coenzyme Q (CoQ) is primarily synthesized in

mitochondria, and DHODH is well-positioned to reduce CoQ to

CoQH2, thereby exerting its anti-ferroptosis function within

mitochondria. When GPX4 is inactivated, DHODH can detoxify

lipid peroxides and prevent mitochondrial ferroptosis (118).

Targeted treatment to mitophagy-mediated
neuronal ferroptosis

Following TBI, the expression of PINK1 and Parkin

significantly increases. Exosome treatment further enhances the

expression of PINK1 and Parkin in neurons, while decreasing

ACSL4 expression and increasing GPX4 levels in the treatment

group (112). This suggests that human umbilical cord mesenchymal

stem cell-derived exosomes reduce neuronal ferroptosis through

PINK1/Parkin-mediated mitophagy, providing neuroprotection in

TBI (112). Caveolin-1 (Cav-1) regulates the mitochondrial fission-

mitophagy axis to maintain mitochondrial quality, thereby

alleviating neuronal ferroptosis and significantly improving

diabetes-associated cognitive dysfunction (DACD) (121).

Acteoside (ACT) activates the Nrf2-mitophagy axis, upregulates

GPX4 and XCT, reduces lipid peroxidation, and mitigates

ferroptosis. ACT treatment has been shown to preserve

dopaminergic neurons, curb ferroptosis in these cells, and

alleviate cognitive and behavioral deficits in PD (122). DR-Ab, an
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antibody targeting the DR-region of the Na+/K+-ATPase (NKA)a
subunit, disrupts the cytosolic interaction between NKAa1 and

Parkin, facilitating Parkin’s translocation to mitochondria and

enhancing mitophagy. DR-Ab also promotes the formation of the

surface NKAa1/XCT complex, thereby inhibiting XCT-dependent

ferroptosis. Given NKAa1’s role as a key regulator of ferroptosis

and mitophagy, its DR-region presents a promising therapeutic

target for PD (123).
Excessive mitophagy induces
neuronal death

In neurological diseases, most secondary neuronal apoptosis is

attributed to insufficient mitophagy, while in some cases, the

pathogenesis is linked to excessive mitophagy (Table 1). Excessive

mitophagy can exacerbate mitochondrial damage, leading to

subsequent neuronal apoptosis and ferroptosis (124). NIX

primarily regulates basal levels of mitophagy under physiological

conditions, whereas BNIP3 exclusively triggers excessive

mitophagy, resulting in cell death (125). Inhibiting BNIP3 may

protect hippocampal neural cells from OGD/R, reduce excessive

mitophagy caused by CI/R injury, maintain mitochondrial integrity,

reduce neuronal apoptosis, and improve neurological function

(126). Sirtuin 1 (SIRT1), a NAD+-dependent deacetylase, induces

mitophagy by deacetylating downstream targets such as Mfn2.

Inhibiting SIRT1 expression can alleviate mitophagy and suppress

neuronal apoptosis following CI/R (127). FBXL4 mutations lead to

excessive mitophagy through the accumulation of BNIP3/BNIP3L,

resulting in mitochondrial DNA depletion and dysfunction in

cortical neurons (128). Chronic cerebral hypoperfusion (CCH)

significantly decreases the expression of proteins such as P62,

CTSD, and LAMP1, while increasing the expression of beclin-1,

Parkin, and BNIP3, as well as the LC3-II/LC3-I ratio, and the

release of cytochrome c from mitochondria to the cytoplasm. These

changes induce lysosomal dysfunction, promote autophagic volume

accumulation, and lead to excessive autophagy in neurons,

ultimately triggering neuronal apoptosis (129). Melatonin can

reduce the levels of mitophagy proteins PINK1 and Parkin,
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decrease the colocalization of Tom20 and LC3, alleviate neuronal

hypoxia after stroke, and improve post-stroke cognitive impairment

(PSCI) (130). The basolateral amygdala (BLA), a key structure in

encoding emotional valence and responding to stress and threats,

can experience excessive elimination of mitochondria due to

overexpression of PINK1 and Parkin, resulting in anxiety in

stressed mice (131). Excess glutamate (Glu) can induce excessive

mitophagy by activating the glutamate receptor 2 (GluR2)-Parkin

pathway, leading to mitochondrial dysfunction, apoptosis of

h ippocampa l neu rons , a defic i ency in monoamine

neurotransmitters, and the development of diabetes-related

depression (DD) in rats (132). Tris (1,3-dichloro-2-propyl)

phosphate (TDCPP) enhances iron ion influx into mitochondria

and mitochondrial depolarization via activation of VDAC channels,

triggering excessive mitophagy through the PINK1/Parkin pathway,

leading to mitophagy-related ferroptosis and TDCPP-induced

neurotoxicity (133). Exposure to fine particulate matter (PM2.5)

significantly upregulates HO-1, which mediates PM2.5-induced

mitophagy-dependent ferroptosis in hippocampal neurons. The

upregulation of HO-1 increases the LC3-II/I ratio, decreases

mTOR expression, and leads to excessive autophagy, exacerbating

ferroptosis in PM2.5-exposed hippocampal neurons. Inhibiting

mitophagy or ferroptosis may be key therapeutic targets to

mitigate neurotoxicity following PM2.5 exposure (134).
Mitophagy in neurodegeneration

Neurodegenerative diseases (NDDs) are a spectrum of complex,

heterogeneous disorders characterized by the progressive

degeneration of neurons, affecting both the central and peripheral

nervous systems (135). Two regions of the brain particularly

vulnerable to oxidative damage are the hippocampus and the

substantia nigra (SN). Hippocampal degeneration is a hallmark of

diabetic encephalopathy and AD, while SN degeneration is

characteristic of PD (136). Selective neurodegeneration in AD and

PD is associated with increased oxidative stress markers in these

brain regions (137). At the organellar level, mitochondrial

dysfunction is a prominent phenotype in neurodegenerative
TABLE 1 Diseases caused by excessive mitophagy leading to neuronal death.

Disease Modle
Death
Type

Mechanisms Refs

CI/R HT22 mouse cells Apoptosis BNIP3 overexpression (126)

Cortical neuron dysfunction Male mice Apoptosis FBXL4 mutations (128)

CCH Male rats Apoptosis Overexpression of Beclin-1, Parkin, and BNIP3 (129)

PSCI Male mice Apoptosis Elevated levels of PINK1 and Parkin (130)

Anxiety stressed mice Apoptosis excessive increase of PINK1 and Parkin in BLA (131)

DD Male rats Apoptosis Overactivated GluR2-Parkin pathway (132)

TDCPP-
induced neurotoxicity

Male mice and HT22
mouse cells

Ferroptosis
Overexpression of PINK1/Parkin pathway, VDAC
channels activation

(133)

PM2.5-
induced neurotoxicity

Male mice and HT22
mouse cells

Ferroptosis Increased LC3 II/I ratio and decreased mTOR expression (134)
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diseases. Additionally, the accumulation of damaged mitochondria

in most NDDs suggests dysregulation of the mitophagy pathway

(135) . Bio logica l ly , AD is defined by two pr inc ipa l

neuropathological hallmarks: the abnormal accumulation of

extracellular amyloid-b (Ab) plaques and intracellular tau-

containing neurofibri l lary tangles (138) . Insufficient

mitochondrial function and bioenergy output in AD patients may

lead to reduced cellular energy levels, while the concomitant leakage

of electrons promotes the formation of ROS. These ROS can

damage proteins, membrane lipids, and nucleic acids. By

initiating membrane lipid peroxidation, mitochondrial ROS may

also promote the accumulation of pathological extracellular Ab
peptides and intraneuronal hyperphosphorylated tau protein,

leading to the formation of AD-defining Ab plaques and

neurofibrillary tangles, which further exacerbate mitochondrial

defects (139, 140). Mitophagy reduces AD-related tau

hyperphosphorylation and prevents cognitive impairment,

indicating that impaired clearance of defective mitochondria is a

key event in AD pathogenesis and that mitophagy could be a

potential therapeutic target (141). Impairment of mitophagy was

initially associated with PD based on observations that brain

samples f rom PD pat ients showed accumulat ion of

autophagosomes containing damaged mitochondria (142).

Additionally, mutations in PINK1 and Parkin, which are critical

proteins involved in mitophagy, have been linked to the early onset

of autosomal recessive PD (143). Neuronal mitochondrial

dysfunction and disruptions in the mitophagy pathway are

significant contributors to the onset of PD. Huntington’s disease

(HD) is a neurodegenerative disorder caused by mutations in the

gene encoding the huntingtin protein. The mutant huntingtin

protein does not affect the PINK1/Parkin pathway but disrupts

the interaction of mitophagy adaptors OPTN, CALCOCO2,

SQSTM1/P62, and NBR1 with LC3, leading to impaired fusion of

mitochondria and autophagosomes and a compromised mitophagy

mechanism (144). This damage is partially recovered by

overexpressing PINK1, which improves mitochondrial integrity

and protects neural function (145).
Role of mitophagy
in neuroinflammation

Neuroinflammation refers to the inflammatory response in the

CNS triggered by brain or spinal cord injury, infection, ischemia,

diabetes, intraocular pressure, or as a consequence of autoimmunity

and aging. This inflammation is primarily driven by the release of

proinflammatory cytokines, chemokines, second messengers such

as nitric oxide and prostaglandins, and ROS (146). The core basis of

neuroinflammation are likely consistent across various conditions,

including aging, metabolic diseases like hypertension and diabetes,

and cerebral insults such as stroke and injury. The inflammatory

mediator TNF-a has been identified as a key player and biomarker

of neuroinflammation (147). Inflammatory signals are typically

responses to pathogens or foreign substances. However, new

evidence suggests that mitochondria or mitochondrial
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components—including mtDNA, mitochondrial transcription

factor A (TFAM), cardiolipin, cytochrome c, formyl peptides,

high mobility group B protein 1 (HMGB1), and ATP—can mimic

pathogens and trigger injury responses (148). Therefore, the role of

mitophagy in neuroinflammation warrants further discussion.
Microglial mitophagy in neuroinflammation

Microglia are ubiquitously distributed in the brain and serve as

the principal innate immune cells, acting as the first responders to

pathological insults (149). These cells express a variety of receptors,

including the CD200 receptor, colony-stimulating factor 1 receptor,

chemokine receptor (CX3CL1), neurotrophic factors, and

neurotransmitters, all of which play significant roles in

neuroinflammation (150). Upon activation by endogenous stimuli

generated after injury or infection, inhibitor of NF-kB (i-kB), which
is bound to nuclear factor-kappa B (NF-kB) in the cytoplasm of

microglia, is phosphorylated and degraded by i-kB kinase. This

process causes NF-kB to translocate to the nucleus, where it

promotes the transcription of pro-inflammatory cytokine genes

(151). Damaged neurons also release fractalkine (CX3CL1)

ligands, which are recognized by the CX3CL1 receptor on

microglia (152). Activated microglia can exhibit different gene

expression patterns, with the M1 phenotype associated with pro-

inflammatory effects and the M2 phenotype with anti-inflammatory

effects (153). The surface of microglia contains Ab receptors, such

as NOD-like receptors (NLRs), Toll-like receptors (TLRs), and

receptors for advanced glycation end products (RAGE). Ab can

penetrate the cell membrane of microglia, bind to the intracellular

domain of NLRs, and activate inflammasomes containing NOD-,

LRR-, and pyrin domain-containing 3 (NLRP3). Ab can also bind to
RAGE, leading to the release of pro-inflammatory cytokines such as

IL-1b and TNF-a (154). Mitochondria play a critical role in

neuroinflammation. When microglia are treated with

mitochondrial lysates, triggering receptor expressed on myeloid

cells 2 (TREM2) expression decreases, while TNF-a expression

increases, along with elevated levels of MMP-8 and IL-8,

redistribution of NF-kB towards the nucleus, and increased

phosphorylation of p38 MAPK. mtDNA directly obtained from

mitochondria has been shown to increase TNF-a mRNA levels in

microglia. These findings suggest that at least one mitochondrial-

derived damage-associated molecular pattern (DAMP) molecule,

mtDNA, can induce inflammatory changes in microglia and

neuronal cell lines, thereby triggering neuroinflammation (148).

The ability of mitophagy induction to reduce neuroinflammation

may be explained by several mechanisms and benefits in microglia.

First, the accumulation of damaged mitochondria releases DAMPs,

including increased ROS production, decreased ATP levels, and

elevated oxidative stress (155). Second, blockage of mitophagy has

been shown to increase ROS levels, which in turn activates the

NLRP3 inflammasome (156). Additionally, the mitophagy inducer

mitochonic acid 5 (MA-5) has been reported to reduce

neuroinflammation. Treatment of microglia with MA-5 leads to

improved mitochondrial quality, dependent on the mitophagy
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activator Bcl2/BNIP3 (157). Collectively, mitophagy may inhibit

neuroinflammation through multiple pathways.

Recent studies have increasingly shown that mitophagy in

microglia can alleviate neuroinflammation, which is believed to be

a contributing factor to AD. Inadequate mitophagy is partly

implicated in the pathogenesis of AD. As a receptor involved in

mitophagy, OPTN can mitigate neuroinflammation through the

AIM2 and RIPK1 pathways, and a deficiency in OPTN may be

a potential factor leading to the development of AD (154).

Treatment with T3 enhances mitophagy through the PINK1/

Parkin pathway, facilitating the degradation of damaged

mitochondria, reducing ROS release, and subsequently decreasing

microglial cell aggregation and activation. This process helps

alleviate neuroinflammation following subarachnoid hemorrhage

(SAH) (88). Copper exposure has been shown to activate microglia,

leading to the secretion of inflammatory products, early activation

of the ROS/NF-kB pathway, and subsequent mitophagy disorders

in microglial cells, ultimately resulting in microglia-mediated

neuroinflammation (158). Mitophagy disorders are characterized

by excessive mtROS production, which has been observed in

overactivated primary microglia and BV-2 cells, driving microglial

polarization toward the M1 pro-inflammatory state. Mitophagy

deficiency in microglia not only exacerbates neuroinflammation but

also impairs their phagocytic function, leading to further neuronal

damage (159). Compounds such as Nrf2 (160), divanillyl sulfone

(DS) (161), quercetin (Qu) (162), and polygala saponins (PSS) (163)

have been shown to promote mitophagy in microglia, improve

the accumulation of ROS from dysfunctional mitochondria,

inhibit the activation of the NLRP3 inflammasome, and alleviate

neuroinflammation. In a sleep apnea mouse model, NLRP3

deficiency was found to protect against intermittent hypoxia-

induced neuroinflammation by promoting the PINK1/Parkin

mitophagy pathway in microglia (164). Additionally, inhibiting

the activation of the HMGB1/RAGE axis increases stress-

induced mitophagy flux, thereby reducing microglia-mediated

neuroinflammation (165).
Astrocyte mitophagy in neuroinflammation

Although initially considered to have only passive functions,

recent studies have revealed that astrocytes play active and essential

roles in maintaining brain homeostasis (166). Pro-inflammatory

reactive astrocytes upregulate several genes, such as those involved

in the complement cascade, and induce the production of pro-

inflammatory factors like IL-1b, TNF-a, and NO (167).

Inflammatory mediators secreted by microglia, including IL-1a,
IL-1b, TNF-a, and C1q, can activate pro-inflammatory astrocytes

(168). When primary astrocytes and microglia are activated by

cytokines, there is an upregulation of intracellular Ca2+

mobilization and nuclear factor of activated T cells (NFAT)

activation. NFAT is positively regulated by IL-1b, and in a

positive feedback loop, IL-1b expression is dependent on NFAT

and L-type Ca2+ channels (169). Mitophagy helps reduce cellular

Ca2+ and NFAT levels by clearing damaged mitochondria (3, 170).

Additionally, the activation of astrocytes can mediate a
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neuroinflammatory response in dopaminergic neurons through

the generation of ROS and lipid peroxidation (171). Mitophagy

can alleviate mitochondrial injury caused by ROS accumulation and

lipid peroxidation (172).

There are currently limited studies on the role of astrocyte

mitophagy in neuroinflammation. Manganese treatment

significantly reduces Mfn2 mRNA levels in astrocytes and induces

neuroinflammation by impairing mitochondrial dynamics, further

supporting the role of mitophagy dysfunction in mediating

astrocyte-induced neuroinflammation (173). ATP-sensitive

potassium (K-ATP) channels, which couple cell metabolism to

membrane potential, are crucial in this context. Kir6.1, a pore-

forming subunit of the K-ATP channel, is prominently expressed in

astrocytes and plays a role in regulating their function. The

astrocytic Kir6.1/K-ATP channel has been shown to promote

mitophagy. In the substantia nigra compacta of Kir6.1 knockout

mice, the expression of p65, activation of caspase-1, and levels of IL-

1b, NLRP3, and TNF-a in response to MPP+ stimulation were

significantly higher in astrocytes from Kir6.1 KO mice compared to

those from wild-type mice (174). Resolvin D1 has been found to

enhance mitophagy by activating ALX4/FPR2 receptors on

astrocytes, thereby protecting mitochondria in primary astrocytes

and ultimately guarding against neuroinflammation after TBI (175).

Benzopyrene (BaP), associated with cognitive decline and an

increased risk of neurodegenerative diseases, may contribute to

these conditions by inhibiting PINK1/Parkin-mediated mitophagy,

leading to neuroinflammation in the brain (176).
Neuronal mitophagy in neuroinflammation

Neuronal cell death is a significant driver of neuroinflammation.

Traditionally, the relationship between neurons and inflammation is

viewed with inflammation acting upon neurons. However, neurons can

also actively contribute to inflammation, creating a bi-directional

relationship where neurons are both recipients and instigators of

inflammation (177). Evidence suggests that neuronal apoptosis can

disrupt the homeostatic microglial phenotype, further influencing

inflammatory responses (178). Other forms of cell death, such as

necroptosis and pyroptosis, have more direct consequences for

neuroinflammation. Lytic cell death, as seen in necroptosis and

pyroptosis, leads to the release of intracellular components that act as

DAMPs, which incite further inflammation (179). Neurons

undergoing pyroptotic cell death also release potent inflammatory

cytokines such as IL-1b (180). Similarly, activation of necroptosis has

been linked to the activation of the NLRP3 inflammasome and the

release of IL-1b (181). When neuronal cells are treated with

mitochondrial lysate, levels of TNF-a and NF-kB protein increase,

while I-kB protein levels decrease, indicating a heightened

inflammatory response (148). Treatment with the mitophagy inducer

urolithin A has been shown to improve synaptic connectivity and

reduce neuroinflammation in neurons, highlighting the importance of

mitophagy in resolving cytosolic mtDNA-triggered inflammation

(182). Considering that mitophagy can inhibit neuronal necroptosis

and pyroptosis, mitophagy plays a protective role against neuron-

induced neuroinflammation.
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Conclusion and future perspective

In this article, we explored the relationship betweenmitophagy and

both programmed neuronal death and neuroinflammation. We also

examined the potential interplay between mitophagy, programmed

neuronal death, and neuroinflammation. Additionally, we briefly

discussed the role of mitophagy in neurodegeneration. Furthermore,

we highlighted potential targets for future clinical treatments aimed at

addressing neuronal death and neuroinflammation.

Programmed neuronal death and neuroinflammation play

crucial roles in both acute central nervous system injuries and

chronic degenerative diseases. Numerous studies have shown that

mitochondrial damage and dysfunction are closely linked to these

processes. Mitophagy regulates the quality and quantity of

mitochondria in neurons, making its dysfunction or overactivation

significantly related to neuronal death and neuroinflammation. In

most cases, the activation of mitophagy has a protective effect on

damaged neurons and supports cell survival. However, in instances

where cell death is mediated by excessive mitophagy, therapeutic

interventions that further enhance mitophagy may not rescue the

phenotype. Therefore, it is essential to study the relationship between

mitochondrial dysfunction and disease progression across various

disease states and to explore how mitochondrial homeostasis can be

achieved through mitophagy, thereby potentially delaying or treating

neurological diseases. Moreover, there is currently no literature

indicating whether excessive mitophagy leads to neuronal

necroptosis and pyroptosis, warranting further research in this area.

Additionally, no experiments have yet investigated whether neuronal

apoptosis and ferroptosis contribute to neuroinflammation, nor has

the relationship between mitophagy, programmed neuronal death,

and neuroinflammation been fully established. Further research is

needed to explore these critical aspects.

Although studies have shown that autophagy benefits neurons by

reducing damage and death, and have explored its potential

mechanisms at the cellular level, no research has yet determined

the optimal extent to which autophagy should be controlled to

achieve the best outcomes. Further investigation in this area is

necessary. Specifically, more research at the cellular level is needed

to understand the mechanisms and physiology of mitophagy in

mitigating programmed neuronal death and neuroinflammation.

While numerous animal and cell experiments have demonstrated

the potential therapeutic role of mitophagy in neurological disease

models, there are currently no relevant agonists that have been

applied to humans. It remains unclear whether these agents would

have similar effects in human subjects. Additionally, the

pharmacology and genetics of mitophagy as a treatment for
Frontiers in Immunology 11
neurological diseases are still being explored in animal and cellular

studies, with no clinical evidence available yet. Furthermore, no

animal research has determined whether enhancing neuronal

function could potentially harm other organs or systems.

Therefore, future experiments should investigate whether treating

neurological diseases with mitophagy agonists might lead to

secondary damage to other organs or systems. Continued efforts

are required to translate these findings into clinical research and to

elucidate the potential mechanisms involved.
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Myoferlin targeting triggers mitophagy and primes ferroptosis in pancreatic cancer
cells. Redox Biol. (2022) 53:102324. doi: 10.1016/j.redox.2022.102324

173. Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C, et al.
Manganese exposure induces neuroinflammation by impairing mitochondrial
dynamics in astrocytes. Neurotoxicology. (2018) 64:204–18. doi: 10.1016/
j.neuro.2017.05.009

174. Hu Z-L, Sun T, Lu M, Ding J-H, Du R-H, Hu G. Kir6.1/K-ATP channel on
astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse
model of Parkinson’s disease via promoting mitophagy. Brain Behavior Immun.
(2019) 81:509–22. doi: 10.1016/j.bbi.2019.07.009

175. Ren YZ, Zhang BZ, Zhao XJ, Zhang ZY. Resolvin D1 ameliorates cognitive
impairment following traumatic brain injury via protecting astrocytic mitochondria. J
Neurochem. (2020) 154:530–46. doi: 10.1111/jnc.14962

176. Paing YMM, Eom Y, Lee SH. Benzopyrene represses mitochondrial fission
factors and PINK1/Parkin-mediated mitophagy in primary astrocytes. Toxicology.
(2024) 508:153926. doi: 10.1016/j.tox.2024.153926

177. Mangalmurti A, Lukens JR. How neurons die in Alzheimer's disease:
Implications for neuroinflammation. Curr Opin Neurobiol. (2022) 75:102575.
doi: 10.1016/j.conb.2022.102575

178. Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, et al.
The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional
microglia in neurodegenerative diseases. Immunity. (2017) 47:566–581.e569.
doi: 10.1016/j.immuni.2017.08.008

179. Sarhan M, Land W, Tonnus W, Hugo C, Linkermann A. Origin and
consequences of necroinflammation. Physiol Rev. (2018) 98:727–80. doi: 10.1152/
physrev.00041.2016

180. Adamczak S, de Rivero Vaccari J, Dale G, Brand F, Nonner D, Bullock M, et al.
Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J Cereb Blood
Flow Metab Off J Int Soc Cereb Blood Flow Metab. (2014) 34:621–9. doi: 10.1038/
jcbfm.2013.236

181. Conos S, Chen K, De Nardo D, Hara H, Whitehead L, Núñez G, et al. Active
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