MethodsIn this study, we explored the effects of berberine on growth performance, intestinal inflammation, oxidative damage, and intestinal microbiota in a weaned piglet model of ETEC infection. Twenty-four piglets were randomly divided into four groups—a control group (fed a basal diet [BD] and infused with saline), a BD+ETEC group (fed a basal diet and infused with ETEC), a LB+ETEC group (fed a basal diet with 0.05% berberine and infused with ETEC infection), and a HB+ETEC group (fed a basal diet with 0.1% berberine and infused with ETEC).
ResultsBerberine significantly improved the final body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI) (P<0.05) of piglets, and effectively decreased the incidence of diarrhea among the animals (P<0.05). Additionally, berberine significantly downregulated the expression levels of the genes encoding TNF-α, IL-1β, IL-6, IL-8, TLR4, MyD88, NF-κB, IKKα, and IKKβ in the small intestine of piglets (P<0.05). ETEC infection significantly upregulated the expression of genes coding for Nrf2, CAT, SOD1, GPX1, GST, NQO1, HO-1, GCLC, and GCLM in the small intestine of the animals (P<0.05). Berberine significantly upregulated 12 functional COG categories and 7 KEGG signaling pathways. A correlation analysis showed that berberine significantly increased the relative abundance of beneficial bacteria (Gemmiger, Pediococcus, Levilactobacillus, Clostridium, Lactiplantibacillus, Weissella, Enterococcus, Blautia, and Butyricicoccus) and decreased that of pathogenic bacteria (Prevotella, Streptococcus, Parabacteroides, Flavonifractor, Alloprevotella) known to be closely related to intestinal inflammation and oxidative stress in piglets. In conclusion, ETEC infection disrupted the intestinal microbiota in weaned piglets, upregulating the TLR4/MyD88/NF-κB and Nrf2 signaling pathways, and consequently leading to intestinal inflammation and oxidative stress-induced damage.