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Lung disease development involves multiple cellular processes, including

inflammation, cell death, and proliferation. Research increasingly indicates that

autophagy and its regulatory proteins can influence inflammation, programmed

cell death, cell proliferation, and innate immune responses. Autophagy plays a

vital role in the maintenance of homeostasis and the adaptation of eukaryotic

cells to stress by enabling the chelation, transport, and degradation of subcellular

components, including proteins and organelles. This process is essential for

sustaining cellular balance and ensuring the health of the mitochondrial

population. Recent studies have begun to explore the connection between

autophagy and the development of different lung diseases. This article reviews

the latest findings on the molecular regulatory mechanisms of autophagy in lung

diseases, with an emphasis on potential targeted therapies for autophagy.
KEYWORDS

autophagy, pulmonary diseases, apoptosis, autophagosome, COPD
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1460023/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1460023/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1460023/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1460023/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1460023&domain=pdf&date_stamp=2024-10-31
mailto:hzyczy1997@163.com
mailto:Horizonwsy0222@126.com
mailto:chenhrrr@163.com
https://doi.org/10.3389/fimmu.2024.1460023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1460023
https://www.frontiersin.org/journals/immunology


Lin et al. 10.3389/fimmu.2024.1460023
Introduction

Pulmonary diseases, especially chronic pulmonary diseases,

including chronic obstructive pulmonary disease (COPD),

pulmonary tuberculosis (PTB), and lung cancer, pose significant

threats to human health. Despite notable advancements in research

globally in recent years, effective and precise treatments are still

insufficient, leaving many lung diseases without a cure.

Autophagy is a common phenomenon in eukaryotic cells that

fuses with lysosomes and hydrolyzes intramembrane components

by encasing damaged or functionally degenerated organelles and

certain proteins and certain macromolecules. Autophagy was first

identified in the 1850s and named in 1963 by de Duve et al (1).

Recent research has indicated that autophagy is important for

maintaining cellular survival and homeostasis (2–4). Through the

processing of metabolic precursors from cytoplasmic substrates,

this process maintains homeostasis in healthy respiratory cells and

ensures survival in conditions of nutrient scarcity (5). In nutrient

deficiency, cells acquire nutrients through autophagy; damaged or

senescent organelles can be removed by autophagy when cells are

damaged or senescent; and these microorganisms or toxins can be

cleared by autophagy when cells are infected by microorganisms or

invaded by toxins. Eukaryotes have well-preserved degradation and

recycling processes critical to maintaining cellular homeostasis and

coping with stress. To some extent, autophagy is an effective

mechanism to protect cells.

Autophagy is intricately associated with the clearance of

organelles and, more significantly, plays a crucial part in the

development and progression of various diseases. The

relationship between autophagy and disease pathogenesis has not

been fully confirmed. Nonetheless, a growing body of evidence

indicates that autophagy may play a significant role in various
Frontiers in Immunology 02
human diseases (2, 6), including inflammatory diseases (7–9),

cardiovascular diseases (10, 11), neurodegenerative diseases (12),

and cancer (13) (Figure 1). Alterations in autophagic activities may

also result from variations in the activation of proteins that regulate

autophagy (2, 14). Until now, only limited studies have investigated

the role of autophagy in lung disease Figure 2.

This review highlights the most recent developments in the

molecular control and the role of autophagy in lung diseases.

Additionally, we explore how autophagy-related proteins and

regulatory processes may contribute to either the protection

against or the advancement of human lung diseases, offering new

insights for targeted treatment options.
Phases and classification of autophagy

Autophagy is essential for the process of protein degradation

with relatively short half-lives. Morphologically, a significant

quantity of dissociative membranous structures appears in the

cytoplasm of cells that are about to undergo autophagy, which are

called proautophagosomes. The proautophagosome gradually

develops into a vacuole with a double membrane structure, which

is surrounded by degraded organelles and some cytoplasm (2, 15).

This double membrane structure is referred to as the

autophagosome (2). Next, after autophagosomes fuse with

lysosomes, the inner membranes and their encapsulated

substances enter the lysosome and undergo hydrolysis by

lysosome enzymes. The lysosomes found in this phagocyte are

called autolysosomes. This process leads to the retrieval of soluble

cytoplasmic proteins, mitochondria, peroxides, Golgi complexes,

and portions of the endoplasmic reticulum, while some digested

fragments are released into the cytoplasm for biosynthesis (3, 5, 16).
FIGURE 1

Autophagy is involved in the development and progression of multiple diseases.
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According to the different ways of transporting substrates to

lysosomes, autophagy can be divided into three main ways:

macroautophagy, microautophagy, and chaperone-mediated

autophagy (CMA) (17). Macroautophagy is the most common

autophagy in eukaryotic cells by forming a double-layer membrane

aroundmisfolded and aggregated protein pathogens, and non-essential

amino acids, and fusing with lysosomes for degradation. Many stresses,

such as nutritional deficiency, infection, oxidative stress, and toxic

stimulation, can stimulate the occurrence of macroautophagy, which is

generally referred to as autophagy. Different from macroautophagy,

there is no formation process of autophagy membrane in

microautophagy. A characteristic aspect is that the lysosome

membrane is straight taken in by lysosomes and late endosomes via

membrane protrusion and invagination, and it is then broken down

within the endolysosomal lumen. During the dependent multivesicular

body (MVB) formation, a significant quantity of cytoplasmic proteins

is selectively integrated into the lumens of endosomes in substantial

amounts (18). CMA represents a highly selective mechanism of

autophagy with two core members: the heat shock cognate protein

70 (HSC70) and the lysosomal membrane-associated protein 2A
Frontiers in Immunology 03
(LAMP-2A). HSC70 is a molecular chaperone protein. The process

of CMA degrades proteins that contain KFERQ pentapeptide

fragments in the peptide chain. First, the heat shock protein HSC70

specifically recognizes and binds to proteins containing KFERQ five-

peptide fragments, and transports the target protein into the lysosome

for degradation through interaction with LAMP2A (17).

Macroautophagy is considered to be the predominant form of

autophagy compared to microautophagy and molecular-mediated

autophagy, and this has also been the subject of extensive research.

Therefore, what we usually call “autophagy” is macroautophage.

In addition, autophagy can be classified into selective

autophagy, aggregative autophagy, and xenophagy, etc. Recent

research has demonstrated that several denatured proteins,

organelles, and certain bacteria can be selectively destroyed by

autophagy. This process is called “selective autophagy”, the

most representative of which is mitophagy (17, 19, 20).

Mitophagy is a specific degradation targeting depolarized

mitochondria (21). Xenophagy involves the digestion of

extracellular components containing pathogens or bacteria

that invade the body (22).
FIGURE 2

Phases and Classification of Autophagy. According to the different ways of transporting substrates to lysosomes, autophagy can be divided into three
main ways: macroautophagy, microautophagy and CMA. Macroautophagy: It starts as autophagy-related substances accumulate around misfolded
and aggregated proteins, pathogens, non-essential amino acids, etc. to form a barrier membrane. Dysfunctional organelles as well as proteins are
surrounded by an isolation membrane and gradually form a bilayer membrane structure, called autophagosomes. The outer membrane of
autophagosomes then fuses with lysosomes, and internal material is degraded in autolysosomes. Microautophagy: The process by which
membranes of lysosomes encapsulate cargo by direct protrusion or invagination and are degraded in lysosomes. CMA: Substrate proteins containing
the KFERQ-like pentapeptide sequence are first recognized by HSC70, then bind to LAMP-2A on the lysosomal membrane and enter the lysosome
and eventually are degraded. CMA, Chaperone-mediated autophagy; HSC70, Heat shock cognate protein 70; LAMP-2A, Lysosomal membrane-
associated protein 2A.
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Molecular involvement in autophagy
and molecular regulation

The process of autophagy is modulated and governed by various

relative proteins. In mammalian cells, starvation-induced

autophagy is regulated by approximately 20 core Atg genes (23).

These gene products are persistently incorporated into vacuoles and

assembled to construct pre-autophagosomes. In addition, the

modification of microtubule-associated protein-1 light chain 3

(LC3) is an important step in forming autophagic vacuole. In

autophagosomes, LC3 and its homologues act on autophagic

substrates or proteins to facilitate the selection of autophagic

cargoes (24).

The elongation stage of autophagosome formation relies on two

ubiquitin-like conjugation systems (Figure 3), (2, 3). Besides the

proteins mentioned in Figure 3, the maturation and fusion of
Frontiers in Immunology 04
autophagosomes also depend on various other proteins, such as

small GTPases (like Rab7), class C Vps proteins, ultraviolet

radioresistance-associated gene protein (UVRAG), and lysosome-

associated membrane proteins (for instance, LAMP-2A) (25, 26). In

recent years, additional proteins associated with autophagy have

been progressively identified alongside the aforementioned

proteins. In a complicated regulatory network, these proteins

regulate the initiation and execution of autophagy (2, 27). We will

describe this in detail in the following paragraphs (Figure 3).
Mammalian target of rapamycin
signaling pathway

Many studies have demonstrated that mTOR negatively

regulates autophagy in nutrient-rich environments (28). mTOR is
FIGURE 3

Signaling pathways for autophagy. The process of autophagy is regulated by many signaling pathways (as shown), and there is also complex
crosstalk between various pathways. Two ubiquitin-like conjugation systems involved in the formation of autophagosome: In the first system, the
ubiquitin-like protein Atg12 is enzymatically coupled to Atg5 by Atg7 (E1 ubiquitin-activating enzyme-like) and Atg10 (E2 ubiquitin-conjugating
enzyme-like) to produce the Atg5-Atg12 complex. The Atg5-Atg12 complex interacts with Atg16L1 to form a complex that plays a role in the
formation of autophagic membranes. As part of the maturation process, these factors are separated from autophagosomes. The second coupling
system requires the ubiquitin-like protein LC3. LC3 and its homologues, including the isozymes of LC3 and associated proteins (e.g., GABARAP), are
modified by cellular lipid PE. An important regulatory step in the formation of autophagosomes is the transformation of LC3-I (free form) to LC3-II
(PE conjugated form). The precursor form of LC3 is cleaved by the protease ATG4B to yield LC3- I (not shown). ATG7 and ATG3 participate in
conjugating PE with LC3-I to LC3-II. LC3-II cytoplasmic redistribution, characterized by punctate LC3 staining, is indicative of autophagosome
formation. GABARAP, (GABA type A receptor-associated protein); LC3, (Microtubule-associated protein 1 light chain 3;
PE, (Phosphatidylethanolamine).
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an atypical serine/threonine protein kinase that is evolutionarily

relatively conserved. Cell cycle regulation, proliferation,

differentiation, motility, and invasion are among its physiological

functions. Two unique complexes, mTORC1 and mTORC2, exist

within the cell and are distinguished by distinct components.

mTORC1 and mTORC2 are two signaling complexes that play a

major role in the mTOR pathway. Ribosomal protein S6 kinase

(S6K) and kinase B (AKT) are key enzymes in the interaction

between mTORC1 and mTORC2. S6K is activated by mTORC1,

which subsequently activates mTORC2. Conversely, mTORC2

facilitates the phosphorylation of AKT, leading to the activation

of mTORC1. mTORC1 is responsive to energy levels and stress, and

it is significantly inhibited by rapamycin. A substantial body of

research has indicated that mTORC1 exerts an inhibitory influence

on the process of autophagy (29, 30). Unlike mTORC1, mTORC2 is

not susceptible to both rapamycin and nutrients because of the

presence of Rictor (31). However, long-term rapamycin treatment

ultimately inhibits mTORC2 activity (32). mTOR is a key molecule

during autophagy induction. Many signaling pathways have the

capacity to either promote or inhibit the process of autophagy

through their interactions with mTOR (Figure 3). Nonetheless, the

enhancement or suppression of autophagy by these pathways is not

definitive. In some specific cases, the opposite effect may also be

exerted. We will describe it further in the following sections.

mTOR is integral to numerous physiological functions, such as

cell proliferation, survival, and autophagy, which is intricately linked

to various lung diseases through its regulatory effects on cell growth,

inflammation, and fibrosis. We will describe it in the following

sections. The mTOR signaling pathway plays a critical role in the

development and maintenance of lung function. It regulates the

growth and differentiation of lung epithelial cells and fibroblasts to

maintain normal lung function. Moreover, mTOR signaling is

involved in the immune response to pulmonary pathogens, which

regulates the activation of immune cells and the inflammatory

response. Given its central role in lung diseases, mTOR signaling

has become a target for therapeutic intervention.
The phosphoinositide-3-kinase
protein/kinase B signaling pathway

PI3K/AKT was discovered in the 1980s and plays an important

role in major physiological activities of cells (33). PI3K-AKT

signaling mainly involves two metabolites, phosphatidylinositol-

4,5-bisphosphate (PIP2) and phosphatidylinositol-3,4,5-

bisphosphate (PIP3), and two coding genes, lipid phosphatase

(PTEN) and 3-phosphoinositide-dependent protein kinase-1

(PDK1). PIP2 is converted to PIP3 by phosphorylation in

response to PI3K. Next, PIP3 on autophagosome membranes

recruits ATG18 and binds to bilayer membranes, allowing

autophagosomes to extend and complete (34). PDK1 is a key

regulatory molecule of the PI3K-AKT signal transduction

pathway and plays an important part in the activation of AKT

(35–37). In addition, mTORC2 can directly activate AKT by

phosphorylating Ser-473 (36). PTEN is an important negative
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regulator of PIP2 conversion to PIP3. PTEN acts to promote

dephosphorylation of PIP3 thereby inhibiting its accumulation in

cells (38). Once activated, AKT acts on various cytoplasmic proteins

to mediate cell growth and survival. The main downstream effector

is mTOR. Furthermore, AKT influences the interaction between

phosphorylated tuberous sclerosis complex 1 (TSC1) and

phosphorylated tuberous sclerosis complex 2 (TSC2),

consequently facilitating the activation of mTORC1 via the H-

Ras-like GTPase (Rheb) (39). Subsequently, active mTORC1

inhibits autophagy by blocking the uncoordinated 51-like protein

kinase (ULK1) (40).

The PI3K/AKT signaling has a tight relationship in regulating

cell growth, survival, and metabolism. This pathway is involved in

numerous cellular processes and has significant implications for

various lung diseases. In certain pathological conditions, the PI3K/

AKT signaling pathway is frequently activated in reaction to

inflammatory stimuli and oxidative stress, which results in airway

remodeling and contributes to the pathophysiology of the disease,

including mucus hypersecretion and smooth muscle cell

proliferation, therefore enhancing the survival of inflammatory

cells in the lungs. The PI3K/AKT pathway presents multiple

potential therapeutic targets for treating lung diseases. Inhibitors

of PI3K, AKT, or associated pathways are currently undergoing

investigation to reduce inflammation, fibrosis, and tumor growth in

lung diseases.
RAS/RAF/MEK/ERK signaling pathway

As a significant signaling pathway of mitogen-activated protein

kinase (MAPK), RAS/RAF/MEK/ERK is involved in regulating cell

proliferation, differentiation, apoptosis, and numerous signaling

pathways (41, 42). RAS is a small GTPase that is activated by

several factors, including receptor tyrosine kinases, growth factors,

heterotrimeric G proteins, integrins, serpentine receptors, and

cytokine receptors. Furthermore, oxidative stress activates the

RAS/RAF/MEK/ERK signaling pathway. Notably, certain growth

receptors are not required for ROS-induced RAS activation (43). In

addition, ROS can uncouple MAPK pathway activity from RAS

expression (44). Activated RAS further recruits RAF (MAPKKK) to

the plasma membrane for activation. Following this, RAF activates

and phosphorylates MEK (MAPKK), followed by ERK (MAPK). As

ERK is activated, it translocates to the nucleus and triggers

transcription and expression of target genes (45, 46). The

expression products of these genes regulate various physiological

functions of cells, including the regulation of autophagy (45, 46).

PI3K and TSC2 are regulated by the RAS/RAF/MEK/ERK pathway,

thereby activating mTORC1 activity. In addition, the activated

RAS/RAF/MEK/ERK signaling pathway up-regulates LC3,

Beclin1, and Noxa, and directly down-regulates p62 to induce

autophagy (47, 48). Following induction by lindane, the

formation of autophagosomes within cells is closely linked to the

prolonged activation of ERK (49). Notably, this phenomenon

occurs independently of both mTOR and p38 (49). These

seemingly contradictory findings indicate that specific
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environmental conditions may directly influence the regulation of

autophagy via the RAS/RAF/MEK/ERK signaling pathway.

Dysregulation of this pathway has been implicated in various

diseases, including lung cancer. Mutations in genes encoding

components of this pathway, such as KRAS, BRAF, and MEK, are

commonly found in lung cancer patients. Mutations in BRAF and

MEK are also observed in a subset of lung cancer patients.

Furthermore, aberrant activation of the RAS/RAF/MEK/ERK

pathway has been linked to other lung diseases, such as

pulmonary fibrosis and COPD. In these conditions, dysregulated

signaling through this pathway can lead to inflammation, tissue

remodeling, and fibrosis in the lungs.
Adenosine 5’monophosphate-
activated protein kinase
signaling pathway

AMPK is recognized as one of the primary substrates of LKB1

(liver kinase B1), which functions as an intrinsic energy sensor and

regulator of cellular homeostasis (50, 51). AMPK is a heterotrimeric

serine/threonine kinase that consists of a catalytic asubunit and two

regulatory subunits, which are b and g. The activation of AMPK occurs

in reaction to elevated levels of intracellular AMP and reduced levels of

ATP, particularly during conditions of nutrients. LKB1 implements the

involvement of this process by phosphorylating the a-activating loop

(52). The activation of AMPK affects multiple processes, including

mTOR pathway regulation and p53 phosphorylation (53). Further,

AMPK is capable of directly phosphorylating Raptor or TSC2. Next,

TSC2 signals to inhibit mTOC1 activity (44, 45, 54). In this pathway,

AMPK negatively regulates mTORC1 by adenosine 5 ’

-monophosphate levels, thereby positively regulating autophagy upon

energy depletion (55). Research indicates that AMPK exerts direct

regulation over ULK1 in a manner that is sensitive to nutrient

availability, thereby contributing to the intricate nature of regulatory

mechanisms, as elaborated upon in the subsequent sections (56–58).

AMPK is a dominant y regulator of cellular energy metabolism

and plays a crucial role in maintaining cellular homeostasis. Within

the realm of pulmonary disorders, AMPK signaling has been

demonstrated to exhibit both preventive and pathogenic effects.

In several lung diseases, including COPD, asthma, and pulmonary

fibrosis, dysregulation of AMPK signaling has been implicated.

However, the relationship between AMPK signaling and lung

disease is complex and disease-specific. Additional investigation is

necessary to elucidate the specific mechanisms by which AMPK

influences lung function, as well as to assess the feasibility of

marking this pathway for therapeutic strategies.
Uncoordinated-51-like protein kinase
signaling pathway

ULK1 is a master regulator of autophagy initiation among

mTORC1 downstream regulatory targets (59). Among the

components of autophagy, ATG1, ATG13, and ATG17 are critical
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regulators of autophagy initiation (44, 60–62). In mammals, ULK1

and ULK2 are homologues of ATG1, and mATG13 and 200 kDa

adhesion kinase family interacting protein (FIP200) are

homologues of ATG13 and ATG17, respectively (59, 63–66). The

importance of ULK1 in the autophagy pathway is reflected in its

involvement in forming mTOR substrate complexes (60, 66, 67).

mTORC1 has been reported to inhibit its pre-autophagic effect by

phosphorylating ULK1 under normal and nutrient-rich conditions

(68). mTORC1 is also able to directly phosphorylate and inhibit

ATG13, one of the activators of ULK1. ULK1 can activate

autophagy by phosphorylating Beclin-1 indirectly involved in the

formation of VPS34-Beclin-1-ATG14 (29, 69, 70). In addition,

AMPK can directly interact with ULK1 to regulate ULK1 in a

nutrient-sensitive manner. Activating ULK1 by phosphorylating

Ser 317/Ser 777, AMPK acts by triggering autophagy in response to

glucose and amino acid starvation (58). Interestingly, mTORC1

blocks the cellular collection between ULK1 and AMPK by

phosphorylating Ser 757. Consequently, it can be inferred that

ULK1 equips cells with the capacity to effectively respond to

intricate environmental alterations in conjunction with mTORC1

and AMPK.

Recent studies denote that ULK1 signaling may be implicated in

the development of several pulmonary disorders. In conditions like

IPF, COPD, and lung cancer, dysregulation of autophagy, including

ULK1 signaling, has been implicated in disease progression.

Investigating the function of ULK1 signaling in lung diseases may

facilitate the creation of targeted therapies designed to regulate

autophagy and improve outcomes for patients with these conditions.

Type III phosphatidylinositol
triphosphate kinase signaling pathway

Autophagosome formation is closely dependent on class III

PI3K complexes. Activated class III PI3K complexes lead to

increased PI3P formation, and PI3P-recruiting protein factors

initiate autophagosome formation, including WD repeat protein

interacting with inosine phosphate (WIPI-1/2), Atg18, and protein

1 containing double FYVE (DFCP1) (71, 72). Class III PI3K

complexes exist in two distinct types in mammalian cells, where

complexes consisting of VPS34L, p150, Beclin1, and ATG14L are

closely associated with autophagy. We refer here to this complex

collectively as the class III PI3K complex. Beclin 1 serves as a

significant regulator of autophagy. It is also defined as a tumor

suppressor protein, exhibiting the capacity to engage with a wide

variety of proteins, including ATG14L, ultraviolet resistance-

associated gene protein (UVRAG), Rubicon, and Bcl-2 (73–76).

Three domains play important roles in Beclin1 function, including

the Bcl-2 homology 3 (BH3) domain and the central coiled-coil

domain (CCD) that mediates interactions with ATG14L and

UVRAG (77–80). In addition, the active ULK1 results in the

recruitment of class III PI3K complexes to autophagosomes,

forming alternating Beclin 1-Vps34L complexes with UVRAG

and promoting autophagy (75, 81–83). Evolutionarily conserved

domain (ECD) mediates communication between Beclin 1 and

VPS34, which in turn activates VPS34 kinase to regulate
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autophagosome formation. Furthermore, class III PI3K complexes

can negatively regulate autophagy in response to the newly

identified factor Rubicon (84, 85). Ambra-1, Bif-1, Bcl-2, and Bcl-

XL can also act on class III PI3K complexes to modulate their

activity (76, 86, 87).

In the context of lung disease, dysregulation of Class III PI3K

signaling has been implicated in various respiratory conditions. In

diseases like IPF, COPD, and lung cancer, altered Class III PI3K

signaling has been associated with disease pathogenesis and

progression. Understanding the role of Class III PI3K signaling in

lung diseases is important for identifying potential therapeutic

targets and developing targeted interventions to modulate this

pathway for the treatment of respiratory disorders.
Wild-type p53 signaling pathway

p53 functions as a tumor suppressor protein and serves as a

transcription factor that regulates gene networks in response to

various cellular stresses, thereby maintaining genome stability and

integrity. However, p53 not only prevents tumorigenesis but also

plays a critical regulatory part in primary signaling and metabolic

adaptation (88, 89). The effect of wild-type p53 on autophagy is

complex, highly dependent on the environment, and determined by

the cellular microenvironment and stressful conditions. The

progression of the cell cycle and the subcellular localization of

p53 serve dual functions in the regulation of autophagy. The dual

effect of wild-type p53 on autophagy is reflected in its

transcriptional activity against a range of downstream target

genes with autophagic regulatory effects. The dual role of p53 in

autophagy is presented in Table 1.

p53 signaling plays a significant role in the development and

progression of various lung diseases. Mutations in the p53 gene can

disrupt its tumor-suppressor function, leading to uncontrolled cell

growth, evasion of cell death, and genomic instability, all of which

are hallmarks of cancer. Dysregulated p53 signaling has been linked

to a poorer prognosis in lung cancer patients and resistance to

certain anticancer therapies. Dysregulation of p53 contributes to

abnormal repair processes in the lung tissue, leading to excessive

collagen deposition, fibrosis, and impaired lung function. Moreover,

activation of p53 can promote cell cycle arrest, DNA repair, or

apoptosis, depending on the extent of damage while disruption of

p53 function may impair the lung’s ability to repair and regenerate,

exacerbating lung injury and contributing to disease progression.
Function of autophagy

Autophagy serves as a mechanism for maintaining a stable pool

of organelles by regenerating metabolic precursors and eliminating

subcellular debris in response to diverse environmental stressors. In

the presence of such stress, autophagy initiates cellular defense

mechanisms by facilitating the removal of damaged organelles and

ubiquitinated protein aggregates (90, 91). Under specific conditions

of glucose or amino acid starvation, autophagy is compensatory to

participate in the basic metabolic cycle of cells by acting on
Frontiers in Immunology 07
TABLE 1 The dual effects of wild-type p53 on autophagy.

Effect
Signaling
pathway

Mechanism References

Promoted mTOR

Wild-type p53 uses AICAR to
stimulate AMPK activity to
inhibit key downstream

effectors of mTOR signaling,
such as phosphorylation of
4E-BP1 and RPS6. p53 can
induce secretion of IGF-BP3
and indirectly affect the

autophagic process regulated
by IGF (s).

(256, 257)

Promoted AMPK
Wild-type p53 stimulates

signaling through AMPK to
the b1/b2 subunit (Sestrin1/2).

(258, 259)

Promoted DAPK-1

DAPK-1 promotes Wild-type
p53 accumulation in an ARF-
dependent manner, followed
by stimulation of autophagy

through ARF.

(260, 261)

Promoted
Bcl-2

protein family

Wild-type p53 activates
multiple pro-apoptotic protein
production, including Bax as
well as the BH3-only proteins

Bad, Bnip3, and Puma.

(262, 263)

Promoted PI3K

Wild-type p53 in the nucleus
is able to up-regulate PTEN
through a transcription-

dependent pathway, which in
turn inhibits the
PI3K pathway.

(264, 265)

Promoted HIF-1
HIF-1 can stabilize p53, which

in turn promotes the
autophagic process.

(266, 267)

Promoted ULK1
In response to DNA damage,
p53 upregulates ULK1 and

ULK2 expression.
(268)

Promoted HSF-1

Wild-type p53 is involved in
the induction of (Isg20L1 and

HSF1), which in turn
transactivates autophagy-
related genes (ATG7).

(269)

Promoted TGM2

Wild-type p53 promotes
autophagic flux by enhancing

autophagic protein
degradation and

autophagosome clearance by
inducing TGM2

(270)

Inhibited mTOR
Wild-type p53 inhibits AMP-
dependent kinases, thereby

activating mTOR
(271)

Inhibited TIGAR

Wild-type p53 induced
TIGAR (TP53-induced
glycolytic and apoptotic

modulator) regulates glycolysis
and cellular ROS levels

(272)

Inhibited

miR-34a
series and
miR-34a/
34c-5p

Wild-type p53 impacts
transcriptional regulation of
microRNAs (miR-34a series
and miR-34a/34c-5p, against

(273, 274)

(Continued)
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intracellular proteins, lipids, and other organic macromolecules (5).

Specifically, autophagy plays a very important role in apoptosis,

inflammation, and immunity. We will describe this in detail below.
Autophagy in apoptosis

Cells can undergo apoptosis in response to intracellular signaling,

extracellular signaling, and endoplasmic reticulum (ER) stress

(Figure 4). Cysteine protease (caspase) induction and activation

play a critical role in apoptosis. Endogenous apoptosis is also

known as the mitochondrial pathway due to a mechanism closely

related to the permeability of the mitochondrial membrane. This

process is also strongly associated with the Bcl-2 protein family. Bcl-2,

Bcl-XL, and Mcl-1 are negative regulators of apoptosis and protect

cells from apoptosis when multiple types of cells are stimulated. Bax

and Bak can undergo apoptosis by penetrating the mitochondrial

membrane, releasing cytochrome c, and subsequently activating

caspases. However, the exact mechanism by which these proteins

promote apoptosis is unknown. Exogenous apoptosis requires the

formation of a critical complex, the death-inducing signaling complex

(DISC). Death receptors, including Fas, TNFR1, and TRAIL, are

located on the cell surface and mediate apoptosis when activated. The

production of DISC is initiated by the binding of death receptors to

their corresponding ligands. When Fas binds to its ligand, activated

Fas forms a DISC by binding connexin to the death domain (FADD).

DISC then binds recruited pro-caspase 8 by interacting with another

motif called the death effector domain (DED). Next, Pro-caspase 8

dimerizes and gains catalytic activity after degrading downstream
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substrates, producing and releasing heterotetrameric active caspase 8.

Eventually, cells undergo extrinsic apoptosis. The ER stress pathway

involves the buildup of incorrectly folded or unfolded proteins within

the ER, which can arise from various factors such as infection,

hypoxia, starvation, chemical influences, and deviations from

homeostatic regulation of ER secretory functions. This

accumulation leads to ER stress-induced apoptosis and triggers the

unfolded protein response (UPR) pathway in response to the

misfolding of proteins within the ER.

Recent research has indicated a strong connection between

autophagy and apoptosis (92, 93). According to different experimental

models, autophagy is associated with anti-apoptotic and pro-apoptotic

effects (94). Several signaling mechanisms interact between apoptosis

and autophagy. Autophagy proteins are involved in the regulation of

apoptosis, while apoptotic proteins also influence the process of

autophagy (95). Bcl-2 family members Bcl-2 and Bcl-XL, can directly

interact with Beclin 1 by binding to the BH3 domain in the intrinsic

apoptotic pathway (96, 97). Further studies showed that the anti-

autophagic function of Bcl-2 mainly occurs in the ER and stabilizes

Beclin-1 interaction with Bcl-2 through its 2Fe-2S cluster binding to Bcl-

2. The c-Jun-NH2-terminal kinase (JNK) pathway is closely linked to

apoptosis signaling. The JNK pathway can regulate the function of

autophagy by affecting several key proteins (98). The JNK pathway

promotes autophagy by preventing the association between Beclin 1 and

Bcl-2 family proteins (99). In addition, AMPK can dissociate the Bcl-2-

Beclin1 complex and promote the formation of the Beclin1-PI3K

complex (100). Notably, mTOR is key in linking apoptosis and

autophagy. It has been shown that loss of Raptor activates caspase 3,

leading to mitochondrial abnormalities, which positively regulate

apoptosis and autophagy (101).

Additionally, there is a complex link between the extrinsic

apoptotic pathway and autophagy. Critical components of DISC

regulate autophagy in this process. Excess autophagy occurs in

fibroblasts, macrophages, and T cells when caspase 8 is inhibited or

deficient (102, 103). DED is a protein interaction domain that can be

found in pro-caspases and proteins in the apoptotic cascade that

regulate caspase activation. Apoptosis and autophagy are also

affected by FADD mutations, which produce abnormal death

domains (DD). Mutants (FADD-DD) were recruited to DISC

without DED. By interacting with pro-caspase 8 and cellular FADD-

like IL-1b converting enzyme inhibitor protein (c-FLIP), this domain

prevented the development of death receptor-induced apoptosis.

Besides, it can cause excessive autophagy in epithelial cells and T

cells (102, 104). Exogenous apoptotic signaling pathways can be

affected by several autophagic proteins such as Atg5 (105). The

knockdown of Atg5 exerts different effects on cell survival under

different study conditions (106). Typically, proteolytic fragments of

Atg5 can promote apoptosis by inhibiting Bcl-XL (107).
Autophagy in inflammation
and immunity

The autophagy process influences immune and inflammatory

responses in many diseases (Figure 5) (7). There is a complex
TABLE 1 Continued

Effect
Signaling
pathway

Mechanism References

ATG9A and
ATG4B, respectively)

Inhibited Beclin-1

Wild-type p53 interacts with
Beclin-1 and subsequently
promotes its ubiquitination

and proteasome-
mediated degradation

(275)

Inhibited
RB1CC1/
FIP200

Wild-type p53 inhibits
autophagy by interacting with
the human ortholog of yeast
Atg17, RB1CC1/FIP200

(276)

Inhibited PKR

Wild-type p53 inhibits
autophagy by reducing
double-stranded RNA
accumulation and PKR
(protein kinase RNA
activation) activation

(277)
AICAR, 5-Aminoimidazole-4-carboxamide1-b-D-ribofuranoside; AMPK, Adenosine 5‘-
monophosphate-activated protein kinas; ARF, Auxin response factor; Bcl-2, B-cell
lymphoma-2; DAPK-1, Death associated protein kinase 1; HIF-1, Hypoxia-inducible factor
1 ; HSF-1, Heat shock factor 1; IGF-BP3, Insulin-like growth factor binding-protein-3; mTOR,
Mammalian target of rapamycin; PI3K, Phosphoinositide 3-kinase; PKR, Protein kinase R;
PTEN, Phosphatase and tensin homolog; RB1CC1, RB1-inducible coiled-coil 1; RPS6,
Ribosomal protein S6; TIGAR, TP53 induced glycolysis regulatory phosphatase Gene;
ULK1, Unc-51-like kinase 1; 4E-BP1, Recombinant human eukaryotic translation initiation
factor 4E-binding protein 1.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1460023
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1460023
interrelationship among autophagy, immunity, and inflammation.

Autophagic proteins play a role in inducing and suppressing

immune and inflammatory responses. Similarly, immune and

inflammatory signals play a role in inducing and inhibiting

autophagy. Autophagy provides new insights into the prevention

and treatment of infectious, autoimmune, and inflammatory

diseases by balancing the benefits and drawbacks of immune and

inflammatory responses.

Autophagy regulates various immune responses during infection.

In many experiments, we have found that mutations in autophagy

genes increase susceptibility to certain diseases (108–112). Studies

performed on human genetics have revealed important clues

regarding xenophagy, autophagic proteins that affect pathogen

replication or survival, and the general immune system. Numerous

studies have demonstrated the significance of autophagy in the human

cellular defense mechanisms against mycobacterial infections (113).

Autophagy genes play a significant role in regulating host genes for

Mycobacterium tuberculosis (Mtb) replication (114). Autophagy may

be a crucial component of TB drug resistance. At the same time, to

survive in vivo, some viruses and bacteria have evolved different

methods of adaptation to autophagy. They can prevent the
Frontiers in Immunology 09
occurrence of autophagy by inhibiting the foremost steps of

autophagy or/and the production of autophagosomes, avoid protein

modification or interfere with the recognition of autophagy by

autophagy signaling, and even promote self-replication and survival

using autophagy-related proteins. For example, human

immunodeficiency virus (HIV), Kaposi’s sarcoma-associated herpes

virus inhibits antiviral capacity and immune properties in vivo by

affecting key pathways of autophagy. HIV envelope proteins activate

mTOR signaling and prevent HIV transfer to CD4 + T cells. Kaposi’s

sarcoma-associated herpesvirus prevents LC3-II production by

interacting with Atg3 (115). Bacteria also have multiple strategies to

avoid degradation. By disguising themselves, several bacteria can evade

autophagic recognition in the cytoplasm. For example, VirG is a

protein present on the bacterial surface and is necessary for Shigella

to be targeted by autophagosomes. Atg5 can prevent its interaction

with VirG by competitively binding to IcsB, an effector of Shigella

(116). Several cytoskeletal proteins of cells are ActA-dependent (117).

This feature allows bacteria to masquerade as their host organelle (117).

Listeria protein ActA interacts with the intracytoplasmic actin

polymerization machinery, thereby blocking binding to ubiquitin,

recruitment of p62, and autophagy targeting (117). Several pathogens
FIGURE 4

Autophagy and apoptosis. In endogenous apoptosis, the interaction of autophagic proteins with apoptotic proteins regulates this process. Bcl-2
family members, including Bcl-2 and Bcl-XL, can directly interact with Beclin 1 by binding to the BH3 domain. The JNK pathway promotes
autophagy by preventing the association between Beclin 1 and Bcl-2 family proteins. AMPK also dissociates the Bcl-2-Beclin1 complex and
promotes Beclin1-PI3K complex formation. Apoptosis signaling pathways may be affected by various autophagic proteins such as Atg5. Proteolytic
fragments of Atg5 are able to promote apoptosis by inhibiting Bcl-XL. In extrinsic apoptosis, key components of DISC regulate autophagy during this
process. Apoptosis and autophagy are affected by mutations in FADD, which create DD. The mutant (FADD-DD) was recruited to DISC in the
absence of DED. By interacting with caspase 8 precursor and c-FLIP, this domain prevents the development of death receptor-induced apoptosis,
while it can lead to excessive autophagy in epithelial cells and T cells. Atg5 can form a complex with FADD to affect the apoptosis process. AMPK,
(Adenosine 5’-monophosphate-activated protein kinase); Bcl-2, (B-cell lymphoma-2); BH3, (Bcl-2 homolog3r); Caspase, (Cysteine protease); c-FLIP,
(Cellular FADD-like IL-1b-converting enzyme-inhibitory protein); DD, (Death domain); DED, (Death effector domain); DISC, (Death-inducing signaling
complex); JNK, (c-Jun-NH2-terminal kinase).
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are also able to benefit themselves using components of autophagy in

membrane trafficking, including poliovirus, rotavirus, coronavirus,

dengue virus, and hepatitis B and C viruses (113, 118).

Autophagy is also regulated by immune signaling molecules,

including innate and adaptive immunity. Although the regulatory

mechanism of autophagy by most immune-related signaling

molecules is currently unknown, some findings provide clues.

NOD1 and NOD2, two typical NLRs (NOD-like receptor

cryopyrin protein), can be activated by specific components of

bacterial peptidoglycan. In response to bacterial infection, activated

NOD1 and NOD2 interact with ATG16L1 to induce autophagy

(119). NOD2 mutations associated with Crohn’s disease have been

found to influence ATG16L1 recruitment and bacterial co-

localization with LC3 (119). Presumably, in innate immunity, the

ATG5-ATG12-ATG16L1 complex interacts with members of the
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ATG8 family and may stimulate pathogen-induced autophagy or

enhance the ability of selective autophagy to target pathogens (120).

Various cytokines, including but not limited to CLCF1, LIF, IGF1,

FGF2, and the chemokine SDF1 (also called CXCL12) may have a

broader role in controlling autophagy (121). Autophagy also plays a

crucial role in adaptive immunity. Multiple regulatory pathways of

autophagy possess the capacity to affect both the functionality and

stability of the immune system, in addition to influencing antigen

presentation. B1a B cells, CD4 + T cells, CD8 + T cells, and fetal

hematopoietic stem cells rely on autophagic proteins to maintain

their numbers (122–124). Thymic clearance of autoreactive T cells

is an important function of autophagy in immune system

development and homeostasis (123). Epithelial cells of the thymus

are highly autophagic. Mutations in Atg5 in thymic epithelial cells

result in altered autoimmunity and specific immunity of certain
FIGURE 5

Autophagy in inflammation and immunity. Autophagy proteins play a role in inducing and suppressing immune and inflammatory responses, and
immune and inflammatory signals play a role in inducing and inhibiting autophagy. Autophagic proteins play an important role in adaptive immunity,
mainly including maintaining the normal number and function of immune-related cells such as B1a B cells, CD4+ T cells, and CD8+ T cells.
Autophagy also plays a role in innate immunity when pathogens such as bacteria and viruses invade the human body. However, some pathogens are
able to achieve their own survival by inhibiting, evading or even utilizing the autophagic process. Autophagy pathways and associated proteins also
play crucial roles in regulating inflammatory responses. Increased transcription of pro-inflammatory cytokines and adipokines has been observed in
mouse Paneth cells (Atg16L1HM), which contribute to the development of inflammation. Inflammasomes are important substances in the
development of inflammation, and inflammasomes activated by various factors mediate the degradation and activation of caspase-1 and ultimately
promote the synthesis and secretion of inflammatory factors (IL-1b and IL-18). Autophagy also removes cell debris generated by apoptosis, which in
turn inhibits tissue inflammation.
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MHC class II-restricted T cells (125). In addition, autophagy may

play an important role in the differentiation of lymphocytes by

indirectly affecting the expression of cytokines. During antigen

presentation, autophagy proteins present endogenous antigen

MHC class II to CD4 + T cells, enhance cross-presentation of

antigen-providing cells with CD8 + T cells, and facilitate cross-

presentation of phagocytosed antigens by dendritic cells to CD4 + T

cells (126–128). Autophagy also contributes to memory B cell

maintenance and regulates immunoglobulin secretion (129–131).

Recent findings have shown that autophagy is closely associated

with the development of certain chronic inflammatory diseases, such as

Crohn’s disease, systemic lupus erythematosus (SLE), and other

autoimmune diseases (132, 133). In animal models and human

diseases, autophagic failure is usually characterized by dysregulation

of inflammation (134). Its main role is to regulate inflammatory

transcriptional responses. Increased transcription of proinflammatory

cytokines and adipokines has been observed in Paneth cells

(Atg16L1HM) of Atg16L1 subtype mice (119, 135–137).

Inflammasomes are another important target of autophagic proteins

in inflammatory signaling. Inflammasomes aremultiprotein complexes

containing NLR, adaptor protein ASC, and caspase 1. Inflammasomes

can be stimulated by infection or other stress-related pathways.

Activated inflammasomes mediate the degradation and activation of

caspase-1 and ultimately promote synthesis and secretion of IL-1b and

IL-18 (138, 139). In addition, activation of the NALP3 inflammasome

is increased in Beclin 1 and LC3B gene-deficient monocytes (140, 141).

This enhancement ultimately facilitates the activation of IL-1b and IL-

18. The autophagic process can also suppress tissue inflammation by

removing apoptotic corpses. During developmentally programmed cell

death, autophagy induces xenophagic clearance in dying apoptotic cells

by generating ATP-dependent phagocytic signals (142). Increasing

evidence suggests that autophagic proteins are required for TLRs

mediated phagolysosomal pathways (142). To clear inflammatory

sources such as exogenous inflammatory sources (e.g., bacterial

viruses) and endogenous pro-inflammatory sources (e.g., damaged

organelles, aggregates), autophagic cargoes are usually regulated by

ubiquitin and are regulated by a type called SLR (sequestrate-like

receptor: p62 [SQSTM1], NBR1, OPTN, NDP52, TAX1BP1,

etc.) (143).
Methods for measuring
autophagic activity

Currently, the most effective methods for analyzing autophagy

in vitro and in vivo remain significantly controversial, due to the

complexity of the autophagic process. The measurement of

autophagic activity can be divided into two categories: counting

autophagosomes and measuring autophagic flux.

Currently, three primary methodologies are employed to assess

the number of autophagosomes: electron microscopy (144),

Western blot (WB) analysis (145), and fluorescent protein

labeling techniques (146). Electron microscopy observation of

autophagic structures is the most traditional method.

Morphological alterations occurring at various stages of
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autophagy can be directly visualized using a transmission electron

microscope, allowing for an initial assessment of the autophagic

phase. Electron microscopy showed damaged organelles in cells

undergoing autophagy. In the case of mitochondria, vacuolated

bilayer membrane-like structures, or vacuolated structures of

bilayer membranes, i.e., autophagosomes, can be observed around

them (146, 147). LC3 runs through the whole autophagic process

and is currently recognized as an autophagic marker. Changes in

the LC3-II/I ratio can be detected usingWB to assess the intensity of

autophagy. In addition, autophagy can be detected using the

property of green fluorescent protein (GFP) quenching in acidic

environments (146). Based on GFP-LC3, the researchers developed

the GFP-RFP-LC3 tool, a method that allows observation of

autophagy in individual cells. Keima is a unique fluorescent

protein that is independent of LC3 and suitable for monitoring

nonselective autophagy and microautophagy (148). Keima can

additionally serve as a tool for the detection of organelle

autophagy when conjugated with organelle-specific markers.

Scholarly investigations have indicated that an increased presence

of autophagosomes or LC3B-II within the system correlates with

enhanced proteolytic activity. However, there is no clear correlation

between autophagy activity and the abundance of autophagosomes

or LC3B proteins (24, 146, 149). For this reason, dynamic

measurements of autophagic flux are required (146).

A prominent contemporary approach for assessing autophagic

flux involves the observation of LC3 turnover. This approach relies

on LC3B-II pooling at autophagosome membranes. When cells

were treated with lysosomal reagents (e.g., ammonium chloride) or

lysosomal protease inhibitors (e.g., chloroquine), the degradation of

LC3-II was blocked, resulting in the accumulation of LC3-II. Thus,

the difference in LC3-II amounts between samples represents the

amount of LC3 that is delivered to lysosomes for degradation (150).

Second, the amount of total cellular LC3 can be quantified by

immunoblot analysis or flow cytometry or qualitatively observed by

fluorescence microscopy, which is inversely proportional to

autophagic flux. In addition to LC3, several groups have

developed some specific macrophage substrates to monitor

autophagic flux, such as p62/SQSTM1 (151, 152), BRCA1 gene 1

protein (NBR1) (151), betaine-homocysteine s-methyltransferase

(153), and polyglutamine protein aggregates (154).
Autophagy in lung diseases

COPD

COPD is a chronic inflammatory pulmonary disease connected

with smoking, which is the third most common death factor around

the world and consists of 3 primary disease states: chronic

bronchitis or proximal airway mucus hypersecretion; emphysema

or peripheral lung destruction and loss of alveolar attachments; and

small airway disease characterized by inflammation and airway

remodeling (Figure 6) (155, 156).

In 2000, autophagic vacuoles were detected in liver specimens

lacking alpha-1 antitrypsin, indicating the potential role of autophagy
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1460023
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1460023
in lung disease (157). COPD pathogenesis is not fully understood but

may be associated with aberrant cellular responses of bronchial cells

and lung cells to CS (cigarette smoke) (158, 159). In the setting of

COPD, autophagy-promoting epithelial cell death was shown to be a

potential mechanism (160, 161). As compared to healthy individuals,

COPD patients have increased levels of LC3B-II and autophagy-related

proteins including ATG4, ATG5-ATG12, and ATG7 (160). In

addition, it was observed under electron microscopy that the

formation of autophagosomes was also markedly increased in lung

tissues from COPD patients compared with control lung tissues (160).

Mice exposed to CS are usually used as an experimental model of

COPD. In lung tissue, mice subjected to cigarette smoke exposure

exhibit elevated levels of autophagic proteins and an increased presence

of autophagosomes. Interestingly, mice deficient in LC3B and

autophagy proteins are resistant to CS-induced pathological changes

(161, 162). These findings indicate that the autophagy pathway may

contribute to the progress toward COPD in some specific

circumstances (160, 161).

Histone deacetylase 6 (HDAC6) is a critical regulator of

primary ciliary uptake. Studies have shown that HDAC6 is

involved in the degradation of autophagy in cells (162). Shortened

cilia and increased HDAC6 are observed in respiratory epithelial
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cells treated with CS exposure. Cilia shortening induced by CS is

inhibited in mice that lack autophagic protein and HDAC6 (162).

This result reflects the importance of pathological changes of

HDAC6 in respiratory epithelial cells. Consequently, autophagy

plays a role in the HDAC6-mediated degradation of cilia within

airway epithelial cells in experimental models of COPD (163). Some

studies have reported the involvement of mitochondrial in (164,

165). A key mitophagy protein, phosphatase and angiotensin

homolog (PTEN) -induced putative kinase 1 (PINK1), has been

found to be increased in the lungs of COPD patients (166). Genetic

defects in PINK1 and inhibition of mitophagy with drugs showed

resistance to COPD pathology in CS-exposed mice (166).
Cystic fibrosis

Cystic fibrosis (CF) is an autosomal recessive disorder due to

mutations in the CF gene located in the 7th pair of chromosomes,

which can cause serious damage to the lungs, digestive system, and

other organs of the body (167–169). Mutations in related CF genes

affect the expression of cystic fibrosis transmembrane conductance

regulators (CFTR). It is most typical to have a 508-phenylalanine
FIGURE 6

Autophagy in lung diseases. In this figure, we summarize the pathogenesis related to the process of autophagy in six pulmonary diseases: COPD, CF,
IPF, PTB, PH, and NSCLC. CF, (Cystic fibrosis); COPD, (Chronic obstructive pulmonary disease); IPF, (Idiopathic pulmonary fibrosis); NSCLC, (Non-
small cell lung cancer); PH, (Pulmonary hypertension); PTB, (Pulmonary tuberculosis).
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deletion in the CFTR gene (CFTRF508del) (168). The primary

characteristic of cystic fibrosis (CF) within the respiratory system

is the overproduction and subsequent accumulation of mucus in the

airways. This pathological change can secondarily cause recurrent

bronchial infections and airway obstruction. In epithelial cells,

mutations in CFTR lead to increased ROS formation.

Accumulated ROS promotes tissue transglutaminase 2 (TG2)

production. Excessive TG2 is an important cause of inflammatory

reactions in CF (170, 171). These complex responses lead to the loss

of Beclin 1 and class III PI3K complex function, further affecting

autophagic function. Notably, the enhancement of autophagy

through the overexpression of Beclin 1 has been shown to

enhance inflammatory responses (170), indicating that the

autophagic system is essential for the clearance of protein

aggregates. In a similar vein, mice with the F508del-CFTR

mutation demonstrate reduced levels of Beclin 1 expression (172).

Significant risk of morbidity and mortality exists in CF patients due

to pseudomonas aeruginosa infection. Experimentally, defective

autophagic function resulting from reduced levels or loss of

function of BECN1 renders mice lungs more vulnerable to

pseudomonas aeruginosa infection (173).
Idiopathic pulmonary fibrosis

Idiopathic pulmonary fibrosis (IPF) is the most common form

of idiopathic interstitial pneumonia in clinical practice and is a

chronic pulmonary disease of unrecognized etiology (174, 175).

Although IPF has epithelial origins, it displays abnormal adaptive

immune responses, such as T-cell and B-cell dysregulation (176).

The levels of LC3-II expression in lung tissue from patients

diagnosed with IPF are significantly reduced compared to those

observed in healthy individuals (160, 177). Autophagy seems to play

a protective role in the development of IPF. In experimental models

of IPF, rapamycin inhibits lung fibroblasts’ expression offibronectin

and alpha-smooth muscle actin through its up-regulation of

autophagy (178). In addition, the pro-autophagic effect of

rapamycin is shown to promote collagen formation in lung

epithelial cells (177). Rapamycin also inhibits pulmonary fibrosis

induced by Toll-like receptor 4 (TLR4) antibodies or bleomycin in

mice (177–179). Furthermore, in the absence of autophagy genes or

when autophagy is suppressed pharmacologically, transforming

growth factor (TGF) activates lung fibroblasts (177, 178).

In IPF, researchers found clusters of malformed mitochondria

in lung epithelial cells, particularly in alveolar type II cells (AECIIs)

(180). In addition, microarray analysis showed decreased PINK1 in

lung tissues from IPF patients (180). The knock-down PINK1 mice

displayed increased mitochondrial depolarization and expression of

pro-fibrotic factors (180, 181). The mechanism of the antifibrotic

effect of PINK1 in lung epithelial cells is reflected in the prevention

of cell death by preserving the morphology and function of

mitochondria (180, 181). It has been suggested that PARK2, an

important mitophagy-related molecule may be linked to the

pathogenesis of IPF (182). Mitophagy is activated in alveolar

macrophages from IPF patients and mice treated with bleomycin.

Whereas increased apoptosis of macrophages is found in
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mitophagy-deficient mice, which prevents them from

pulmonary fibrosis.
Pulmonary hypertension

Pulmonary hypertension (PH) is a disease of abnormally high

blood pressure in the pulmonary arteries. PH is predominantly defined

by the remodeling of pulmonary vasculature, a multifaceted and

progressive phenomenon that ultimately results in right heart failure

and mortality. Studies have investigated how autophagy acts in PAH

pathogenesis, but conclusions remain disputed. Experimental mice

with chronic hypoxia showed increased levels of LC3B and

autophagosomes in their lungs (183). Furthermore, a higher

prevalence of autophagic vacuoles was noted in lung tissue subjected

to hypoxia. Mice deficient in MAP1LC3B (MAP1LC3B −/−) that were

exposed to chronic hypoxic conditions demonstrated more

pronounced PH values in comparison to their wild-type

counterparts. PH values included right ventricular systolic pressure

and vessel wall thickness. An elevation in angiogenesis within

pulmonary artery endothelial cells has been noted in cases of

persistent PH in Beclin 1-null mice (184). ATG5-targeting siRNA

has been found to directly disrupt autophagy to inhibit the proliferation

process of rat pulmonary artery smooth muscle cells. The AMPK

signaling pathway, recognized as a crucial component of autophagy,

significantly results in the process of autophagy in cardiomyocytes.

Research has shown that pharmacological inhibition of the AMPK

pathway increases cardiomyocyte mortality, suggesting a protective

effect on AMPK-associated cardiomyocyte autophagy. Monocrotaline

(MCT) is a commonly used drug in animal experimental models of

induced PH. Recent research indicates that in rats treated with

monocrotaline (MCT), the expression of phospho-mTOR in the

right ventricle is down-regulated, while the expression of phospho-

AMPK is elevated at the 2 and 4-weekmarks. Conversely, at the 6-week

interval, there is an up-regulation of phospho-mTOR expression and a

decrease in phospho-AMPK expression in the right ventricle of MCT-

treated rats (185). This suggests that the AMPK-mTOR autophagy

signaling pathway is involved in regulating autophagy in pulmonary

hypertension rats. It has already been demonstrated that rapamycin

treatment can prevent right ventricular hypertrophy and dysfunction

through activation of the autophagy pathway in animal models. The

findings indicate that autophagy could potentially be a contributing

factor to human vascular disease (186). However, these findings are

derived from static measurements. Additional experimental

investigations are necessary to elucidate the relationship between

human vascular disease and autophagy (183).
Pulmonary tuberculosis

PTB is a chronic and long-term pulmonary disease caused by

Mtb infecting the human lung, and it is the predominant

manifestation of tuberculosis. Mtb is classified as an intracellular

pathogen that releases a diverse array of effector proteins within

host cells. These proteins subsequently disrupt cellular signaling

pathways, thereby influencing normal cellular functions. It
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ultimately promotes its survival in host cells and leads to host cell

pathology. During the initial stages of infection, innate immune

responses are stimulated, and inflammatory cells are recruited

to the lungs. Mtb evades and eliminates innate immune

cells, spreads to the draining lymph nodes, and triggers a specific

T-cell response that promotes the formation of granulomas at the

sites of pulmonary infection (187). Inflammatory granulomas

are believed to lead to lung tissue damage, and pulmonary

fibrosis, and progressively develop chronic and persistent clinical

manifestations of PTB (188).

Mtb inhibits phagosome-lysosome fusion, allowing it to persist

in the phagosome during maturation. Autophagy is important for

the elimination of Mtb. In vitro, rapamycin or starvation-induced

autophagy promotes the conversion of Mtb phagosomes into

autolysosomes, which contain more antimicrobial chambers (e.g.,

antimicrobial peptides) than conventional phagosomes (129, 189).

Macrophages are also enhanced in their ability to present

mycobacterial antigens by autophagy (197). Moreover,

phagolysosomal fusion is found to be inhibited when cells are

infected with Mtb in macrophages lacking Beclin 1 and ATG7

(189). This result could preliminarily prove that autophagy is

advantageous for killing tubercle bacilli. However, the specific

mechanism of the defense effect of autophagy proteins on Mtb in

humans is unknown. In addition, recent in vitro studies have

demonstrated increased Mtb replication in HIV-infected

macrophages co-infected with Mtb when autophagy is activated

by the suppression of the mTOR pathway (190). A recent study

found that certain autophagic mechanisms acting on phagocytes are

critical mechanisms to target Mtb, known as xenophagy. The

embryonic exogenic homeobox 1 (ESX-1) secretion system is a

virulence factor of Mtb (191). ESX-1 causes Mtb DNA exposure to

the host cytoplasm through phagosome permeation (192). DNA

exposed to the cytoplasm is detected and ubiquitinated by

cytoplasmic DNA sensor molecules (e.g., STING) (192).

Ubiquitinated DNA attaches to LC3 via several proteins like p62

and nucleoporin 52. Consequently, it is encapsulated in

autophagosomes to fuse with lysosomes (192).
Non-small cell lung cancer

The mechanism of action of autophagy in cancer has repeatedly

been described as a double-edged sword. The role that autophagy-

related cellular pathways play in the pathological progression of

NSCLC is being extensively investigated. Mutations in genes

involved in the mTOR signaling pathway may be associated with

malignant proliferation of cells. Mutations in genes in the mTOR

pathway, such as KRAS, epidermal growth factor receptor (EGFR),

LKB1, PTEN, PIK3CA, AKT1, EGFR, PIK3CA, and PTEN, have

some relationship with the development of NSCLC (29). Research

indicates that the anticancer efficacy of LKB1 is diminished in

NSCLC. The researchers propose that this reduction may facilitate

tumor proliferation via the LKB1-AMPK-mTOR signaling pathway

(193). Rapamycin causes endogenous apoptosis of cancerous cells,

which in turn inhibits tumor growth in mouse models of NSCLC
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(194, 195). In vitro lung cancer models, rapamycin enhances

apoptosis and autophagy (196). The PI3K signaling pathway

serves as a primary regulator of autophagy, with its activation

leading to the inhibition of autophagic processes in cancerous

cells. Furthermore, the activation of this pathway enhances the

production of tumor-promoting antigens, thereby facilitating the

process of carcinogenesis. Mutations in p53 are also important

correlates of tumorigenesis. p53 is one of the most frequently

mutated genes and is present in 45% – 70% of adenocarcinomas

and 60% – 80% of squamous cell carcinomas (196). The

pathogenesis of NSCLC depends heavily on the absence of the

p53 gene (197). p53 can be present in the cytoplasm and nucleus.

Under cellular stress, p53 can translocate into the nucleus (197).

The p53 protein, located in the nucleus, experiences conformational

alterations that enable it to function as a transcription factor. This

activity facilitates the upregulation of numerous pro-apoptotic

proteins, thereby making sense in the regulation of both

endogenous and exogenous apoptotic pathways (197). p53 can

also translocate to the mitochondrial surface and directly bind to

Bcl-2 family proteins to promote endogenous apoptosis (197, 198).

In addition to this, p53 promotes the expression of Apaf-1 and

caspase-6 and promotes extrinsic apoptosis (198). p53 also plays a

role in regulating the autophagic process. An autophagy-induced

response was observed in mice whose p53 expression was blocked

using cypermethrin-a. And p53-null cells also showed enhanced

autophagy compared with wild-type cells. In addition, cytoplasmic

p53 can interact with FIP200, which in turn competitively

inactivates autophagy.
Other lung diseases

In addition to the above lung diseases, autophagy is also greatly

related to the occurrence and development of many other lung

diseases, such as asthma, COVID-19, and atypical pneumonia.

Autophagy plays a complex role in the pathophysiology of

asthma and may be deleterious or beneficial. Autophagy can affect

inflammatory response, airway remodeling, immune regulation,

and other aspects, and is an important field of asthma treatment

research. Polymorphisms in the autophagy-related gene Atg5 are

strongly associated with asthma (199). In respiratory epithelial cells

of patients with severe asthma, the expression level of Atg5 protein

is increased, and this phenomenon is closely related to the

deepening of the degree of fibrosis in the lower cell layer as well

as the increase of collagen-1 expression (200). IL-13 plays a crucial

role in the development of T2 asthma (201). In vitro, IL-13

stimulated goblet cell production and secretion of MUC5AC

protein from human respiratory epithelial cells (202). This

process is associated with activation of the autophagic process,

which is blocked when expression of Atg5 is inhibited. In addition,

inhibition of autophagy also affects IL-13 production in response to

ROS (203). In addition, in asthmatic patients, airway epithelial cells

initiate autophagy by inhibiting mTORC1 signaling in response to

IL-13 or IL-33 (204). Bronchial fibroblasts showed enhanced

mitophagy accompanied by increased expression levels of PINK1
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and Parkin protein in severe asthma, which may be an adaptive

response against mitochondrial dysfunction in asthmatic

cells (205).

COVID-19 is caused by a coronavirus called SARS-CoV-2, and

prior research has indicated that autophagy may play a dual role in

the context of coronavirus infection (206). Autophagy can degrade

coronavirus, enhance inflammatory responses, and modulate

inflammation in neutrophils (207). At the same time, it also

promotes antigen presentation and provokes immunity against

coronavirus (208). However, double-membrane vesicles of

autophagosomes facilitate the sequestration of the virus from

external immune responses, thereby serving as sites for viral

replication and transcription (207). In addition, nonstructural

protein 6 (NSP6) of novel coronavirus assists the virus in

escaping host innate immunity by activating autophagy. Recent

studies have shown that overexpression of SARS-CoV-2 papain-like

protease cleaves ULK1 and disrupts the formation of ULK1-ATG13

complex to block intact host autophagy (209). Corona virus also

inhibits BECN1 and activates autophagy inhibitors (SKP2 and

AKT1) to prevent autophagosome fusion with lysosomes to limit

autophagy signal transduction (210, 211). Interestingly, compared

with classical SARS-CoV, ORF3a of SARS-CoV-2 can separate

homotypic fusion and protein classification components, thereby

inhibiting fusion of autophagosomes and lysosomes, which is a

unique feature of SARS-CoV-2 inhibition of autophagy (212, 213).

Autophagy is also important in atypical pneumonia, for

example, infections caused by Chlamydia pneumonia(CP),

Mycoplasma pneumonia, and Legionella. In CP, it has been

shown to limit intracellular CP growth in vitro by inhibiting

autophagy, but in vivo, research has demonstrated that the

impairment of autophagy in myeloid cells is associated with

increased mortality, potentially resulting from intricate

antagonistic interactions between inflammasomes and autophagy

(214). Post-infection with Mycoplasma pneumonia, the activation

of autophagy may correlate with the severity of the disease, and both

excessive activation and suppression of autophagy could influence

the progression of the illness. Membrane lipids of Mycoplasma

pneumonia can activate autophagy through TLR4 and promote the

production of inflammatory factors such as TNF-a and IL-1b,
exacerbating the inflammatory response (215). Legionella can inject

effector proteins into host cells via its type IV secretion system (Dot/

Icm) to avoid autophagy and survive. Nevertheless, the autophagy

gene Atg7 can also exert its effect by assisting macrophages to clear

bacteria (216).
Autophagy as a potential therapeutic
target for the treatment of
lung diseases

In the human body, autophagy is essential to maintain the

normal functioning of tissues and organs as well as the development

of diseases. Thus, targeting autophagy may be useful in the

treatment of disease, but may also exacerbate disease

deterioration. Because the autophagic process can help clear
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harmful protein aggregates and damaged organelles. However,

excessive autophagy or dysregulation of autophagy may be

harmful to cells. In lung diseases, the role of autophagy is

particularly complex. On the one hand, it can clear pathogens

and damaged cells in the lungs and help resist infection and

inflammation. On the other hand, if the autophagic process is

dysregulated, it may lead to damage and dysfunction of lung tissue.

Therefore, using autophagy as a target for the treatment of lung

diseases requires great caution. If the treatment strategy is not

appropriate, it may exacerbate the condition rather than improve it.

How to balance the activation and inhibition of autophagy to

achieve the best therapeutic effect is currently a major difficulty in

autophagy-targeted therapy (Table 2).
COPD

Based on the available findings, it may be possible to

hypothesize that selective targeting of autophagy-related proteins

at the genetic or pharmacological level may serve as a basis for the

formulation of novel therapies for COPD. In mouse models, many

studies have attempted to mitigate the occurrence of abnormal

autophagy during smoke exposure by different approaches.

However, these investigations have primarily focused on

preventive interventions related to the duration of smoking.

These studies included the chemical chaperone 4-phenylbutyrate

(162); antioxidant drug, cysteine (217); arachidonic acid-derived

epoxyeicosatrienoic acid (218); HDAC6 inhibitor tubastatin (219);

mitophagy inhibitor Mdivi134; and sodium channel inhibitor

carbamazepine. In addition, studies using the mTOR inhibitor

rapamycin suggested that increasing autophagy during CS

exposure could reduce lung tissue inflammation, which may be of

assistance. However, rapamycin increased the number of apoptotic

and inflammatory cells compared with controls at baseline. To

clarify the pathophysiological function of autophagy in disease, it is

essential to carefully time the activation of autophagy and the

targeting of lung cells. Further investigation is required to assess

the impact of these agents on dysregulated autophagy in COPD.
CF

Treatments for CF have been extensively investigated. The

restoration of autophagic functionality may provide additional

therapeutic options for treating CF. The antioxidant n-acetyl-l-

cysteine has been shown to improve airway phenotypes in CFTR

mutant mice. In addition, oral cysteamine was found to restore Beclin 1

expression and prolonged the survival of CFTR F508del mutant mice

(220). Hence, it may be worthwhile to investigate cysteamine drugs’

mechanism through restoring autophagy (221). In addition, regular

and continuous use of azithromycin has been demonstrated to enhance

the health condition of CF patients (222, 223). However, It has been

reported that mycobacterial infection increases synchronously with the

onset of CF in some studies (224, 225). The seemingly contradictory

results observed in cystic fibrosis patients treated with azithromycin
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TABLE 2 The mechanism of autophagy-related targets in lung diseases.

echanism Reference

ggregate formation, CS-induced alveolar senescence/death,
physema progression.

(278)

n by modulating PINK1-PRKN-mediated mitophagy. (279)

mediated by NCOA4 and inhibits the ferritin response
activating Nrf2 and PPAR-g signaling pathways.

(280)

75302 promotes autolysosome formation and degradation
onse to CS exposure.

(281)

ed airway inflammation and autophagic injury by up-
gulating TFEB.

(282)

ways and autophagy induced by particulate matter and/or
s in bronchial epithelial cells.

(283)

own-regulating IGF-1R, Akt and ERK phosphorylation in
olar macrophages.

(284)

way and AMPK signaling pathway to regulate autophagy. (285)

-kB activation in CSE-treated lung macrophages by
biting autophagy.

(286)

ondrial autophagy and CSE-induced apoptosis of human
ting the PI3K/AKT/mTOR signaling pathway.

(287)

by reducing ROS production and excessive autophagy. (288)

y via the AMPK/mTOR signalling pathway (289)

se PI3K and mTOR transcription, activate the PI3K/AKT/
ay, and reduce autophagy.

(290)

nses by intervening in crosstalk between autophagy and
K MAPK pathway

(291)

epithelial cells from CSE-induced injury by inhibiting
d upregulation of JNK phosphorylation.

(292)

in C/EBPa/mitochondria/ATG7 pathway. (293)

osis by regulating Notch1-mediated autophagy priming. (294)
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COPD

Cysteamine ROS, Beclin-1, p62

Beas2b cells, C57BL/
6 mice, and human

(GOLD 0-IV)
lung tissues

Cysteamine-induced autophagy can reduce a
and em

Parkin activators (Preclinical) PRKN HBEC PRKN levels attenuate COPD progressio

NaHS, PAG COX2
Human lung cells,
Bronchial epithelial

BEAS-2B cells

H2S inhibits the iron autophagy pathway
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Ghrelin NF-kB, AP-1 HBEC
Ghrelin inhibits excessive inflammatory path

cigarette extrac

Klotho AKT, ERK MH-S cells
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PFI-103 FSTL1
Human lung cells,
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phagy via PI3K/Akt/mTOR signaling (295)

al dysfunction and mitophagy by inhibiting phosphorylated
P-1 and PINK1 expression.

(296)

agic clearance and autophagosome acidification, (297)

ctivates TFEB-induced stress responses, enhances fatty acid
n and promotes autophagy.

(298)

CFTR and LC3-II expression in epithelial cells. (299)

08del cystic fibrosis transmembrane conductance regulator
) by activating autophagy.

(300)

scues CFTR function when autophagy is active and improves
expressing proteins that are rescuable

(301)

fficking efficiency by inducing the F508del CFTR mutant. (302)

of the F508del-CFTR mutant, thereby restoring bacterial
ocesses involving upregulation of the pro-autophagic protein
nstitution of the autophagic pathway.

(303)

tivating the expression of key autophagic molecules such as
as inhibiting mTOR, a downstream mediator of PI3K/
AKT signaling.

(304)

by activating the Sestrin2/PI3K/Akt/mTOR-dependent
autophagy pathway.

(305)

tophagy by controlling Janus kinase 2/signal transducer and
of transcription 3 pathway.

(306)

signaling and Beclin-1 independent autophagy, contributing
T and collagen deposition in epithelial cells and primary
human fibroblasts

(307)

K-AKT-mTOR signaling pathway and activating autophagy (308)

by miR-21-mediated PTEN/PI3K/AKT/mTOR pathway (309)

re with aberrant TRB3/p62 PPIs to restore autophagy. (310)

(311)
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and mitophagy-related genes as well as ERS downstream
actor (ATF) 3 and repressing PTEN-induced transcription of
kinase 1 (PINK1).

alveolar epithelial cell senescence through PINK1/Parkin-
ediated mitophagy.

(312)

roblast activation by inhibiting the TGF-b1/Smad pathway,
y through the TGF-b1/mTOR pathway.

(313)

and promotes autophagy and apoptosis in myofibroblasts. (314)

n and induces autophagy and apoptosis in myofibroblasts
regulating the Wnt pathway.

(315)

ation in oxidant-exposed airway epithelial cells by reducing
1 and LC3A/B induction.

(316)

by targeting TGFb-PI3K-Akt pathway via an HDAC6-
ependent mechanism.

(317)

nregulates ECM gene/protein expression, and promotes non-
anonical autophagy.

(318)

tophagy activation by enhancing PARK2 expression. (319)

ncy which then triggered ferritin autophagy D in activated
roblast differentiation into myofibroblasts.

(320)

zes pulmonary vascular remodeling by inhibiting autophagy,
nd activating eNOS-NO signaling.

(321)

iting the proliferation of PASMCs by regulating autophagy,
essure and right ventricular hypertrophy, and improving
ary vascular remodeling.

(322)

s of decadienoyl-L-carnitine by modulating the metabolic
d protein levels in serum and lung in PAH rats.

(323)

onary vascular remodeling, collagen deposition, pulmonary
creased BECN-1 and LC3B-II/-I ratios, and down-regulation
hrough activation of the AMPK signaling pathway.

(324)

nduced pulmonary hypertension by inhibiting RhoA/ROCK
g pathway and autophagy.

(325)

(326)

(Continued)

Lin
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
4
.14

6
0
0
2
3

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

18
Lung diseases Drug
Autophagy-

related targets
Study subject

Naringin represses expression of ERS
proteins, thereby activating transcription

Tetrandrine PINK1, Parkin MLE-12 cells
Tetrandrine alleviates IPF by inhibiting

m

Zanubrutinib TGF-b1 Human fibroblasts
It inhibits collagen deposition and myofi

and induces autopha

Bergenin TGF-b1 Human fibroblasts Bergenin inhibits myofibroblast activatio
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Ellagic acid inhibits fibroblast activatio
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Tubastatin TGF-b, PI3K/AKT
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tissue samples

Tubastatin ameliorates lung fibrosis
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fibroblasts, IMR-

90 cells

Nintedanib inhibits TGF-b signaling, dow
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ASMCs by inhibiting cellular Drp1/nicotinamide adenine
OX) pathway and Atg-5/Atg-7/Beclin-1/LC3b-dependent
of autophagy in PAH.

as monitored by LC3B-II and p62 expression. (327)

remodeling induced by hypoxia in an autophagy-
endent manner.

(328)

f experimental pulmonary hypertension by inhibiting
rphogenetic protein type II receptor degradation.

(329)

to cell death by interacting with LC3B-II in response
o Carfilzomib.

(330)

autophagy via the FOXO1-SENS3-mTOR pathway. (331)

educes cell proliferation by activating the APJ receptor-
Akt/mTOR signaling pathway.

(332)

ultitasking kinase AKT, resulting in nuclear translocation
proliferation of FOXO3.

(333)

oteinase-9 gene expression and activity and increased
nes associated with collagen degradation.

(334)

on, promotes the expression of autophagy-related genes,
lar growth of Mycobacterium bovis in macrophages.

(335)

s the immune response by promoting autophagy. (336)

against Mycobacterium tuberculosis in human monocytes
eting the autophagy protein DRAM2.

(337)

inst Mycobacterium by enhancing autophagy. (338)

tericidal activity is associated with degradative autophagy,
on and degradation of endogenous p62.

(339)

terium tuberculosis-infected human macrophages by
ucing autophagy.

(340)

sis in NSCLC by modulating ROS/Nrf2/p62 signaling. (341)

(342)
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Autophagy-

related targets
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Liraglutide can reduce the proliferation of P
dinucleotide phosphate (NADPH) oxidase (

pathway

Docetaxel LC3B-II, p62 PAH rats Docetaxel decreased autophagy

Puerarin LC3B-II, BECN-1, SQSTM1 PASMCs
Puerarin reverses pulmonary vascula

de

Chloroquine p62, LC3B-II, BMPR-II SD rats
Chloroquine prevents the progression o

autophagy and lysosomal bone mo

Carfilzomib LC3B-II SD rats
TP53INP1 specifically drives autophagy

Quercetin FOXO1 PASMCs Quercetin enhanced hypoxia-induced

Apelin PI3K/Akt, mTOR PASMCs
Exogenous apelin inhibits autophagy and

dependent PI3K

Trifluoperazine AKT
Human pulmonary

artery smooth
muscle cells

Trifluoperazine reduces activation of the m
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Iloprost TGF-b1, LC3B SD rats
Iloprost significantly induced metallopr

expression of autophagy ge

PTB

1,25-dihydroxyvitamin D3 ATG5, Beclin-1
PTB

Patient Monocytes
Vitamin D enhances innate immune funct
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selective autophagic degradation of PD-L1 by inhibiting
3 phosphorylation.

he AMPK signal, the autophagy process induced by SchA
and fails to promote cell survival.

(343)

eath by activating autophagy in NSCLC. (344)

tion by targeting ULK1 to inhibit autophagy. (345)

ered by the transition from LC3-I to LC3-II to inhibit
is in non-small cell lung cancer (NSCLC) cells.

(346)

sis in NSCLC by inducing ROS/NF-kB/NLRP3/GSDMD
signaling axis

(347)

eads to cardiomyocyte death and cardiac injury through
d a novel function of blocking autophagosome-lysosome
ted in drug-induced cardiotoxicity.

(348)

n target of rapamycin (mTOR) kinase and suppresses the
uclear translocation of TFEB and lysosome biogenesis.

(349)

ent apoptosis in NSCLC cells by inhibiting the PI3K/Akt/
R signaling pathway.

(350)

duced enhanced autophagy and apoptosis via AMPK,
TOR pathway.

(351)

death in NSCLC cells via the ROS-triggered AMPK/mTOR
gnaling pathway.

(352)

ing PP2A and inhibiting the AKT-mTOR/GSK3b axis. (353)

through JNK, ERK and PI3K/Akt signaling in human lung
cancer cells.

(354)

optosis and autophagy via regulating ROS. (355)
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H1299cells,
9cells, H460 cells

DFIQ induces ROS production through autophagy activation and LAMP2 depletion. (356)

H1299 cells,
H460 cells

CA can induce apoptosis through a mechanism involving sestrin-2/LKB1/AMPK signaling and
autophagy induction.

(357)

549 cells, NCI-
H460 cells

Muyin extract induces apoptosis and autophagy by blocking the Akt/mTOR pathway to
enhance immunity.

(358)

49 cells, MRC5
ABTL0812 inhibits the AKT-mTORC1 axis via upregulation of TRIB3 in cancer cells and

tumor models.
(359)

549 cells, NCI-
299, NCI-H226

The PI3K/AKT/mTOR signaling pathway is targeted and suppressed by (+)-ABX, resulting in the
induction of S and G2/M phase arrest, apoptosis, and autophagy in NSCLC cells.

(360)

A549cells and
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ASP4132 acts through AMPK activation, mTORC1 inhibition and EGFR-PDGFRa degradation, as
well as Akt inhibition and autophagy induction.
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H1299 cells,
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S-2B, 293T cells

Ailanthone inhibits ULK1-mediated autophagy and subsequently inhibits NSCLC cells (364)

H2009 cells,
H226 cells

DSTYK inhibits mTORC1, which promotes autophagy, and its defects result in disruption of
autophagy, leading to progressive accumulation of autophagosomes.
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may be attributed to the drug’s capacity to inhibit lysosomal

acidification. This inhibition subsequently disrupts autophagy and

the degradation processes within phagosomes. More therapeutic

options targeting autophagy-related pathways need to be investigated

in greater depth.
IPF

Promoting autophagy may be beneficial in the treatment of IPF.

Currently, drugs that may be active include IL17A neutralizing

antibodies (177), MIR449A(microRNA 449a) (226), or PDGFRB

(platelet-derived growth factor receptor beta) inhibitors.

Bleomycin-mediated increases in mortality and decreases in

fibrotic resistance in mice have been observed in experimental

models (178, 227). However, rapamycin appears to potentiate

silica-induced effects, exacerbating inflammation and fibrosis

(228). In individuals diagnosed with IPF, the rapamycin analog

everolimus has been observed to contribute to the progression of

the disease. Therefore, further studies are required to assess whether

targeted autophagy agents are beneficial in IPF.
Pulmonary hypertension

Numerous studies utilizing animal models have investigated the

impact of rapamycin, mTOR inhibitors, and autophagy activators

on the prevention of PAH development (229). In clinical settings,

everolimus, a derivative of rapamycin, has been shown to enhance

outcomes in patients with strict PH resulting from chronic

thromboembolic disease, while also decreasing pulmonary

vascular resistance (230). The suppression of the autophagy

pathway may offer potential targeted therapeutic strategies for

the disease.
Pulmonary tuberculosis

Therapeutic regimens targeting pulmonary tuberculosis by

autophagy-related pathways are being widely investigated.

Vitamin D stimulates autophagy activation in Mycobacterium

tuberculosis by inducing antibiotics (231). Vitamin D deficiency

has been linked to a heightened threat of active TB (232). The

conversion time of sputum cultures is not affected by vitamin D

supplementation according to recent research (233, 234). However,

it has also been reported that vitamin D supplementation given to

patients with vitamin D receptor polymorphisms shortens sputum

culture conversion time (234). Isoniazid and pyrazinamide are

recognized as primary agents in the treatment of tuberculosis.

These compounds facilitate the activation of autophagy and the

maturation of autophagosomes within host cells infected by Mtb

(235). This may constitute a component of the fundamental

mechanism associated with the treatment involving these agents.
Frontiers in Immunology 22
Although the activation of autophagy has been previously proposed

as a viable therapeutic approach for patients infected with Mtb,

recent findings cast uncertainty on this hypothesis and impede the

progression of further research.
Non-small cell lung cancer

The development of novel compounds aimed at targeting mutant

p53 and reinstating its wild-type functionality represents a promising

therapeutic approach for cancer treatment, particularly in the context

of NSCLC, which is characterized by a significant mutation frequency

(236–238). This therapeutic potential has already been demonstrated in

many compounds. Nutlins are cis-imidazoline analogs that inhibit the

interaction between MDM2 and wild-type p53 in vivo, which in turn

enhances the anti-tumor ability of p53 (239). We speculate that the

development of targeted agents against aberrant p53 or promoting

anti-tumor activity of wild-type p53 may be helpful in the treatment of

cancer. RETRA was found to inhibit the malignant proliferation of

cancer cells carrying aberrant p53 via a p73-dependent salvage pathway

(240). The reactivating small molecule PRIMA-1 of mutant p53 can be

combined to convert it into a wild-type construct, thereby achieving

inhibition of tumor growth (241, 242). In addition, restoring and

stabilizing the DNA binding domain (DBD) of p53 is also a promising

tumor suppressor strategy.

Rapamycin has great potential in cancer therapy, which activates

mitochondria-mediated apoptosis independent of p53 in NSCLC cells,

stressing its effectiveness in disease (29). It has been shown that mouse

models of NSCLC have reduced tumor growth and apoptosis following

rapamycin treatment (232). Furthermore, certain anticancer agents

have demonstrated markedly enhanced efficacy when administered in

conjunction with rapamycin. This includes Bcl-2 inhibitors such as

ABT-737, pemetrexed, and lipophilic bisphosphonates (196).

Additionally, EGFR tyrosine kinase inhibitors (TKIs) have received

approval for the treatment of patients with NSCLC who possess

particular EGFR mutations (243). However, resistance to this drug is

a major problem in clinical treatment. Notably, erlotinib combined

with rapamycin enhanced autophagy and restored sensitivity to EGFR-

TKIs (244). Erlotinib in combination with rapamycin has also been

shown to help overcome resistance due to p53 deficiency in vitro.

In addition to rapamycin, drugs targeting proteins related to

other signaling pathways of autophagy, such as AZD8055 (PI3K

inhibitor), NVP-BEZ235 (PI3K and mTORC1 inhibitors),

perifosine (AKT inhibitor), and GSK-690693 (AKT inhibitor),

have been investigated in NSCLC. In certain instances, these

targeted therapies modulate autophagy-related pathways as a

component of the treatment regimen for NSCLC (245–248). The

effects of some traditional Chinese medicine compounds in NSCLC

have also been largely investigated. Curcumin is a phenolic

compound derived from the plant Curcuma longa (249, 250).

Curcumin treatment showed a promoting effect of autophagy as

well as a pro-apoptotic effect in lung adenocarcinoma A549 cells,

allowing us to speculate its therapeutic potential in NSCLC (251).
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Cytoprotective autophagy in NSCLC cells is also activated by

cucurbitacin E and glycerinic acid (252). Licochalcone A, a

flavonoid derived from the traditional Chinese medicinal plant

Glycyrrhiza uralensis Fisch, has been shown to promote apoptosis

and autophagy through the induction of ER stress (253). Thick acid

from Poria cocos halted lung cancer cell growth by boosting ROS

and activating JNK (254). Platycodin-D can induce autophagy in

H460 and A549 NSCLC cells, as shown by stimulating the

formation of ATG3, ATG7, Beclin-1, and LC3-II (255).
Conclusion

Autophagy plays a dual role in lung diseases, exhibiting both

potentially harmful effects in certain pathophysiological conditions

and serving as a protective mechanism that promotes cell survival.

Recent advancements in research have significantly enhanced our

understanding of the role of autophagy in the pathophysiological

mechanisms underlying various diseases, thereby offering novel

insights for the development of targeted therapies for pulmonary

diseases. However, assessing the actual clinical effects of targeted

agents for autophagy-related pathways on lung diseases is

challenging. The challenge arises from the observation that

autophagic responses occurring in various compartments of the

lung may yield markedly distinct effects. Accurate measurements of

autophagy also need to be updated. It is critical to revise the precise

assessments of autophagy. Understanding the impact of highly

specific autophagy modulators on disease models characterized by

particular autophagy deficiencies is vital for formulating clinically

relevant approaches to either stimulate or suppress autophagy.
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