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Introduction: During the COVID-19 pandemic, major events with immune-

modulating effects at population-level included COVID-19 infection,

lockdowns, and mass vaccinations campaigns. As immune responses influence

many immune-mediated diseases, population scale immunological changesmay

have broad consequences.

Methods: We investigated the impact of lockdowns, COVID-19 infection and

vaccinations on immune responses in the 2000HIV study including 1895

asymptomatic virally-suppressed people living with HIV recruited between

October 2019 and October 2021. Their inflammatory profile was assessed by

targeted plasma proteomics, immune responsiveness by cytokine production

capacity of circulating immune cells, and epigenetic profile by genome-wide

DNA methylation of immune cells.

Results: Past mild COVID-19 infection had limited long-term immune effects. In

contrast, COVID-19 vaccines and especially lockdowns significantly altered both

the epigenetic profile in immune cells at DNA methylation level and immune

responses. Lockdowns resulted in a strong overall exaggerated immune
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responsiveness, while COVID-19 vaccines moderately dampened immune

responses. Lockdown-associated immune responsiveness alterations were

confirmed in 30 healthy volunteers from the 200FG cohort that, like the

2000HIV study, is part of the Human Functional Genomics Project.

Discussion: Our data suggest that lockdowns have unforeseen immunological

effects. Furthermore, COVID-19 vaccines have immunological effects beyond

anti-SARS-CoV-2 activity, and studies of their impact on non-COVID-19

immune-mediated pathology are warranted.
KEYWORDS

COVID-19, lockdown, vaccination, inflammation, hygiene hypothesis
Introduction

The emergence of the novel coronavirus disease 2019 (COVID-

19), caused by the severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) (1, 2), was first reported in late December 2019.

Since then, the virus spread throughout the world becoming a major

pandemic at the beginning of 2020, with severe consequences for

the health of millions of individuals. As human populations lacked

specific immunity against this novel infection, despite some limited

cross-protection by previous exposure to other members of the

coronavirus family (3), this led initially to very high absolute levels

of morbidity and mortality. Therefore, combinations of urgent

measures were taken by various countries: measures of limiting

social contact to slow the spread of the infection (lockdowns, but

also social distancing and masks), urgently increasing hospital

capacity, drug repurposing to treat the disease, and massive

investment in the development of new COVID-19 vaccines. Over

the following three years, these measures were successful in

mitigating the spread of the infection, while at the same time a

slow but consistent increase of immunity at population level

developed as a result of exposure to the virus or the newly

developed vaccines (4). New anti-viral medications and

repurposed immunotherapies improved outcome of infected

individuals (5). Since the beginning of 2023 the infection has

entered a new endemic phase, and it is believed that COVID-19

will remain part of the spectrum of common human infections,

especially during the winter season.

During the three years of the pandemic phase of the infection,

the general use of public health measures to modify infectious

pressure in the population (lockdowns, social distancing, masks) or

to directly increase anti-viral immune responses (vaccines) were the

most important features of the strategy to control the spread of the

virus. However, these measures can potentially also modulate

immune responses at population level beyond the direct

interaction with SARS-CoV-2 alone. In addition, COVID-19

infection itself exerts long-term immune effects (6) that, although

primarily aimed at limiting the impact of the virus itself, can also
02
have heterologous non-specific consequences. Immune responses

do not only determine the outcome of infections, but are also crucial

for the pathophysiology of many other diseases including

inflammatory and autoimmune diseases, cancer, allergic disease,

and neurodegenerative diseases (7). Therefore, it is important to

assess the potential immune-modulatory effects of COVID-19

infection, lockdowns and vaccination campaigns at population

level. This would allow us to assess their potential impact on

various pathologies, as well as to draw lessons for the use of such

measures for future pandemic preparedness.
Results

Human cohorts

In the present study, we investigated the impact of lockdowns,

SARS-CoV-2 infection and COVID-19 vaccination on the immune

responses at populations level in the 2000HIV study, which is part

of the Human Functional Genomics Project (8). The 2000HIV

study is a large observational study that assesses factors that impact

immune responses and comorbidities in 1895 people living with

HIV (PLHIV) in the Netherlands who are virologically suppressed

on combination antiretroviral therapy (cART) for more than six

months and free of any acute conditions (9). The inclusion of the

2000HIV study participants started in October 2019, before the

onset of the pandemic, and continued till October 2021. Thus, we

were able to recruit a large number of PLHIV at all stages of the

pandemic during which different public health interventions were

implemented. The PLHIV were enrolled into an independent

discovery cohort (n=1559) and a validation cohort (n=336),

divided based on the specialized HIV treatment center that

recruited the participants. Patients who had both a positive

coronavirus status and were vaccinated (n=63), had no covid

serology measured (n=7), had positive COVID-19 serology before

the pandemic (n=7) or were on immunosuppressants (n=20) were

excluded from our analysis. Subsequently, both the discovery and
frontiersin.org
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validation cohort were further stratified into: pre-pandemic (368

individuals recruited before the start of the pandemic), post-

lockdown (851 individuals recruited after the imposition of

lockdowns in the Netherlands, who did not contract COVID-19

and were not vaccinated), COVID-19 infection (175 individuals

who were infected in the period before blood sampling as defined by

positive PCR or serology test), and COVID-19 vaccinated groups

(404 individuals vaccinated against COVID-19) (Figures 1A, B).

Results from hemocytometric analysis, targeted plasma

proteomics, DNA methylation and ex-vivo stimulation
Frontiers in Immunology 03
experiments were first compared between these groups in the

2000HIV study (Figure 1B). While the clinical characteristics

were generally similar between the groups within the discovery

and validation cohorts (e.g. alcohol/recreational drug use, BMI, age,

latest CD4 count which were generally in normal range and years

on ART), patients included before the pandemic were more

frequently male and of European ancestry: subsequently, when

appropriate, we corrected for these variables in the analyses.

Furthermore, the median duration between most recent COVID-

19 infection or COVID-19 vaccination and blood drawing was 117
FIGURE 1 (Continued)
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FIGURE 1 (Continued)

Study methods and influence of the pandemic on plasma proteome in people living with HIV (PLWHIV). (A) Timeline of Participant Recruitment and
COVID-19 Pandemic in the Netherlands. Upper Histogram: Study Recruitment Timeline. Bottom Graph: COVID-19 Hospitalizations and Dominant
Circulating Strain*. X-axis: Date. Y-axis: Number of Patients (Different scales per graph). Mask: Introduction of Mask Obligation. Vaccin: Introduction
of Vaccination Campaign. Lockdown: Period of Lockdowns. (B) Methods Overview. PLWHIV were enrolled into separate discovery and validation
cohorts. The effects of the following groups were compared: -Social Isolation (referred to as Lockdown): Unvaccinated COVID-19 negative PLHIV
before (Pre-pandemic) vs after the first lockdown (Post-lockdown; n discovery 284 vs 714, validation 84 vs 137, respectively). -COVID-19:
Unvaccinated PLWH with vs without past COVID-19, included after the first lockdown (n discovery 140 vs 714, validation 35 vs 137, respectively).
-COVID-19 Vaccination (referred to as Vaccination): PLWH with vs without COVID-19 vaccination, enrolled after the first lockdown, excluding those
with past COVID-19 infection (n discovery 340 vs 714, validation 64 vs 137, respectively). Blood was collected during participant visits, and results
from hemocytometry, targeted plasma proteomics, ex-vivo PBMC stimulation experiments, and DNA methylation comparing these groups are
shown. (C) Principal Component Analysis (PCA) of Protein Levels from the Discovery Cohort. PCA on residuals after adjusting for sex and age
showing distinct proteomic profiles of study groups based on PC1 and PC2. Ellipses were centered around the median of the PCs; On PC1 all
groups showed statistically significant differences (adj. p <0.05; Wilcoxon’s). On PC2 the vaccinated vs. pre-pandemic, post-lockdown, and COVID-
19 group showed statistically significant differences. (D) Volcano Plots Showing Differential Abundance of Proteins in the Discovery Cohort. X-axis:
Log2 Fold Change of Normalized Protein Abundance (NXP). Y-axis: -Log10 Benjamin-Hochberg False Discovery Rate (FDR) adjusted p-value.
Colored dots represent FDR adj. p < 0.05. Red dots indicate upregulated proteins, while blue dots represent downregulated proteins. Please note
the different Y-axis range in COVID-19 plot. Results from linear models adjusted for age, sex, and seasonality. Labeled are the most significantly
differentially abundant proteins (DAPs). (E) Four Quadrant Scatter Plots Showing Log2 Fold Change in Normalized Protein Abundance (NXP) in the
Discovery Cohort on the X-axis and Validation Cohort on the Y-axis. Green dots represent proteins significant only in the discovery cohort (FDR adj.
p < 0.05). Blue dots indicate proteins significant only in the validation cohort (p < 0.05). Red dots indicate proteins significant in the same direction
in both cohorts (=validated). Labeled are specific DAPs involved in (systemic) inflammation, as well as the one with the largest effect size. Pre, Pre-
pandemic; Post, Post-lockdown; COVID, COVID-19; Vaccin, Vaccinated; D, Discovery cohort; V, Validation cohort; n, number of participants.
* derived from publicly available data from the RIVM and Dutch government at https://coronadashboard.government.nl/landelijk/
ziekenhuis-opnames.
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(IQR 40-177) and 49 days (IQR 20-71) in the discovery cohort, and

74 (IQR 35-140) and 21 days (IQR 11-34) in the validation cohort,

respectively. As a consequence of the study timelines and

vaccination patterns, participants in the post-lockdown group

were recruited sooner after implementation of the most recent

lockdown as compared to COVID-19 vaccinated participants

(median 91 versus 232 days in the discovery cohort respectively,

p<0.0001; Table 1).

In addition, healthy volunteers were assessed during and after

the pandemic in a second independent cohort named 200FG, that is

also part of the Human Functional Genomics Project. In the 200FG

study, approximately 200 healthy volunteers donate blood yearly for

the assessment of their immune response profile (10, 11). In 36 out

of the 101 volunteers, in which samples from both 2020 and 2022

were available, the cytokine production upon stimulation of

peripheral blood mononuclear cells (PBMCs) with microbial and

non-microbial stimuli was assessed (Supplementary Table S1).
Distinct proteomic profiles before and
during the COVID-19 pandemic in PLHIV

First, we assessed the overall inflammatory status of the

2000HIV participants by analyzing their plasma proteomic

profiles. A total of 3072 proteins were measured using proximity

extension assay technology (Olink®) and, after applying quality

controls, 2367 proteins were included for statistical analysis.

Principal component analysis (PCA) was performed, adjusting for

sex and age (Figure 1C), revealing significant shifts between all

groups (Supplementary Table S2). Specifically, the results of

Wilcoxon’s rank-sum test showed significant differences in

principal component (PC)1 between the pre-pandemic versus

post-lockdown group (p <0.0001), the post-lockdown versus

COVID-19 group (p <0.0001), and between the post-lockdown
Frontiers in Immunology 04
and vaccinated group (p =0.029). Additionally, in PC2, the

vaccinated group differed significantly from the pre-pandemic

(p <0.0001) group, the post-lockdown group (p =0.025), and the

COVID-19 group (p =0.025), indicating distinct proteomic profiles

in each group.

Next, we further characterized these differences through

differential abundance analysis. In the discovery cohort of the

2000HIV study, we identified 1323 downregulated and 232

upregulated proteins in the post-lockdown group compared to

pre-pandemic group, after false discovery rate (FDR) correction

and adjustment for the effects of seasonality, sex, and age

(Figure 1D). Compared with the post-lockdown proteome profile,

we identified 294 downregulated and 5 upregulated proteins in the

COVID-19 group, and 943 downregulated and 215 upregulated

proteins in the COVID-19 vaccinated group (Figure 1D). In the

validation cohort of the 2000HIV study, we found 925

downregulated and 137 upregulated proteins after lockdown, 23

and 55 proteins down- and up-regulated after COVID-19, and 128

and 128 proteins down- and up-regulated after vaccination

(Supplementary Figure 1A).

To demonstrate consistency of directionality and effect size,

unaffected by the differences in sample size between the groups, we

generated scatter plots with log-fold change in both the discovery and

validation cohort of the 2000HIV study, with proteins colored

according to significance (significant in both cohorts, significant in

only one cohort, or not significant in either). Post-lockdown, 888

proteins were validated as downregulated and 107 as upregulated in

both cohorts (Figure 1E), with lockdowns showing a profound and

coherent effect. COVID-19 infection did not result in any

differentially abundant proteins (DAPs) that were validated

between the cohorts, and there was no coherent effect in the log-

fold change plot. After COVID-19 vaccination, we identified 119

validated downregulated and 67 upregulated proteins, exhibiting

lower effect sizes than the effect of lockdowns. Interestingly, looking
frontiersin.org
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at the validated DAPs, only 11 out of the 888 proteins that were

downregulated after lockdown have been subsequently upregulated

after vaccination. This indicates a different/new proteomic profile

after vaccination compared to the pre-pandemic status, not a return

to the pre-pandemic inflammatory state (Figure 2A). An example of a

protein down-regulated by lockdown and returning back to normal

concentrations after vaccination is IL-1b (Figure 2B). In contrast,

other proteins such as VWF were increased by lockdown, and further

upregulated by vaccination (Figure 2B). However, since the

COVID-19 vaccinated participants were included at a later

timepoint after lockdown initiation than the post-lockdown group,

the proteomic changes in the vaccinated group could be attributed to

either the vaccination itself or the waning effects of the lockdown.

When selecting only patients which were included between 150 and

200 days after lockdown, no DAPs were consistently validated to

change after vaccination; however, only 18 unvaccinated participants

remained to be included in the validation cohort. When correcting

for days since most recent lockdown implementation, there were 17

upregulated proteins after COVID-19 vaccination (Supplementary

Figure 1C). This significantly lower number compared to the overall

number of proteins identified in the entire COVID-19 vaccine group

suggests that an important factor driving changes in the proteome in

this group compared with post-lockdown individuals is in fact a

waning of the lockdown effects on the inflammatory proteome.
Frontiers in Immunology 05
In the scatter plots presented in Figure 1E, specific DAPs are

labeled, showing downregulation of pro-inflammatory cytokines,

chemokines, and adhesion factors in the post-lockdown group,

indicating reduced systemic inflammation. In contrast, the COVID-

19 vaccinated group displayed an overall increased inflammatory

profile. Functional enrichment analysis performed on DAPs

confirmed that mainly immune-related pathways were

downregulated after lockdown (Figure 2C, Supplementary

Figure 1D). On the other hand, the pathways analysis of DAPs

showed that circulating proteins involved in anti-microbial defense

and inflammation (innate immune system, infectious diseases, IL-1

signaling) were mostly upregulated after COVID-19 vaccination

(Figure 2D, Supplementary Figure 1E). Interestingly, platelet

aggregation/integrin signaling was found to be upregulated both after

lockdown and vaccination (Figure 2C, Supplementary Figures 1D–H).
In PLHIV, innate immune responsiveness
increased after lockdown, but decreased
after vaccination

Next, we evaluated the responsiveness of peripheral blood

mononuclear cells (PBMCs) of PLHIV upon stimulation. First,

hemocytometric blood analysis showed no differences in absolute
TABLE 1 Baseline characteristics of the 2000HIV cohort.

Discovery pre-pandemic post-lockdown p value* COVID-19 p value** vaccinated p value***

n 284 714 - 140 - 340 -

ethnic-white 85% 74% 0.0002 77% 0.026 67% 0.023

female 7% 16% 0.0001 24% 0.0003 17% 0.47

age [years] 54(44-60) 53(43-59) 0.52 49(38-56) <0.0001 53(44-60) 0.81

smoking 25% 31% 0.013 31% 0.92 32% 0.56

VL > 50 2% 3% 0.68 3% 1.0 3% 1.0

CD4 latest
[x106 cells/L] 710 (510-920) 735(570-928) 0.074 700(550-910) 0.32 683(503-924) 0.030
Validation pre-pandemic post-lockdown p value* COVID-19 p value** vaccinated p value***

n 84 137 35 64

ethnic-white 83% 87% 0.56 86% 0.79 88% 0.41

female 12% 18% 0.34 20% 0.81 13% 1.0

age [years] 52(47-59) 52(45-59) 0,8 51(44-58) 0.68 58(51-64) 0.0008

smoking 24% 34% 0.033 34% 1.0 28% 0.25

VL > 50 5% 4% 0.73 6% 0.63 3% 1.0

CD4 latest
[x106 cells/L] 605(465-760) 650(450-810) 0.47 660(445-790) 0.96 715(545-870) 0.14
Statistical testing: Categorial variables: proportions are shown and difference tested with Fisher's exact test. Continuous variables: Median with (quartile 1 - quartile 3) are shown and difference
tested with Mann-Whitney U test.
*p value comparing the pre-pandemic group to the post lockdown group.
**p value comparing the COVID-19 group to the post lockdown group.
***p value comparing the vaccinated group to the post lockdown group.
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monocyte, neutrophil, or lymphocyte cell counts between the

groups before and during the pandemic (Figure 3A). Second, we

observed a general upregulation of monocyte-derived cytokine

production in response to a wide range of microbial stimuli post-

lockdown. A total of five cytokine/stimuli pairs were statistically

validated in the validation cohort, with an overall pattern of

cytokine responsiveness consistently higher after lockdown in

both the discovery and validation cohorts (Figure 3B).

In contrast, past COVID-19 infection did not exert a significant

effect on immune responsiveness, in either the discovery or the

validation cohort (Figure 3D). On the other hand, we observed a

clear pattern of lower production capacity of TNF-a and IL-1b after

COVID-19 vaccination, while the release of IL-1Ra was increased in

response to almost all stimuli. Although only five cytokine/stimulus

pairs were statistically validated in both cohorts, the direction of the

effects between the discovery and validation cohorts was highly

consistent (Figure 3F). Examples of effect sizes are shown in

Figure 3C, and data for all cytokines can be found in

Supplementary Figures 2A–H. These results demonstrate that the

decreased systemic inflammation after lockdown as shown by the

blood proteome analysis is accompanied by an increased

production capacity of monocyte-derived cytokines after
Frontiers in Immunology 06
microbial stimulation. In contrast, after vaccination against

COVID-19, a lower TNF-a and IL-1b production capacity was

observed, complemented by higher anti-inflammatory IL-1Ra

production capacity. It is important to note the timelines in

which different groups were investigated: the vaccinated

participants were recruited at later time points after subsequently

easing of the restrictions, which may have resulted in a waning of

immunological effects of the lockdown and return to pre-lockdown

immune responsiveness. Indeed, analysis with an additional

correction for the days since most recent lockdown initiation as a

covariate, or selection of the participants recruited between 150 and

200 days since lockdown initiation, show that in this group the

immunological changes can at least in part be explained by the

waning of lockdown effects (Supplementary Figure 2I). Another

approach to eliminate the effects of lockdown with respect to effects

of vaccination is to investigate cytokines that were either not

affected or impacted in the opposite direction by the lockdown,

and show significant changes after vaccination compared to the pre-

pandemic group. This analysis showed that TNF-a production to S.

pneumoniae was lower after vaccination while it was unaffected by

the lockdown, confirming a vaccination effect independent of the

lockdown (Supplementary Figure 2I, Figure 3C).
FIGURE 2

Distinct effects of vaccination and lockdown on plasma proteome in PLHIV. (A) Venn Diagram showing only 11 out of the 888 validated differentially
abundant proteins (DAPs) that had lower concentration post lockdown, were upregulated after vaccination of the 2000HIV study. (B) Box Scatter
Plots showing Log2 normalized protein abundance per group in the discovery cohort of the 2000HIV study. Blue line: FDR adj. p value <0.05 result
from the differential abundance analysis. (C, D). Top 20 most significant pathway enrichment analysis results based on p value, presented as a bubble
plot for Lockdown (C), and Vaccination (D), ordered on count; duplicate pathways were removed.
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FIGURE 3

Pandemic’s impact on PBMC functional capacity in 2000HIV study participants and healthy subject (200FG) cohort (A) Cell counts from
hemocytometry in PLHIV. Analysis of variance (ANOVA) per cell type showed no significant differences in cell counts between the groups. NB The X-
axis scale differs to fit all cell types in 1 graph. WBC: white blood count [x109/L]. Neutro: Neutrophils [x109/L]. Lympho: Lymphocytes [x109/L]. Mono:
Monocytes [x108/L]. Thrombo: Platelets [x1011/L]. (B, D, F) Heat Maps of cytokine production after 24-hour ex-vivo stimulation of PBMCs in the
discovery and validation cohort of the 2000HIV study showing effects of pandemic. X-axis: cytokines. Y-axis: stimuli. Colors represent T-values. Red
indicates higher cytokine production after lockdown (B), COVID-19 (D) or vaccination (F), blue represents lower production. Asterisks in discovery
cohort: FDR adj. p <0.05. Asterisks in validation cohort: p <0.05 in validation and FDR adj. p <0.05 in discovery with same directionality: Results from
ANCOVA on rank transformed data, adjusted for seasonality in all groups and also age and sex in COVID-19 group. (C) Box Scatter Plots showing
untransformed TNF-a and IL-1b cytokine concentration in supernatants per group after 24 hour ex-vivo stimulation with S. Pneumoniae and
imiquimod in the discovery cohort of the 2000HIV study. Blue line: FDR adj. p value <0.05 result from rank transformed ANCOVA analysis. (E) Heat
Maps of cytokine production after 24-hours ex-vivo stimulation of PBMCs in healthy volunteers from 200FG cohort demonstrating a similar pattern
of inflammatory cytokine production after the first lockdown. Colors are Z-values from pairwise Wilcoxon tests. Red indicates higher cytokine
production after lockdown; blue lower. Asterisks mark FDR adj. p <0.05. HIVENV, HIV envelope; IMQ, imiquimod; pneu, heat killed S. Pneumoniae;
TNF, TNF-a; MCP1, monocyte chemoattractant protein-1; MIP1a, macrophage inflammatory protein 1a.
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Increased cytokine responsiveness induced
by lockdown can be replicated in a cohort
of healthy individuals

The volunteers from the 2000HIV cohort are individuals on

long-term antiretroviral treatment, virally suppressed, with

generally normal CD4 T-cell levels and without any sign or

symptom from an acute condition, which argues against the

hypothesis that the observed changes in immune responsiveness

are related to the HIV status of our participants. However, immune

responsiveness may be different in PLHIV, even when using long-

term ART. Therefore, we sought to validate our findings also in a

cohort of healthy volunteers. We compared paired samples of

PBMCs from 36 healthy donors harvested in 2020 after the

lockdown and in October 2022, after the mitigation of all social

distancing measures. After quality control, 30 samples were

included in the analysis. Results from these healthy controls

showed a similar pattern of increased production capacity of pro-

inflammatory cytokines in response to most stimuli post-lockdown,

providing evidence that these effects are generalizable also in

healthy individuals, beyond PLHIV (Figure 3E).
No differences between the effects of
mRNA or adenovirus-based COVID-19
vaccines in PLHIV

As either mRNA or adenovirus-based vaccines were used at the

beginning of the COVID-19 pandemic, and as both these vaccine

platforms are new, we sought to investigate whether they have

similar immunological effects. We did not see differences between

the effects of these two types of vaccines: there were no consistent

DAPs in the circulatory proteome between the two groups of

PLHIV, and there was no consistency in the scatter plot showing

effect size in the discovery versus validation cohort (Supplementary

Figure 1B). There were also no significant differences in the immune

cell responsiveness between PLHIV vaccinated with the two types of

vaccines (Supplementary Figure 2J). An example of effect sizes for

IL-1b showed similar amounts of cytokine production

(Supplementary Figure 2K). That means that in our cohort the

observed increased systemic inflammation and reduced functional

capacity after vaccination is independent from the type of vaccine

being used.
T-cell responsiveness is not impacted by
lockdowns, COVID-19 or vaccination
in PLHIV

To assess T cell responsiveness, PMBCs of PLHIV were

stimulated for 7 days with a range of microbial stimuli. In

contrast to the effects in the innate compartment, only mild

differences in single stimuli/cytokine pairs were detected, but no

consistent or clear pattern of T cell dysfunction was observed after

exposure to microbial stimuli (Supplementary Figure 2l). For

example, IFNg production was similar in all groups, the only
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exception being exposure to phytohaemagglutinin (PHA,

Supplementary Figure 2M). However, PHA is a plant-derived

lectin that does not mimic in-vivo microbial stimulations through

antigen-presenting cells. Therefore, considering the absence of

differences in IFNg production after stimulation with other

microbial or derived stimuli, it is likely that this does not

represent an in vivo significant difference in T-cell function.
DNA methylation changes exerted by
lockdown, COVID-19 infection and
vaccinations in PLHIV

The baseline characteristic of the 2000HIV study populations

included in DNA methylation analysis discovery and validation

cohorts are presented in Supplementary Tables S3-S6. The same

groups were analyzed as outlined in Figure 1B. This resulted in

comparisons being conducted within the discovery cohort between

275 pre-lockdown and 705 post-lockdown volunteers, between 330

vaccinated and 705 non-vaccinated participants, and between 137

COVID-19 infected and 705 COVID-19 negative individuals.

Following quality control of DNA methylation (see Methods for

details), a total of 793,767 CpG sites were included in downstream

analyses. Figure 4A displays the global variability of DNA

methylation across various scenarios. In the volunteers of the

2000HIV cohort, the first 30 principal components (PCs)

explained 27~29% of the variance in blood methylation. Notably,

the heatmap in Figure 4A indicates a greater number of significant

associations (as depicted by the color bar) between DNA

methylation variability and lockdown/vaccination compared to

COVID-19 infection. In addition, we used a nonmetric multi-

dimensional scaling approach (NMDS) to illustrate the significant

methylation difference between lockdown (adonis, R2 = 0.0028,

p-value = 0.03, with 1999 permutations) and vaccination (adonis,

R2 = 0.0029, p-value = 0.0005, with 1999 permutations)

comparisons (Figure 4B). However, no significant difference

between the COVID-19 infected vs non-infected individuals was

observed (adonis, R2 = 0.0015, p-value = 0.164, with 1999

permutations). This result confirms the findings obtained from

the PCA analysis, demonstrating that the overall greater effects on

DNA methylation are exerted by lockdowns and vaccination, in

contrast to SARS-CoV-2 infection which did not show significant

effects after a median of 243 days post-mild infection.

Next, we conducted an Epigenome-Wide Association Study

(EWAS) on each CpG site after correcting for age, sex, season effect,

batch, immune cells counts and the first five PCs from genotype

data of the same PLHIV when analyzing all populations (Figure 4C,

Supplementary Figures 3, 4). To address the potential inflation of

the model, the BACON method was applied to control for bias and

inflation. We applied the BACON adjustment (12) in the context of

the lockdown and vaccination study. This adjustment reduced the

inflation, but did not alter the ranking of the significance of the

associations observed at the CpG sites (Supplementary Figures 5, 6).

In the analysis of the lockdown effects, the discovery EWAS analysis

identified 57,730 genome-wide significant CpG sites influenced by

lockdowns. 17,076 out of 57,730 CpG sites have been replicated in
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FIGURE 4

Influence of pandemic on DNA methylation in PLHIV. (A) Correlation between the top 30 PCAs and the variables (Lockdown, Covid-19, and
Vaccination). FDR adjusted. Before- Lockdown: during-Lockdown = 279: 705; Covid-non-infected: Covid-infected = 705: 137; Non-vaccinated:
vaccinated = 705: 330. (B) NMDS analysis of individuals in discovery cohort of the 2000HIV study with DNA methylation beta value variable greater
than 0.001. Three dimensions and 1999 permutations were applied for this analysis. (C) Manhattan plot of the EWAS results in different studies on
the 2000HIV cohort, –log10(p-value) of all the detected CpGs (x-axis) were plotted with the location (y-axis) through the genome. (D) Volcano plot
of effect size and –log10(p-value) based on the EWAS results. Lower panels: entire study population. Upper panels: participants from European
ancestry. Blue: negative effect size with FDR<0.05, red: positive effect size with FDR<0.05. (E) Lockdown and vaccination associated DMS changes
among all population, the Europeans, and the Africans of the 2000HIV study. The DNA methylation beta value was used for this plot.
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the validation cohort. Among these sites, cg08255374 annotated to

UBE2F and RAMP1 genes showed the most significant association

(p-value =2.13 × 10-25, Supplementary Tables S7, S8).

Subsequently, we investigated the DNA methylation changes

induced by COVID-19 infection and vaccinations in the 2000HIV

study. We did not detect any genome-wide significant CpG sites

associated with COVID-19 in the discovery cohort (Figure 4C). In

contrast, the vaccination analysis identified 162,993 significant CpG

sites that were impacted by the COVID-19 vaccines, with

cg10675725, annotated to GSDMD and MROH6, showing the

strongest association (p-value = 7.42 × 10-20, Figure 4C,

Supplementary Table S9). Among them, 4,237 out of 162,993 CpG

sites have been replicated and the most significant validated CpG site

is cg12578536 which is annotated to gene SEPP1 and ANXA2R (p-

value= 7.42 ×10-20, Supplementary Table S10). When considering

only mRNA vaccines in the analysis, similar effects on DNA

methylation were observed compared to when all vaccines were

included. (Supplementary Figure 7). However, when we compared

mRNA vaccines to viral vector vaccines (Supplementary Figure 8,

Supplementary Table S11), we identified two CpG sites (cg13510475

with p-value = 1.44 ×10-8 and cg04058821 with p-value =6.77 ×10-8)

that were significantly different at the genome-wide level, but they

could not be replicated in the validation cohort.

These findings suggest that lockdown and vaccination, but not

COVID-19, induce important DNA methylation changes for more

than 3 months after the event. As DNA methylation patterns have

been observed to vary among different ethnic groups (13), we

conducted an EWAS study which only included volunteers of

European ancestry. Based on the volcano plots presented in

Figure 4D, it is evident that ancestry does not exert a major

influence on our overall differential methylation pattern. The

volcano plots for the effects of lockdowns and vaccination exhibit

a distinct separation between upregulated and downregulated CpG

sites. In contrast, the volcano plot for COVID-19 infection reveals a

more dispersed pattern, with only four significant CpG sites

(cg21464724, cg19416239, cg24678928, and cg15772223) being

identified in the European population and none across all

population (Figure 4D, Supplementary Table S12). Comparing

the impact of lockdown and vaccination on DNA methylation, we

observed an overall effect of increasing DNA methylation by

vaccination (p-value =1.12×10-10, one-sided proportional test)

and an overall effect of decreasing DNA methylation by

lockdowns (p-value < 2.2×10-16, one-sided proportional test), as

depicted by the ratio of the blue and red color bar in Figure 4E.

Next, we aimed to assess in the 2000HIV study whether the

effects of lockdowns and vaccination were similarly exerted on the

same loci, but in different directions. We first compared the CpG

sites between the two scenarios and found very little overlap

between the loci affected (Figures 5A–C, 0.8% in all directions,

0.3% in the positive direction, and 0.3% in the negative direction),

which suggests different epigenetic changes between lockdown and

vaccination. When comparing the effect size of significant CpG sites

in the two scenarios, we found a clear inverse correlation (p-value <

2.2×10-16, adjusted R2 = 0.091, Figure 5D), which suggests that

vaccination may have a partly inverse epigenetic effect compared to

the effects of the lockdown.
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We then used the BIOS QTL browser (14) to link gene

expression with the identified CpG sites and performed a

pathway enrichment analysis. Our findings showed that

lockdowns mainly impacted genes enriched in regulation of

immune effector process, T cell and leukocyte function. On the

other hand, vaccination-influenced loci were enriched in pathways

associated with lymphocyte mediated immunity, leukocyte and T

cell mediated cytotoxicity (Figures 5E, F, and Supplementary

Figures 9, 10). Further, interaction analysis between the gene

products, i.e., proteins, associated with the gene expression via

STRING database (v11.5) (15) suggested that the effects of

lockdowns may be mediated by regulation of ubiquitinilation

processes (Figure 5G) (16).

Protein-protein interaction analysis of the effects exerted by

anti-COVID-19 vaccination revealed one cluster (Figure 5H)

comprised mainly of various HLA types, i.e., HLA-DOB, HLA-F,

HLA-G, and ISG20. Earlier studies have also demonstrated the

association of HLA type with COVID-19 vaccine antibody response

(17). Experts have also suggested taking HLA genotype into account

when designing SARS-CoV-2 vaccines to enhance effectiveness

through T cell immunity, especially across diverse ethnic

populations, and to potentially use them as a booster to reinforce

immune responses (17).

Finally, as also mentioned earlier, because of the timeline of

the study, the individuals in the COVID-19 vaccination group of the

2000HIV study were recruited at a later time point after lifting the

lockdown restrictions, compared to the non-vaccinated group

(Figure 1A). Therefore, one cannot exclude that some of the

effects observed in the vaccination group may be attributable to

the different kinetics of the waning of lock-down effects in the two

groups. To investigate this, we conducted an EWAS involving

COVID-19 vaccinated individuals from a narrower timeframe

after the lock-down (Supplementary Figure 11A). Despite the

continued significant difference in days-post-lockdown between

the vaccinated and non-vaccinated groups within this narrowed

timeframe, no genome-wide significant (FDR<0.05) differences in

methylation at CpG sites were detected (Supplementary

Figures 11B, C). Therefore, although the loss of power due to the

smaller number of individuals in this verification analysis may

explain the less strong effects on DNA methylation, we conclude

that the dramatic epigenetic changes observed between vaccinated

and non-vaccinated PLHIV were at least partly attributable to the

waning of the lockdown effects.
Discussion

In this study we report broad effects of various public health

interventions during the COVID-19 pandemic on immune

responses at a population level in a large cohort of people living

with HIV in the Netherlands. On the one hand, the systemic

inflammatory status, as assessed by targeted proteomics,

decreased during the lockdown periods, while rebounding after

the COVID-19 vaccination campaigns. On the other hand, the

immune responsiveness as assessed by cytokine production capacity

of circulating innate immune cells was strongly upregulated during
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lockdowns and was downmodulated by COVID-19 vaccines. These

effects are likely mediated through changes in epigenetic regulation:

lockdowns were associated with a very significant loss of DNA

methylation in immune cells, while this effect was partially

(although not completely) reversed during the vaccination

campaigns. It is important to underline that the main cohorts in
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the present study consisted of PLHIV, and thus the conclusions can

be mainly applied to this population. However, the most important

immunological results are also validated in an independent cohort

of healthy individuals, which suggest that similar effects are likely

true in the general population, although more studies are needed to

fully establish that.
FIGURE 5

Distinct effects of vaccination and lockdown on DNA methylation in PLHIV. (A–C) Comparison between the number of validated DMS in lockdown
and vaccination in all ethnicity of the 2000HIV study: (A) total number of DMS; (B) DMS having negative effect size; (C) DMS having positive effect
size. (D) Correlation between the effect size of the lockdown and Vaccination: Residual standard error: 0.06263 on 21135 degrees of freedom,
Multiple R-squared: 0.091, Adjusted R-squared: 0.091, p-value: < 2.2e-16, 14779 DMS are in different direction, 6358 DMS are in the same direction.
(E, F) Pathway enrichment analysis associated with DMS that were present in ciseQTMS and also influenced due to (E) lockdown (209 DMS
associated with 223 Genes) and (F) Vaccination (72 DMS associated with 102 Genes) in all ethnicities of the 2000HIV cohort. (G, H) Interaction
(confidence >0.7) between gene products, i.e. proteins, that are associated with (G) lockdown and (H) Vaccination based on the cis-
eQTMS database.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1459593
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Otten et al. 10.3389/fimmu.2024.1459593
The impact of the COVID-19 pandemic on public health has

been profound and was exerted at multiple levels: direct impact of

the infection itself on morbidity and mortality, decrease in the

availability of medical care for non-COVID-19 diseases, and the

psychological impact of social isolation measures (18, 19), just to

name a few of these effects. One aspect that received less attention is

the long-term impacts of both infection and public health measures

(lockdowns, masks, vaccinations) on human immune responses in

general and their possible influence on overall morbidity and

pathology. Social interaction is one of the most important

features of human societies and it is crucial for psychological and

societal well-being. In addition, these contacts also determine the

level of exposure to microorganisms and the resulting infections,

which in turn can have immune modulating effects that impact

various immune-mediated diseases (20). Continuous exposure to

environmental microorganisms is important for the fine-tuning of

immune responses, and immune dysregulation may follow after a

lack of exposure to environmental stimuli, including micro-

organisms. Extreme situations such as a complete lack of

exposure in germ-free mice lead to inappropriate development of

the immune system, and exacerbated responses upon inflammatory

challenges (21, 22). In humans, lack of exposure to environmental

cues in modern societies is thought to contribute to the increased

incidence of autoimmune and allergic diseases (the Hygiene

Hypothesis) (23–25).

From this perspective, the impact of lockdowns on general

immune responses is very relevant. The decrease of systemic

inflammatory biomarkers in the circulation during the lockdowns

is expected, as a mirror of the decreased exposure to day-to-day

microbial exposure. In itself, this decrease of systemic inflammation

is unlikely to be deleterious as long as the host is not challenged with

an immune stimulant. The concern arises when observing the

strongly upregulated (or dysregulated) cytokine responses upon

exposure to both microbial and non-microbial stimuli of immune

cells isolated from volunteers after lockdown (Figures 3B, E). These

overreacting immune responses, characterized by strongly

increased production of proinflammatory cytokines and

chemokines, were consistently observed in the discovery and

validation cohort of the 2000HIV study and confirmed in a

limited number of healthy individuals. The consequences of this

immune hyperresponsiveness for infectious, inflammatory and

allergic diseases upon the return of the population to the normal

social interactions are not known, but they should be seriously

considered and further investigated.

In addition to the effects of social isolation and diminished

infectious pressure, COVID-19 itself and the vaccination campaigns

with the new vaccines are also likely to modulate immune

responses. The effect of past COVID-19 itself on immune

responses was limited. The lack of a strong effect is likely due to

the relatively long period between the infection and the

measurements of inflammatory parameters, as well as the fact

that the COVID-19 infections were mild or asymptomatic (with

the exception of three participants). In contrast, stronger long-term

effects were observed by COVID-19 vaccinations. The vaccines

increased the concentrations of inflammatory proteins in the

circulation, and in parallel induced a significant down-
Frontiers in Immunology 12
modulation of the inflammatory response (especially TNF-a and

IL-1b production), while the release of the anti-inflammatory IL-

1Ra release was increased. Interestingly, these effects were induced

similarly by both mRNA- and adenoviral-based COVID-19

vaccines. Such changes are in line with several studies suggesting

a broad effect of both COVID-19 mRNA and adenoviral vaccines

on innate immune responses at transcriptional (26, 27) and

functional (28) levels. The lipid nanoparticle (LNP) component of

mRNA vaccines was reported to induce strong systemic pro-

inflammatory responses (29), and recent studies have shown that

BNT162b2 can also induce long-term transcriptional changes in

myeloid cells (30). This suggests that the response of immune cells

against various microorganisms other than SARS-CoV-2 could also

change after BNT162b2 vaccination, as reported recently (31).

An important aspect relates to the likely mechanisms responsible

for the effects of lockdowns and vaccines. On the one hand, direct

causality cannot be conclusively proven due to the study’s cross-

sectional design, this is difficult to further investigate due to obvious

ethical considerations related to in-vivo pathway modulation or

randomized/experimental designs in human studies involving

exposure to lockdowns or infection. On the other hand, however,

important mechanistic clues are given by the strong changes in DNA

methylation that argue for epigenetic processes as the molecular

substrate of these effects. DNA methylation is usually associated with

transcriptional repression (32), and extensive literature documents

the epigenetic changes associated with a wide range of environmental

exposures, including exposure to smoking (33), air pollution (34) and

infection (35). In this study, we have demonstrated, for the first time,

the impact of lockdowns and COVID-19 vaccination on DNA

methylation patterns. Importantly, the strongest effects during

lockdown showed loss of DNA methylation (likely contributing to

the increased responsiveness upon stimulation), while vaccination led

mostly to an increased DNA methylation pattern (that could

contribute to gene repression).

It is also interesting to identify the pathways which were most

strongly modulated at the DNA methylation level. Lockdowns

induced DNA methylation changes in genes important for anti-

viral responses, which could be expected. In addition, vaccination

induced DNA methylation changes were especially found in

pathways related to lymphocyte and T cell function. One

important factor when assessing the differences in DNA

methylation between vaccinated and non-vaccinated individuals

was the longer time interval after the lockdown in the vaccinated

group, which may argue that some of the vaccination effects were in

fact the result of waning of the lockdowns effect. Importantly,

however, the changes induced by lockdown and vaccination,

respectively, were not simply antagonistic: the vaccination did not

merely reverse some of the changes induced by the lockdown but

induced an own distinctive pattern. Three years into the pandemic,

the DNA methylation status of the individuals is in a different state

than before the pandemic. This conclusion is also supported by the

blood proteomics data: the inflammatory status was not reversed by

the vaccination, but it is translated into a different profile than

before the pandemic.

Our data are derived from a cohort of PLHIV who are virally

suppressed and on long-term ART. Although it is known that
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immune responsiveness of PLHIV is different from healthy

population, even when virally suppressed and without any

symptoms (36), the immunological effect of COVID-19 pandemic

and its measures to mitigate it, are likely similar in PLHIV and

healthy population. The successful replication of the functional

immunological changes in a small group of 30 healthy volunteers

suggests that our findings may also be applicable to the general

population, although the number of included subjects was small and

we had no samples to validate the proposed underlying

mechanisms. Therefore, more data are needed to further

demonstrate generalizability of the immune changes observed in

the general population. An additional limitation of this research is

its cross-sectional design, as observational studies inherently carry

the risk of confounding factors. We aimed to minimalize their

influence by using thorough correction methods and independent

validation cohorts.

In conclusion, the present study demonstrates that immune

responses in two independent cohorts of PLHIV underwent

significant changes during the pandemic. The role of epigenetic

factors in these changes was shown as well. Furthermore, the

changes in immune responses were confirmed in a small cohort

of healthy subjects, suggesting that our results may be applicable to

the general population. Our data in PLHIV strongly suggest that the

imposition of social interaction limitations such as lockdowns led to

an altered regulation of inflammatory responses, most likely due to

a lack of normal exposure to environmental stimuli. This may lead

to exacerbated immune responses in allergies or immune-mediated

diseases, not unlike the changes predicted by the hygiene

hypothesis. Other changes such as modified patterns in physical

activity or diet that have been reported during the lockdown

(37, 38) could also play a role in the altered immune responses. A

reverse of this situation has been recently reported in Indian

populations, in which higher infectious pressure ensures a more

tolerant immune response, which may well be responsible also for

the lower morbidity during the pandemic (39). All these data

suggest therefore that infectious pressure continuously modulates

the immune system and that limitations of social interactions to

prevent exposure to infectious agents, such as the lockdowns, has

broad consequences on the immune system and may as such have

unforeseen medical consequences, apart from the obvious

psychological concerns. In addition, the COVID-19 vaccines that

use the new mRNA and adenoviral technology platforms have

immunological effects that are broader than anti-SARS-CoV-2

effects exerted through specific antibodies or T-cells, and their

impact on non-COVID-19 immune-mediated pathology should

be studied in the years to come.
Methods

Cohorts

This study uses data from two ongoing studies within the

Human Functional Genomics Project: 2000HIV and 200FG.

Study protocols have been approved by the Medical Ethical

Review Committee Oost Nederland, Nijmegen, the Netherlands
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under the registration NL68056.091.18 (2000HIV) and 2018-399

EC (200FG). All participants provided their written informed

consent prior to participation in the study. Experimental

protocols were conducted following the principles of the

Declaration of Helsinki.

The 2000HIV study cohorts and experimental methods have been

extensively described by Vos et al. (9). It is an observational study, in

which between 2019 and 2022, 1895 virally suppressed asymptomatic

PLHIV were enrolled in two separate cohorts (a discovery and

validation cohort, based on recruitment center). The discovery

cohort was recruited in three specialized Dutch HIV treatment

centers, two university medical centers and one large general

hospital (Radboudumc Nijmegen, Erasmus MC Rotterdam, and

OLVG Amsterdam). Participants in the validation cohort were

recruited in a separate HIV expertise center, a large general hospital

(Elisabeth-TweeSteden Ziekenhuis Tilburg). Although the samples of

the two subcohorts were collected separately, processing and

measurements were identical. Extensive multi-omics characterization

was performed on immune cells isolated from the participants, as well

as registration and measurement of clinical parameters and medical

history. Cross-sectional data from the baseline visits were used. The

200FG cohort comprises of healthy individuals >18-year-old enrolled

in 2018 from whom yearly samples are collected.
Measurement methods

Blood collection
For the 2000HIV study participants, blood was collected via

venipuncture during the baseline study visit in four different study

centers in the Netherlands. Samples were transported to the

labora tory a t Radboudumc, Ni jmegen , overn ight a t

room temperature.

Hemocytometry
Hemocytometry was performed on whole blood with the XN-

1000 Sysmex haematology analyzer.

PBMC ex-vivo stimulation
For stimulation experiments, peripheral blood mononuclear

cells (PBMCs) were isolated using Ficoll-Paque density

centrifugation. PBMCs were subsequently incubated in U-bottom

96-well plates at 0.5 × 106 cells/well with various bacterial, fungal,

and viral stimuli (Supplementary Tables S15, S16) at 37°C and 5%

CO2, for either 24 hours or 7 days, after which supernatants were

stored -20 °C. ELISAs were done on supernatants after conclusion

of recruitment to determine IL-1b, IL-1Ra, IL-6, IL-8, IL-10, MCP-

1, MIP-1a and TNF-a concentration in the 24-hour experiment,

and IL-5, IL-10, IL-17, IL-22 and IFN-g concentrations in the 7-day

experiment (Duoset ELISA, R&D Systems). Based on pilot

experiments some cytokines were not measured after stimulation

with certain stimuli. The same stimulation panel and protocol was

used on cryopreserved PBMC samples from 36 out of 101 200FG

participants that donated blood in both October 2020 and

October 2022.
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Targeted proteomics
Plasma samples from both cohorts were used to measure 3072

targeted plasma proteins with Olink® Explore panel (40). Olink

uses proximity extension assay technology to measure relative

concentrations of proteins, presented as log2 normalized protein

abuncance level (NPX).

DNA methylation
DNAmethylation was performed on a total of 1914 samples. DNA

was isolated from EDTA whole blood by the Radboudumc Genetics

Department using ChemagicStar automated configuration (consisting

of the Microlab STAR and Chemagen Magnetic Separation Module 1,

Hamilton Robotics) combined with Chemagen nucleic acid extraction

technology with magnetic polyvinyl alcohol (M-PVA) beads, which

follows a standard and automated bind-wash-elute procedure. The

concentration of the DNA and 260/280nm ratio were determined

using NanoDrop spectrophotometer, after which samples were

normalized to 50 ng/µL in TE-buffer and randomly distributed

amongst plates. High-quality DNA were selected for genome-wide

DNA methylation profiling using the Illumina Infinium

MethylationEPIC BeadChip array (MethylEPIC v1 manifest B5).

Standard sample- and probe-based quality control were performed.
Analysis

We compared unvaccinated COVID-19-negative PLHIV before and

after the first lockdown in the Netherlands, unvaccinated PLWH with

and without past COVID-19 infection, and PLWHwith or without anti-

COVID-19 vaccination, excluding those with past COVID-19 infection.

Participants who had both a positive coronavirus status and were

vaccinated (n=63), had no COVID serology measured (n=7), had

positive COVID serology before the pandemic (n=7) or were on

immunosuppressants (n=20) were excluded from our analysis,

resulting in 1478 and 320 participants in the discovery and validation

cohort respectively for downstream analysis (Figure 1B).

As a validation, cytokine production capacity in the healthy

volunteers from the 200FG cohort was compared between years

2020 (at the height of pandemic lockdowns) and 2022 (after the

lifting of lockdown restrictions).
Proteomic analysis of the plasma

Processing
Protein concentrations in plasma samples from PLHIV were

measured by proximity extension assay (Olink) in three batches.

Bridging normalization was used to remove batch effects, whereafter

standard quality control per protein and sample was performed. In

Supplementary Figure 12A this process shown in detail. In each of the

eight panels from the Olink® Explore 3072 platform, IL-6, TNF-a,
CXCL8, LMOD1, SCRIB, IDO1 were measured as technical

duplicates for quality control purposes. Strong correlations were

observed between the technical duplicates among panels, and

therefore, we selected the measurements from the inflammatory

panel. Next, we excluded proteins with limit of detection (LOD) ≥
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25 of the samples (n = 547 proteins were excluded), resulting in 2367

proteins for downstream data analysis.

During quality control (QC) per sample, we performed

principal component analysis (PCA) using the NPX. Outliers

were defined as those samples falling above or below four

standard deviations (SD) from the mean of principal component

one (PC1) and/or two (PC2). In total, seven samples were excluded

based on PCA, resulting in 1777 samples analyzed. The overview of

QC process is depicted in Supplementary Figure 12B.
PCA analysis
PCA analysis per group was performed on residuals after

adjusting for sex and age using all protein NPX values as input.

Wilcoxon sum rank test was used to compare distributions.

Differential abundance (DA) analysis
NPX values were compared between the groups of interest using a

linear model with age, sex and seasonality as covariables. It has been

previously described that annual seasonality is an important

environmental factor influencing circulating cytokine concentrations

and therefore, we corrected for seasonality effect using a harmonic

model as described previously (41). P-values were adjusted for

multiple testing comparisons using a false discovery rate (FDR)

method and proteins with FDR adjusted p-value <0.05 and p-value

<0.05 were considered statistically significant in the discovery and

validation cohort, respectively. Additionally, scatter plots showing log-

fold change in the validation and discovery cohorts were used to show

consistency of directionality and effect size, which are not affected by the

unequal group sizes. For DE analysis, we used the R package Limma

adjusted to protein data, which is originally being used for the analysis of

gene expression data (42). Limma uses an empirical Bayes method to

moderate the standard errors of the estimated log- fold changes. A full list

of validated DEPS is added in Supplementary Tables S13 and S14.

Pathway enrichment analysis
Functional pathway enrichment analysis of validated (i.e. same

direction and FDR adj. P <0.05 in discovery and P < 0.05 in

validation cohort) differentially abundant proteins (DAPs) was

performed using the DAVID bioinformatics tool, with the KEGG

and Reactome library used as a reference library. A reference gene

list of the genes that encode for the proteins measured with the

OLINK Explore panel was used. Pathways were considered

significant with a p-value <0.05 and protein count >3. Results are

shown as a bubble plot using ggplot2 package, and as a network

made using “enrichment map’’ in Cytoscape. Network nodes

represent pathways and weighted edges represent the degree of

gene overlap score between two pathways.

Gene set enrichment analysis (GSEA)
GSEA was performed using R package fgsea. We used the

following strategy: regardless of P values, proteins that were

expressed in similar direction in both the validation cohort and

the discovery cohort were assigned a rank based on the t-statistic.

GSEA was performed with KEGG, Reactome, and Hallmark

reference libraries, using all measured proteins as a background.
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PBMC cytokine production ex
vivo stimulation

Processing
24-hour experiment: Samples from 1742 participants were

measured, of which 42 samples were excluded for being RPMI

positive (which was the negative control), defined as having

concentrations of above 2x lower limit of detection (LLOD) after

RPMI stimulation in two out of TNF-a, IL-1b or IL-6. Outliers on

PCA, defined as those +/- 4SD from the mean in PC1 and/or PC2,

were removed (n=13). Data from the resulting 1687 participants was

used in downstream analysis. 7-day experiment: Samples from 1744

participants were measured, of which 42 samples were excluded for

being RPMI positive and 20 outliers on PCA analysis were removed

(as in the 24-hours experiments). Data from a total of 1682

participants was used in downstream analysis. Healthy cohort

(200FG): Samples from six out of 36 volunteers were excluded as

they were RPMI positive in either the measurements from the 2020 or

2022 sample. Prioritization of stimuli with respect to PBMC yield was

predetermined, and stimulation with RPMI, LPS, and IMQ was

performed on all 30 participants, S. Pneumoniae on 26, CMV

(pp65) on 15, and HIV-ENV on 9 participants’ samples.

Analysis
24 hour and 7-day experiment 2000HIV: Groups were compared

using analysis of covariance (ANCOVA) on rank transformed data,

implemented in the base R package ‘stats’. QQ plots before and after

transformation are in Supplementary Figure 2N. The following

covariables were considered as potential confounders: age, sex,

seasonality [harmonic model (11)], ethnicity, latest CD4 count, BMI,

current smoking status, center of inclusion, and latest viral load.

Backward stepwise regression was performed to identify relevant

covariates, which were included in the model if they met the

following criteria: significance (p > 0.05) and a change >10% in the

b-coefficient of the grouping variable. This criterion was met by

seasonality in all groups, and age and sex in the COVID groups. The

rank based ANCOVA model was adjusted for these covariates within

their respective groups. The resulting t-values were visualized as colors,

and p-values <0.05 were indicated with stars. Multiple testing

adjustments were performed using the Benjamin Hochberg false

discovery rate (FDR) method in the discovery cohort. For 24-hour

experiment data of the healthy cohort, statistical testing was conducted

using Wilcoxon’s signed-rank test on the paired samples. The analysis

compared observations from October 2020 (post-lockdown) and

October 2022 (normal situation well after mitigation of social

distancing measures).
DNA methylation

Processing
As previously described (9), the DNA methylation dataset was

divided into a discovery cohort (n=1,546) and a validation cohort

(n=322), and each cohort was analyzed separately. DNA
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methylation values were estimated from the raw IDAT files using

the minfi package in R (v.4.2.0) (43). Preprocessing steps was done

to discard two gender mismatch samples from discovery cohort,

one bad quality samples from validation cohort (call rate < 99%).

Probes (Discovery: n=2,743 and Validation: n=2,641) with

methylation value missing (detection P>0.01) at >10% samples

and probes within the sex chromosomes (n=19,627) were also

excluded from the downstream analysis (44). Since the majority

of the participants are European, we also removed the probes

containing SNPs at the target CpG sites with a MAF>5% in

European populations as well as the probes that mapped to

multiple loci, i.e. polymorphic probes as suggested in (45) (Both

Discovery and Validation: n=52,173).

Analysis
Next, we implemented stratified quantile normalization (46).

Methylation value was also utilized for estimating proportion of six

immune cell types, namely neutrophils, monocytes, B-Cells, NK cells,

CD8-T cell and CD4 T cells, using modified Housman’s method

available within the estimateCellCounts2 function of the

FlowSorted.Blood.EPIC package of R (47). Methylation b‐values
were calculated as a percentage: b = M/(M + U + 100), where M

and U represent methylated and unmethylated signal intensities,

respectively, and b‐values were then transformed to M‐values as log2

(b/(1 − b)), and M‐values were used in all downstream analyses.

To mitigate the effect of extreme outliers in data, we trimmed

the methylation set using: (25th percentile − 3*IQR) and (75th

percentile + 3*IQR), where IQR = interquartile range. Differentially

methylated CpG sites associated with lockdown, COVID-19

infection, and vaccination were identified by fitting a robust linear

regression model. For lockdown and vaccination-associated EWAS

results, we also considered the presence of surrogate variables by

utilizing the SVA package (version 3.40.0) with leek method.

However, no surrogate variables were found to have a significant

impact (the estimated surrogate variable number was 0). The

methylation M value was used as the outcome variable, and the

model was corrected for age, sex, season effect, technical covariables,

and immune cell proportions and surrogate variables (48).

Surrogate variables were only considered for the analysis

lockdown and vaccination effects due to high inflation of the

model, and the SVA package (version 3.40.0) with leek method

was employed. However, no surrogate variables were found to have

a significant impact (the estimated surrogate variable number

was 0). For EWAS with all ethnicities, the top five PCs extracted

from the genotype of same individuals were included in the model

for the correction of ethnicity.

CpGs were considered significantly replicated only if they have (i)

Discovery cohort: FDR < 0.05, (ii) Validation cohort: same direction

as in the discovery cohort and p-value < 0.05 and (iii) meta-analysis:

same direction as in the discovery cohort, p-value < 0.05 in validation

cohort and FDR (meta-analysis) <0.05. Standard error-weighted

meta-analysis was performed with METAL (49). BIOS QTL

browser (14) were further used to explore the correlation between

CpG methylation and genes expression. Replicated CpGs associated
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genes were subjected to enrichment analysis using the clusterProfiler

package (50) in R. Interaction between these genes’ product, i.e.,

protein, was carried out using the STRING database (51).

False Discovery Rate in this study was performed using the

Benjamini-Hochberg procedure. The desired FDR threshold was set

up to 0.05. The proportion test was performed with the pro.test

function in the stats package (version 3.6.2) in R. All the plots in this

study were plotted either with ggplot2 (version 3.4.2) package in R

or seaborn (version 0.12.2) package in Python.
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