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Big data and artificial intelligence
applied to blood and CSF fluid
biomarkers in multiple sclerosis
Georgina Arrambide*, Manuel Comabella and Carmen Tur*

Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall
d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
Artificial intelligence (AI) has meant a turning point in data analysis, allowing

predictions of unseen outcomes with precedented levels of accuracy. In multiple

sclerosis (MS), a chronic inflammatory-demyelinating condition of the central

nervous system with a complex pathogenesis and potentially devastating

consequences, AI-based models have shown promising preliminary results,

especially when using neuroimaging data as model input or predictor variables.

The application of AI-based methodologies to serum/blood and CSF biomarkers

has been less explored, according to the literature, despite its great potential. In

this review, we aimed to investigate and summarise the recent advances in AI

methods applied to body fluid biomarkers in MS, highlighting the key features of

the most representative studies, while illustrating their limitations and

future directions.
KEYWORDS

multiple scleorsis (MS), fluid biomarkers, demyelinating, machine learning and AI,
deep learning
Introduction

Artificial intelligence (AI) techniques have proved very useful for the diagnosis and

prognostication of several conditions around the world (1), including multiple sclerosis

(MS) (2). AI methods used in medical research, including MS research, may include

machine learning (ML) and deep learning (DL) analyses. Typically, while ML analyses are

based on tabulated data as input to the model, DL models use raw data – typically images –

as input to the model. Model outputs depend on the type of task that is needed, e.g., a given

diagnosis (instead of another one), a certain disability milestone, or the presence of MRI

activity in people who are receiving a given drug.

Multiple sclerosis (MS) is a chronic inflammatory-demyelinating condition of the

central nervous system (CNS) with heterogeneous genetic and environmental risk factors

(3). Disease diagnosis and monitoring strongly rely on routine clinical assessments and the

use of conventional brain and spinal cord magnetic resonance imaging (MRI) as a

biomarker. A biological marker, or biomarker, is a characteristic that is objectively

measured and evaluated as an indicator of normal biological processes, pathogenic
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processes or pharmacologic responses to a therapeutic intervention

(4). Besides MRI, body fluid biomarkers can also provide additional,

independent data on MS. AI applications in MS can potentially help

us better support the diagnosis, find markers for prognosis, facilitate

accurate monitoring, and eventually understand the mechanisms of

the disease. Focusing on these main challenges, this review aims to

summarise the recent advances in AI applied to blood, serum and

CSF biomarkers in MS, highlighting the key features of the most

representative studies (Figure 1) (5). This review also aims to

illustrate its limitations and future directions.
Search strategy

We performed a search in PubMed based on the following

criteria: (i) search terms: ((multiple sclerosis) or demyelination or

(demyelinating disease)) AND ((artificial intelligence) or (deep

learning) or (machine learning)) AND (biomarkers OR markers

OR (biological markers) OR (fluid biomarkers) OR (body fluid

biomarkers)); (ii) language of publication: English; (iv) type of

paper: original research. For the purpose of this narrative review,

we have focused on three aspects: (i) diagnosis & differential

diagnosis; (ii) prediction of clinical outcome; (iii) understanding

of pathogenic mechanisms. Thus, after the first literature search, we

manually selected the papers if they were included in one of these

three categories. Papers not clearly included in any of these

categories were not considered in the review. Thus, we did not

include papers whose main focus was methodological or animal

research, and papers related to fluid biomarkers other than blood,

serum and CSF. We also excluded review papers, editorials, and case

reports. The PubMed search yielded 206 articles, published between

1996 (and especially between 2009) and 2024, both included

(Figure 2). After excluding those not meeting our inclusion
Frontiers in Immunology 02
criteria, we revised 29 papers for their inclusion in this narrative

review (Figure 2). Most of these papers have been published

between 2019 and 2024 (Figure 3).

Once all papers were selected, they were divided into MS

diagnosis and differential diagnosis (N=6), prediction of disease

evolution (N=14), and understanding mechanisms of damage in

MS (N=9). Of note, for some papers we found a degree of overlap

and the decision to include them into one or another category

depended on the main objectives described by the authors.
MS diagnosis and differential diagnosis

The diagnosis of MS relies on integrating clinical, MRI, and

laboratory findings and excluding alternative diagnoses, especially

in the presence of red flags. Indeed, the diagnosis of MS is not

devoid of challenges: other conditions may mimic MS, clinically or

radiologically (6). In these circumstances, the use of AI algorithms

may be useful (Table 1), especially in body fluid biomarker

discovery studies such as those done with “omics” technology.

AI has been implemented to identify genetic susceptibility

biomarkers. Pasella et al. (7) used decision trees (DT) to create a

predictive tool assessing the likelihood of MS including alleles

responsible for human leukocyte antigen (HLA) class I molecules

and killer immunoglobulin-like receptor (KIR) genes, responsible

for natural killer (NK) lymphocyte receptors. They studied 299

persons with MS (PwMS) and 619 healthy controls (HC). The

algorithm accurately identified 80.94% of PwMS and 71.08% HC in

the training set and 73.24% and 66.07%, respectively, in the

validation set. Guo et al. (8) used Support Vector Machine (SVM)

to identify gene expression profiles on the transcriptome of

peripheral blood mononuclear cells (PBMC) from 26 PwMS and

18 subjects with other neurological diseases (OND). This approach
FIGURE 1

Main aims of AI-based studies focused on fluid biomarkers. This figure illustrates the main types of input data and the main aims of AI-based studies
focused on fluid biomarker data in MS.
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identified 8 genes differentially expressed between groups with 86%

accuracy in the validation study. These genes involved the protein

kinase cascade, inactivation of mitogen-activated protein kinases

(MAPK), and regulation of signal transduction and apoptosis.

The metabolomes of cells and tissues include lipids, amino

acids, sugars and other molecules (9). Andersen et al. (10) used

random forests (RF) to identify blood-based metabolite profiles that

could discriminate between 12 male PwMS and 13 male controls.

The top 6 candidate metabolites informative for MS, defined as

having an area under the receiver operating characteristic (ROC)

curve (ROC-AUC) >80%, participate in glutathione metabolism,
Frontiers in Immunology 03
fatty acid metabolism and oxidation, cellular membrane

composition, and transient receptor potential channel signalling.

Whilst metabolomics focuses on hydrophilic molecules, lipidomics

has emerged as an independent “omics” due to its complexity (9).

Lötsch et al. (11) used unsupervised ML to compare 43 lipid

mediators in serum from 102 PwMS and 301 HC. The analyses

showed 98% accuracy to differentiate PwMS from HC. Then, the

authors used supervised ML implemented as RF and computed

ABC analysis-based feature selection, to create a classifier. This

approach identified 8 lipid biomarkers differentially expressed in

PwMS with ≥95% accuracy in training and test datasets.
FIGURE 3

Distribution of the research papers on AI applied to biomarker data in MS over time. This histogram shows the number of research articles (of those
29 selected) published per year. It is to be noted that most of the papers have been published in the last 4 years.
FIGURE 2

PRISMA chart describing article selection. We have followed a systematic approach for selecting the papers to be considered in our manuscript.
After performing a PubMed search with the following terms: (multiple sclerosis or demyelination or demyelinating disease) AND (artificial intelligence
or deep learning or machine learning) AND (biomarkers or markers or biological markers or fluid biomarkers or body fluid biomarkers), 206 records
were obtained. Of those, only 29 were considered for this review after excluding those not meeting our inclusion criteria.
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TABLE 1 Summary of selected studies focused on diagnosis and differential diagnosis.

odel
utput

Model
performance

Comments

S vs
on-MS

identified 80.94% of MS
patients in the training set
and 73.24% in the
validation set. Identified
71.08% of healthy controls
in the training set and
66.07% in the validation set

Immunogenetic risk factors,
specifically alleles responsible for HLA
class I molecules and KIR genes,
responsible for natural killer
lymphocyte receptors

S
s OND

AUC 0.711-0.852.
Accuracy of 86% in
validation study

The 8 differentially expressed genes in
MS vs OND were related to the
protein kinase cascade, inactivation of
MAPK, and regulation of signal
transduction and apoptosis

S
s
ntrols

6 metabolites with AUCs
>80%: pyroglutamate,
laurate, acylcarnitine C14:1,
N-methylmaleimide, and 2
phosphatidylcholines (PC
ae 40:5, PC ae 42:5)

Identified metabolites participate in
glutathione metabolism, fatty acid
metabolism and oxidation, cellular
membrane composition, and transient
receptor potential channel signalling.
Their gene expression association
suggested enrichment for pathways
associated with apoptosis and
mitochondrial dysfunction.

S vs
ealthy
ntrols

98% accuracy for the 43
lipid mediators; classifier
with ≥95% accuracy in
training and test data sets

Most lipid mediator concentrations
were reduced in MS. Exceptions were
the ceramide LacCerC24:1 and the
sphingolipid C16Sphinganin, found at
higher concentrations in MS
Cer16 and Cer24 might amplify
cytokine-induced cell death of myelin-
producing oligodendrocytes.
HETE15S was shown to be regulated
in CSF of MS patients. Enhanced
activity of autotaxin was observed in
serum samples of MS patients. PEA
and OEA have been found in RRMS
and SPMS. Neopterin is an activation
marker of the innate immune system
with increased levels in autoimmune
diseases including the CSF of
MS patients
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testing cohort, N
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validation
cohort, N
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profiles

AI
method:
algorithms

Model input M
o

Pasella et al.,
Front
Neuroinform.
2023 [ref (7)]

MS: n=299 (RRMS
n=218,
PPMS n=81)
Healthy controls: n=619

0 Alleles responsible for
HLA class I molecules
and KIR genes, obtained
from PBMC

DT Genotyping for alleles at HLA-
A, -B, -C, and -DRB1 loci.
Primers specific to 11KIR
genes: IR2DL1, KIR2DL2,
KIR2DL3, KIR2DL5, KIR3DL1,
KIR2DS2, KIR2DS3, KIR2DS4,
KIR2DS5, KIR3DS1

M
n

Guo et al.,
PLoS One.
2014 [ref (8)]

MS: n=26
OND: n=18

0 27336 probe sets
obtained from gene
expression profiles from
the Array Express
Database. Samples
obtained from PBMC

SVM, ROC
algorithm,
Boruta algorithm

8 genes differentially expressed
between MS and OND

M
v

Andersen
et al., Mult
Scler Relat
Disord. 2019
[ref (10)]

Male subjects with MS:
n=12
Male controls: n=13

0 Serum metabolites (lipid
and amino acid profiles)

RF 12 metabolites M
v
c

Lötsch et al.,
Sci Rep. 2018
(ref [11)]

MS: n=102
Healthy controls: n=301

0 43 lipid mediators from
serum samples:
ceramides (@)

Self-organising maps
of neural networks,
swarm intelligence
and Minimum
Curvilinear
Embedding.
In a second step, RF
and computed ABC
analysis-based
feature selection

Classifier with 8 lipid
biomarkers (GluCerC16,
LPA20:4, HETE15S,
LacCerC24:1, C16Sphinganine,
biopterin, and
endocannabinoids PEA
and OEA)
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TABLE 1 Continued

Model
performance

Comments

The combination of CCN5,
vWF, GFAP, and OCB
status provided the best
overall diagnostic properties
(sensitivity 89%, specificity
92%, accuracy 91%)
compared to OCB status

Integrative metabolomics and
proteomic enrichment analysis
revealed upregulated JAK-STAT and
glycolysis pathways in MS, consistent
with an increased inflammatory
response and altered
energy metabolism.

All: CD5 (AUC 0.87) and
IL-12B (AUC 0.81).
+OCB RRMS vs OND: IL-
12B, CX3CL1, FGF-19,
CST5, and MCP-1 (91%
sensitivity, 94% specificity
in the training set; 81% and
95%, respectively, in the
validation set)
-OCB RRMS vs OND:
CX3CL1, CD5, CCL4, and
OPG as well as NfL (87%
sensitivity, 80% specificity
in the training set; 56% and
48% in the validation set)

CD5 may act as a receptor in
regulating T cell proliferation. IL-12B
promotes differentiation of T cells
into T helper 1 (Th1) cells. CX3CL1
increases IFN-g and TNF-a gene
expression and IFN-g secretion by
CD4+ T cells. FGF signalling may
regulate inflammation and
myelination in MS since an
abundance. CST5 has shown potential
as a relapse marker. MCP-1 may be
involved in the recruitment of
monocytes/macrophages and activated
lymphocytes. CCL4 is involved in the
disruption of the blood-brain barrier.
OPG suppresses mRNA expression of
CCL20, a chemokine involved in
Th17 cell recruitment with anti-
inflammatory effects

Diagnostic accuracy: ≥92%
when any randomly
selected 5 of any cytokines
were used.
The highest accuracy, 99%,
obtained when including
CCL27, IFN-g, and IL-4

CCL27 could trigger T memory cells
to produce IL-4 and IFN-g.
Interleukins and chemokines affected
in serum and CSF could direct
leukocyte migration targeting
Th1 cells.
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CB
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OND

S vs
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Reference Training and
testing cohort, N

Independent
validation
cohort, N

Biomarker
profiles

AI
method:
algorithms

Model input M
o

Probert., et al.
Front
Immunol.
2021 [ref (12)]

MS with +OCB: n=41
Non-MS controls with
+OCB: n=64 (*)

0 Metabolites and proteins
in CSF

Multivariate
OPLS-DA

8 metabolites significantly
decreased in MS: 4 (myo-
inositol, isoleucine, leucine,
glutamine) had higher
specificity than OCB for MS
diagnosis.
9 biomarkers outperformed
OCB as predictor of MS
(CCN5, CDCC80, NTN1, vWF,
DKK4, SOST, ERBB3, IGL4,
and IGKV1-5).
All significantly decreased in
MS vs non-MS except for IGL4
and IGKV1-5, which
were increased.

M
no

Gaetani et al.,
Int J Mol Sci.
2023 (ref [13)]

+OCB RRMS: n=58;
-OCB RRMS: n=24;
OND: n=36 (&)

0 Quantification of 92
immune activation
CSF proteins

Hierarchical
clustering to profile
CSF proteins.
Binomial and
multinomial LASSO
regressions to
differentiate
patient groups

92 tested proteins minus 45
with a call rate <85%, age,
sex, NfL

M
O
+O
R
O
-O
R
vs

Martynova
et al.,
Mediators
Inflamm. 2020
[ref (14)]

MS: n=101 (RRMS
n=49, SPMS n=31,
PPMS n=21) and Non-
MS subjects: serum
n=101 and CSF
n=25 ($)

45 leucocyte-activation
regulatory cytokines
measured in serum
and CSF

k-Nearest
Neighbour, DT,
XGB, Gaussian
Naïve Bayes and RF

22 cytokines altered in CSF and
20 in serum, 10 commonly
affected in both (IL-1a IL-4,
IL-18, CCL7, CCL27, CSF,
IFN-g, LIF, M-CSF, and TNF-
a).
Three

M
no
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predictors

ofa
w
orse

clinical

evolution,these
associations

are
only

m
eaningful

at
a
group

level.

T
hatis,the

prediction
ofthe

disease
atthe

individuallevelbased
on

these
know

n
predictors

is
still

far
from

optim
al.

For
that

reason,

over
the

years,
a
num

ber
of

authors
have

aim
ed

at
predicting

M
S

evolution
based

on
these

factors
butthrough

the
developm

entofA
I

m
odels,w

ith
a
m
uch

greater
potential–

atleasttheoretically
–
than

classical
statistical

m
odels.

In
spite

of
this,

though,
the

ability
to

currently
build

(and
publish)

A
Im

odels
to

predictdisease
evolution

based
on

M
R
I
and

clinical
data

is
still

lim
ited.T

his
lim

ited
ability

becom
es

evident
especially

w
hen

a
m
odelbuilt

in
a
given

cohort
is

applied
in

a
com

pletely
unseen,

independent,
validation

cohort,

Reference Training and
testing cohort, N

Independen
validation
cohort, N

(*) Epilepsy (n=5), functional neurological disorder (n=12), gait disord
polyradiculitis (n=2), primary headache disorder (n=13), sensory di
polyneuropathy (n=3); ($): tension type headache, residual encephal
LacCerC16:0, LacCerC24:0, LacCerC24:0); lyosophosphatidic acids (LP
(PGD2, PGF1a, PGE2, TXB2); dihydroxyeicosatrienoic acids (DHET
Abbreviations (in alphabetical order): AUC, area under the curve; CCL
protein 80; CSF, cerebrospinal fluid; CST5, cystatin D; CX3CL, chemok
HLA, human leukocyte antigen; IFN, interferon; IGKV1-5, immunoglo
receptor; LASSO, least absolute shrinkage and selection operator regres
multiple sclerosis; NfL, neurofilament light chain; NTN1, netrin-1; OC
primary progressive multiple sclerosis; RRMS, relapsing remitting mu
vector machine; Th, T helper cells; TNF, tumor necrosis factor; vWF,
e
s
o

s

lt
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showing a much lower accuracy than expected (much lower than

that of the original cohort). This possibly suggests that the

variability across people with MS is probably larger than what we

thought and that mismatches between accuracies in original

(training and testing) cohorts and external validation cohorts may

be due to an overfitting of the data by the model in the original

cohorts. Additionally, this may also suggest that other aspects apart

fromMRI and clinical data may be playing a role in the evolution of

the disease. Over the last 10 but especially over the last 5 years, some

studies using AI models applied to biomarker data to explain

concurrent and future disease evolution have started to

emerge (Table 2).

Regarding the studies that have focused on the concurrent

prediction of clinical outcomes, in 2019, Flauzino et al. (19),

published a study where 122 people with MS were tested on

several serum biomarkers to predict concurrent disability status.

These biomarkers, which were related to the immune-inflammatory

response, lipid and protein metabolic pathways, and oxidative

stress, were able to predict which patients had an Expanded

Disability Status Scale (EDSS) (20) score above or below 3.0 with

high accuracy (Area under the ROC curve = 0.842). These results

suggest that Immune inflammatory, metabolic and oxidative stress

pathways may play a key role in disability accumulation in MS and

deserve further research. In another interesting study focused on

concurrent prediction, Brummer and colleagues (21) showed how

serum neurofilament light (NfL) levels could improve our ability to

detect cognitive dysfunction, especially when added to MRI

predictors such as grey matter volume. The authors of this study

not only built a ML model with high predictive accuracy, but also

validated the ML model in an external cohort, supporting the

generalisability of the model (21). Finally, we highlight the paper

from Jackson and colleagues (22), where ML models based on

random forest regression were built to predict a multi-dimensional

score of disease severity using genetic variants previously identified

as related to MS severity. Interestingly, the results, which could be

validated in an external cohort, showed that the 19 most predictive

genetic variants were located in 12 genes associated with immune

cell regulation, complement activation and functions of neurons

(22). This supports the robustness of the results while providing

important insights on the mechanisms of progression in MS.

Regarding the studies with a longitudinal design, there is a high

variability in terms of the length of the prediction period, ranging

from 6 months to 11 years, and in terms of the nature of the

predictor data, i.e., the input of the ML model. For instance, there

are studies which have used genetic data, focusing on the presence

of certain genetic variants or single nucleotide polymorphisms

(SNPs) (23, 24). Other studies have focused instead on the

presence of certain epigenetic mechanisms, such as DNA

methylation (25), and on certain gene expression profiles (26, 27).

Also, a few studies have demonstrated the ability of (immune)

cellular profiles to predict clinical outcome (23). Finally, there are

studies which have based their predictions on the presence of

specific serum and CSF proteins and metabolites (28, 29). In

relation to the output data, i.e., the outcome of the ML model,

most studies focus on disability progression measures (19, 21–23,

25, 28, 30, 31), although some of them have chosen acute activity
Frontiers in Immunology 07
(generally MRI activity) outcomes (24, 26, 27, 32) and one focused

on the development of anti-drug neutralising antibodies (33),

known to reduce the effectiveness of the disease-modifying

drug (33).

In relation to the studies which have used SNP data to predict

future outcome, the article by Andorra et al. (23) is of special

interest. In this study, not only SNPs located in Human Leukocyte

Antigen (HLA) and non-HLA genes were considered as predictors,

but also data on immune cell populations, proteomics, brain MRI,

and optic coherence tomography (OCT) data. In this study, whose

results were validated in an external cohort, the authors predicted

the development of confirmed disability accumulation on different

disability outcomes after 2 years of follow-up, with high

sensitivity (23).

Among the studies with longest predictive periods, there is the

paper by Uphaus et al. (28), which used NfL data to predict 6-year

development of relapse-free progression and transition from RRMS

to SPMS with high accuracies, especially for the former outcome

and especially when combined with age and T2 lesion volume (28).

More recently, Everest et al. (31) published a paper where CSF

proteomics data was used to predict unfavourable evolutions over

an 8-year follow-up period (on average) with very high accuracies.

In this paper, which included an external validation analysis, the

authors propose several novel candidate CSF protein biomarkers

with a promising future in disease prediction modelling (31).

Finally, Campagna et al. (25) exploited the DNA methylation

profiles of 235 women with MS to predict disease severity over an

11-year period, again with high accuracy. Although this model was

not externally validated in an independent cohort, the length of its

prediction and the nature of the biomarker used make it especially

relevant. Interestingly, those genes with greater levels of

methylation seemed to be related to neuronal structure and

function (25).
Investigation of disease mechanisms

The pathophysiological processes in MS are not completely

understood and are believed to be highly heterogeneous across

people and disease stages. Fluid biomarker studies using AI to

understand pathogenetic mechanisms could contribute to a greater

characterisation of MS by expanding the concept of classical

phenotypes (Table 3).

PBMCs can bear specific dysregulation in genes at different

stages of MS. Acquaviva et al. (34) analysed transcriptomic profiles

of PBMCs from individuals with CIS (n=57), RRMS (n=108), SPMS

(n=26), PPMS (n=35), OND (n=27), and HC (n=60), divided into

training (n=224) and validation (n=89) datasets. They defined

classifiers (MS vs non-MS, relapsing vs progressive MS) using

nested cross-validation in the training dataset. Then they used

ward DT-based algorithms [RF, functional trees (FTs) and

adaptive boosting applied to FT (ADAboost-FT) to evaluate their

performance in the validation dataset. ADAboost-FT generated the

best model to differentiate MS from non-MS (94.3% sensitivity,

87.5% precision). Identified transcripts in MS were related to

interferon signalling, chromatin remodelling, and apoptosis. The
frontiersin.org
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TABLE 2 Summary of selected studies focused on prediction of disease course: relapses and disability accumulation.

Model output Model
performance

Comments

t
i
a

s
d

Disability status
based on EDSS
score:
i) ≥3.0 vs <3.0
(binary outcome)
ii) as a
continuous outcome

ROC AUC
= 0.842

Immune inflammatory,
metabolic and oxidative
stress pathways play a
key role in disability
accumulation in MS

MS-DSS, a score
defined through a
statistical model
which takes into
account CNS
damage and
demographic
features [ref (46)]

GeM-MSS RMSE
(error) = 0.464

The 19 genetic variants
included in the GeM-
MSS are related to 12
genes associated with
immune cell regulation,
complement activation
and functions
of neurons

Cognitive status
based on SDMT
score
(continuous
outcome)

Accuracy = 90.8%,
greater than the
accuracy of the
models with
individual
predictors

The combination of
blood and imaging
measures improves the
accuracy
of predicting
cognitive impairment

e

Disability status
based on PDDS
score: ≥4 vs <4
(binary outcome)
PDDS score: as
categorical variable

ROC AUC = up
to 0.91 (for
LASSO prediction
of PDDS using
combined clinical
and biomarker
profiles as input)

Combined (clinical +
biomarkers) models: the
best
LASSO better than
other ML approaches
Serum multi-protein
biomarker profiles:
better than single-
protein (e.g., NfL or
GFAP) models
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Reference Training
and
testing
cohort, N

Independent
validation
cohort, N

Follow-
up time
(study
design)

Biomarker profiles AI
method:
algorithms

Model input

Cross-sectional prediction*

Flauzino et al.,
Metab Brain
Dis. 2019
[ref (19)]

122 patients
with MS, i.e.,
RRMS,
N=103; PPMS,
N=3;
SPMS, N=16

0 NA Serum biomarkers
including immune-
inflammation, metabolic,
and nitro-oxidative
stress features

Multilayer
perceptron
neural network

Immune inflammatory (Th17/
ratio), metabolic (LDL/HDL r
acid, homocysteine) and oxida
stress (lipid hydro-peroxides, c
protein, AOPP,
NO metabolites)
biomarkers, together with age,
disease duration, body mass in
and presence of metabolic
syndrome

Jackson et al.,
Ann Hum
Genet. 2020
[ref (22)]

205 94 NA 113 genetic variants
previously identified as
related to MS severity

Random
forest
regression

19 genetic variants (GeM-MSS

Brummer
et al., Brain
Commun.
2022 [ref (21)]

152 patients
with early MS

101 early MS NA Serum NfL Support
vector
regression

Serum NfL, lesion volume, gre
matter volume

Zhu et al.,
Brain
Commun.
2023 [ref (30)]

431 0 NA 19 serum protein
biomarkers:
APLP1, CCL20,
CD6, CDCP1, CNTN2,
CXCL9,
CXCL13, FLRT2,
GFAP,
MOG,
NfL, OPG,
OPN, PRTG,
SERPINA9, TNFSF10A,
TNFSF13B,
VCAN

LASSO,
Random forest,
Extreme
Gradient
Boosting,
Support Vector
Machines,
stacking
ensemble
learning

7 clinical factors (age at sampl
collection, sex, race/ethnicity,
subtype, disease duration, DM
time interval between sample
collection and closest PRO ass
and 19 serum protein biomark
T
a
t

y
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TABLE 2 Continued

Model output Model
performance

Comments

,

Disease activity vs
no activity, based
on MRI, i.e.,
presence of
gadolinium-
enhancing lesions
(binary outcome)

Prediction
accuracy (of
combined
microRNAs)
= 0.92

microRNA signatures
are noninvasive
biomarkers which may
help predict treatment
response in the future

Disease activity free
on treatment
(presence of clinical
and/or MRI
activity) vs
suboptimal response
(binary outcome)

Predictive
accuracy = 0.59-
0.68
ROC AUC = up
to 0.63

Future (IFNb) treatment
response may be
predicted with gene
expression profiles at
treatment onset or over
the first weeks after that,
using models of
machine learning

d

ADA positive, i.e., i)
bAbs+ & nAbs+ or
ii) bAbs- but nAbs+
and titer ≥ 320 U/
mL, within 12
months of starting
treatment, vs ADA
negative
(binary outcome)

Classification
accuracy (baseline)
= 0.695-0.854
Classification
accuracy (3
months after IFNb
onset) =
0.712-0.863

ADA status may be
predicted through
serum metabolites

MS phenotype:
PMS vs RRMS
(binary outcome)

ROC AUC = 0.93,
better than any of
the single

This study provides
confidence in individual
patient prediction
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Reference Training
and
testing
cohort, N

Independent
validation
cohort, N

Follow-
up time
(study
design)

Biomarker profiles AI
method:
algorithms

Model input

Longitudinal prediction (**)

Ebrahimkhani
et al., Mol
Neurobiol.
2020 [ref (32)]

29 RRMS
patients who
were about to
start
on fingolimod

0 0.5 years (6
months);
however, the
study does
not focus on
future but
concurrent
prediction
(i.e., disease
activity and
microRNA
dysregulation
occur over
the same
period
of time)

Exosome miRNAs Random forest Out of all micro-RNAs, 15 were
selected for being dysregulated
between active and non-active
patients, 6 months after fingolimod
onset. Of those, 11 were selected for
having ROC AUC 95%CI above 0.50
Then, out of a total of 2037
combinations of these 11 microRNA
3 combinations ($) were chosen for
their highest accuracy

Baranzini
et al., Mult
Scler. 2015
[ref (27)]

155 RRMS on
beta-
interferon
treatment

0 0,77 years
(40 weeks)

Gene expression profiles at
treatment onset or over the
follow-up (i.e., induction
ratios of gene expressions
after treatment onset)

Random forest Triplet (3-gene) expression profiles
(several triplet combinations
were assessed)

Waddington
et al., Front
Immunol.
2020 [ref (33)]

89 patients
with RRMS/
first
demyelinating
attack who
were about to
start on beta-
interferon
treatment

0 1 year 156 serum metabolites (see
paper for full details)

Random forest,
support vector
machine, and
LASSO logistic
regression
(K-nearest
neighbour and
decision trees
also tested
for
comparison)

60 and 59 serum metabolites (out of
156) at baseline (before IFNb onset)
and after 3 months, respectively; the
remaining 96 and 97 metabolites,
respectively, were excluded because o
a strong correlation between them an
the finally chosen 60 and 59 ones

Herman et al.,
iScience. 2023
[ref (29)]

123 56 1 year 498 CSF metabolites Elastic-net
regularized
classifier model
In addition,

CSF metabolites: out of 498, 15
metabolites are selected
.

s

f
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TABLE 2 Continued

Model output Model
performance

Comments

metabolic features
in isolation

(=0.88), which can help
with patient monitoring

typing,
eomics)

CDA on different
scales (EDSS,
T25WT, 9HPT,
SDMT, SL25,
HCVA) vs no-CDA
(binary outcomes);
NEDA vs no-NEDA
(binary outcome);
MSSS, ARMSS,
onset of DMT,
escalation from
low- to high-
efficacy DMT
(continuous
outcomes)

ROC AUC = from
0.50 (T25WT-
CDA) to 0.81
(SL25-CDA);
Balanced
accuracies = from
0.5 (9HPT or
T25WT) to 0.69
(starting therapy)
Sensitivities =
almost all between
0.82 and 0.94
PPVs = almost all
between 0.8
and 0.9

Models provided better
sensitivities and PPVs
than accuracies or AUC;
Models including
imaging & genetics or
omics slightly improved
model performance
(with respect to models
with clinical predictors
only) and only in 50%
of the times

linical data NEDA vs no-NEDA
(binary outcome)

ROC AUC genetic
model = 0.65
ROC AUC
combined (genetic
and clinical)
model = 0.71

ML models integrating
clinical and genetic data
can help predict disease
evolution in pwMS
on fingolimod

nes related Disease activity or
not, based on
presence (vs
absence) of relapses
over the whole
follow-up of 3 years
(binary outcome)

Accuracy = 0.892 Gene expression profiles
may help design
personalised
therapeutic strategies for
patients with MS

(Continued)
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Reference Training
and
testing
cohort, N

Independent
validation
cohort, N

Follow-
up time
(study
design)

Biomarker profiles AI
method:
algorithms

Model input

Longitudinal prediction (**)

conformal
prediction
analyses
provides
confidence in
individual
patient
predictions

Andorra et al.,
J Neurol. 2023
[ref (23)]

322 271 2 years Genomics: MS-associated
(HLA and non-HLA) SNPs;
Cytomics: levels of effector
and regulatory T cells, B
cells, and NK cells;
Phospho-proteomics: 25
kinases participating in
pathways associated
with MS

Random forest Brain MRI,
OCT, and multiomics (gen
cytomics and phospho-pro
from PBMC

Ferrè et al., J
Pers Med.
2023 [ref (24)]

304 patients
on
fingolimod
treatment

77 patients on
fingolimod
treatment

2 years Genetic data Random forest 123 SNPs (genetic model), c
(clinical model), or both
(combined model)

Fagone et al.,
Mol Med Rep.
2019 [ref (26)]

12 patients
with RRMS
who were
about to start
on
natalizumab

0 3 years Whole−genome expression
data from CD 4+ T cells
(assessed before
natalizumab onset)

UnCorrelated
Shrunken
Centroid
Algorithm (¢)

Genetic expression of 17 ge
to CD4+ T cells
o
t
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TABLE 2 Continued

Model output Model
performance

Comments

d ratio
& T2

Relapse-free
progression (binary
outcome);
Transition to SPMS
(binary outcome)

For relapse-free
progression: ROC
AUC = 0.811 (NfL
+ age & T2 lesion
number)
For SPMS
transition: ROC
AUC = 0.651

Serum NfL levels may
help predict future
relapse-free progression
in clinical practice,
together with age and
T2 lesions at baseline

Disease severity
status (binary
outcome) based on
ARMSS score on
last follow-up: ≥5
(unfavourable
group) vs
<5 (favourable)

Rule 1 (to select
ARMSS≥5):
ROC AUC =
86.34%
Rule 2 (to select
ARMSS<5): ROC
AUC = 73.26%

Novel candidate CSF
protein biomarkers are
proposed, to be
validated in
larger samples

s),
s

Disease severity
status (binary
outcome) based on
ARMSS score: mild
vs severe (i.e.,
median ARMSS
score below or
above 20th or 80th

percentile,
respectively, of
the cohort)

Methylation
model ROC AUC
= 0.91 (vs clinical
model ROC AUC
= 0.74)

Whole-blood
methylation can predict
disease severity in RMS
and seems to affect
genes related to
neuronal structure
and function

oc/MeV/manual/usc.html; ($) Combination 1: miR-432-5p and miR-485-5p; combination 2:
, anti-drug antibodies; AOPP, Advanced oxidation protein products; APLP1, amyloid beta
curve; bAbs, IFNb-binding antibodies; C3bCfb, chain F, crystal structure of complement C3b
ing protein 1; CNTN2, contactin-2; CXCL13, chemokine (C-X-C motif) ligand 13; CXCL9,
AP, glial fibrillary acidic protein; HCVA, high contrast vision; IFNb, interferon beta; IL12B,
les; MOG, myelin oligodendrocyte glycoprotein; MS, multiple sclerosis; MS-DSS, MS disease
ssue destruction (COMRIS-CTD) [ref (43)], and demographic data; MSSS, multiple sclerosis
ation cohort; NA, not applicable; nAbs, IFNb-neutralising antibodies; NEDA, no evidence of
DS5B, human androgen-induced prostate proliferative shutoff associated protein (AS3); PMS,
, Symbol Digit Modality Test; SERPINA9, serpin family A member 9; SL25, 2.5% low contrast
or necrosis factor ligand superfamily member 13B; VCAN, versican.
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Reference Training
and
testing
cohort, N

Independent
validation
cohort, N

Follow-
up time
(study
design)

Biomarker profiles AI
method:
algorithms

Model input

Longitudinal prediction (**)

Uphaus et al.,
EBioMedicine
2021 [ref (28)]

196 patients
with RRMS/
first
demyelinating
attack

204 RRMS/
first
demyelinating
attack

Median: 6
(IQR 4.3-
7.5) years

Serum NfL Support
vector machine

Serum NfL levels at baseline a
NfL follow-up/baseline +/- age
lesion number at baseline

Everest et al.,
PLoS One.
2023 [ref (31)]

94 40 Mean: 8.2 ±
2.2 years

CSF proteomics data: 151
differentially expressed CSF
proteins, including C3bCfb,
A2M, ATF7, PRBP,
Haptoglobin, PDS5B,
Myosin, CD36, and ApoA1
(ref (47)]

Genetic
algorithm
(Holland J.
Adaptation in
natural and
artificial
systems.
University of
Michigan
Press, 1975)

CSF proteomics data

Campagna
et al., Clin
Epigenetics.
2022 [ref (25)]

235 female
patients
with RMS

0 Median: 11.13
(IQR 9.49;
12.59) years

DNA methylation data
assessed through Illumina
methylation EPIC array

Elastic-net
regression and
logistic
regression

Clinical data (age and sympto
DNA methylation data of gen
related to neuronal structure
and function

(*) Articles shown in chronological order; (**) Articles shown based on length of follow-up; (¢) UC SC; http://home.cc.umanitoba.ca/~psgendb/birchhomedir/BIRC HDE V/d
miR-432-5p, -485-5p, -375; combination 3: miR-432-5p, −485-5p, −134-5p; Abbreviations (in alphabetical order): 9HPT, 9-hole peg test; A2M, alpha-2-macroglobulin; AD
precursor like protein 1; ApoA1, apolipoprotein A1; ARMSS, age-related MS severity scale; ATF7, cyclic AMP-dependent transcription factor ATF-7; AUC, area under the ROC
in complex with factor B; CCL20, chemokine (C-C motif) ligand 20; CD6, cluster of differentiation 6; CDA, confirmed disability accumulation; CDCP1, CUB-domain-contai
chemokine (C-X-C motif) ligand 9; DMT, disease modifying treatment; EDSS, Expanded Disability Status Scale; FLRT2, fibronectin leucine-rich transmembrane protein 2; G
interleukin-12 subunit beta; IQR, interquartile range; LASSO, Least Absolute Shrinkage and Selection Operator; miRNA, microRNA, which are small, non-coding RNA molecu
severity scale, defined thanks to a statistical model [ref (46)] which takes into account, the amount of CNS-tissue destruction measured by Combinatorial MRI scale of CNS ti
severity scale; Myosin, human skeletal mRNA for myosin heavy chain light meromyosin region; N0, sample size of the training and testing cohort; N1, sample size of the valid
disease activity; NfL, neurofilament light chain; OPG, osteoprotegerin; OPN, osteopontin; PBMC, peripheral blood mononuclear cells; PDDS, patient-determined disease steps; P
progressive MS; PPV, positive predictive value; PRBP, plasma retinol binding protein; PRO, patient-reported outcome; PRTG, protogenin; RRMS, relapsing-remitting MS; SDMT
visual acuity; SNPs, single nucleotide polymorphisms; T25WT, timed 25 feet walking test; TNFSF10A, tumor necrosis factor ligand superfamily member 10; TNFSF13B, tum
n

m
e
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n
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TABLE 3 Summary of selected studies focused on disease mechanisms.

Model
performance

Comments

MS vs non-MS: on
139 probes, 94.3%
sensitivity and 87.5%
precision.
Relapsing vs
progressive MS: 222
probes, 83.3%
sensitivity and 93.8%
precision.
PPMS vs RRMS: 266
probes, 90% sensitivity
and 90% precision.
SPMS vs RRMS: 201
probes, 87.5%
sensitivity and
100% precision

Identified transcripts in MS vs non-MS:
related to interferon signalling, chromatin
remodelling and apoptosis.
Identified transcripts in relapsing vs
progressive MS: related to cell cycle and T
cell activation for both progressive forms;
protein ubiquitination, cell migration, and
fatty acid metabolism for PPMS; and
regulation of GTPase activity, locomotor
behaviour, and blood coagulation in the
SPMS signature.

:

,

ROC-AUC 0.87
with CNN

Some of the miRNAs were differentially
expressed in RRMS or related to Th17 cell
differentiation; one of them (miR-16-5p)
decreased in PBMCs after initiation of
therapy with interferon b

Ecosanoid
concentrations:
sensitivity 54%,
specificity 100%,
accuracy 77%.
Ceramid
concentrations:
sensitivity 89.2%,
specificity 100%,
accuracy 94.6%.

Lipid metabolism has been suggested to play
a critical role in the pathophysiology of MS,
influencing inflammation,
neurodegeneration, myelin damage, and
repair processes

Low concentrations of
four antioxidants
(zinc, adiponectin,
TRAP and SH groups)

Lower concentrations of all four antioxidants
(zinc, adiponectin, TRAP and SH groups)
were predictive of MS when compared to
controls. TRAP and adiponectin were the

(Continued)
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Reference Training and
testing cohort, N

Independent
validation
cohort, N

Biomarker
profiles

AI
method:
algorithms

Model input Model output

Acquaviva
et al., Cell Rep
Med. 2020
[ref (34)]

313 subjects: CIS (n=57),
RRMS (n=108), SPMS
(n=26), PPMS (n=35),
OND (n=27)
Healthy subjects (n=60)

0 Transcriptomic
profiles of PBMCs

Training set:
nested cross-
validation
Validation set:
ward DT-based
algorithms (RF,
FTs and
ADAboost-FT)

Raw and
processed
microarray data
from the GEO
database, age, sex

MS classifiers:
MS vs non-MS
Relapsing vs
progressive MS

Sun et al.,
Front Genet.
2022 [ref (36)]

miRNA-MS associations
from the disease-related
miRNA from the HMDD.
MS-related miRNAs as
positive samples, and
randomly selected
associations with n times
the number of positive
samples from unlabelled
miRNAs associations as
negative samples,
where n∈(2,10,20,30,40,50)

0 MS-
related miRNAs

CNN vs DT,
SVM, logistic
regression,
and
GaussianNB

miRNAs Top 10 predicted miRNAs
hsa-miR-605-5p, hsa-miR-
15b-5p, hsa-miR-16-5p,
hsa-miR-17-5p, hsa-miR-
181a-5p, hsa-miR-181b-5p
hsa-miR-181c-5p, hsa-
miR-18a-3p, hsa-miR-195-
5p, and hsa-miR-196a-5p.

Lötsch et al.,
Int J Mol Sci.
2017 [ref (38)]

MS: n=102
Healthy subjects: n=301

0 3 types of lipid
biomarkers in
serum: eicosanoids:
n=11; ceramides:
n=10; and
lysophosphatidic
acids: n=6

ESOM
combined with
the U*-matrix
visualisation
technique

Eicosanoids,
ceramides and
lysophosphatidic
acids

Data structures in
eicosanoid and ceramide
serum concentrations

Mezzaroba
et al., Mol
Neurobiol.
2020 [ref (39)]

MS: n=174 (CIS n=5;
RRMS n=144, SPMS n=20,
PPMS n=5)
Controls: n=182

0 Plasma levels of
TNF-a, sTNFR1,
sTNFR2,
adiponectin,

NNA and
RBF/SVM

TNF-a, sTNFR1,
sTNFR2,
adiponectin,
hydroperoxides,

MS vs controls
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TABLE 3 Continued

Model
performance

Comments

combined with
increased sTNFR2:
98.7% sensitivity,
91.7% specificity,
AUC-ROC 0.990.
SVM analysis
(validation): 93.51%
training accuracy,
92.03% validation
accuracy. NNA
training: sensitivity
98.2%,
specificity83.3%,
AUC-ROC 0.997

most important predictors, followed by zinc
and sTNFR2

MS vs non-MS: RF
model: sensitivity
75.6%, 85.7%
specificity, 90.91%
accuracy, ROC-AUC
0.957
Relapsing vs non-
relapsing MS: the RF
model had the highest
accuracy (70%). In the
validation set, the RF
model was the
best discriminator

Cytokines play an important role in the
differentiation of Th cells and recruitment of
auto-reactive T and B cells in MS

SVM: sNfL levels
75.7% accurate at
predicting OPL
volume (training
75.9%, testing 76.2%).
Longitudinal analysis
of sNfL and OPL in
ON eyes: sNfL levels
72.1% accurate at
predicting OPL
atrophy (training
72.5%, testing 71.8%)

NfL was predominantly expressed in the
RNFL, GCIPL and OPL in comparison to
other layers (murine retina).
The findings suggest NfL and OPL
associations may be due mostly to
inflammation leading to axonal damage

Training: baseline MS-
DSS: 75 unique
biomarkers explaining

Identification of 7 patient clusters differing
in CSF concentration of proteins from four
protein modules (1. Myeloid lineage/TNF; 2.

(Continued)
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Reference Training and
testing cohort, N

Independent
validation
cohort, N

Biomarker
profiles

AI
method:
algorithms

Model input Model output

hydroperoxides,
AOPP, nitric oxide
metabolites, TRAP,
SH groups, and
serum levels of zinc

AOPP, nitric
oxide metabolites,
TRAP, SH groups,
and zinc

Goyal et al.,
Front Neurol.
2019 [ref (40)]

MS: n=910
Healthy volunteers/
controls: n=199

Serum cytokines:
IL-1b, IL-2, IL-4,
IL-8, IL-10, IL-13,
IFN-g, and TNF-a

SVM, DT, RF
and
neural
networks

IL-1b, IL-2, IL-4,
IL-8, IL-10, IL-13,
IFN-g, and TNF-
a,
age, sex, disease
duration, EDSS
and MSSS
(cytokines for MS
vs non-MS, and
cytokines and
other variables for
relapsing vs non-
relapsing MS)

MS vs non-MS
Relapsing vs non-
relapsing MS

Seitz et al.,
Ther Adv
Neurol
Disord. 2021
[ref (42)]

Early MS: n=156:
n=110 with no history of
ON n=46 with prior
history of ON

0 sNfL levels SVM sNfL
age, sex, disease
duration, EDSS

OCT: OPL volume
and atrophy

Kosa et al.,
Nat Commun.
2022 [ref (43)]

MS: n=227
Healthy subjects: n=24

1305 proteins
in CSF

RF Proteins in CSF,
age, sex

MS severity: CombiWISE-
based MS-DSS at baseline
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TABLE 3 Continued

utput Model
performance

Comments

p, and BVD
ome

62% variance. MS-
DSS on follow-up, 34
unique biomarkers
and 35 for BVD
explaining 60%
variance.
Validation: CSF-based
MS-DSS at baseline
predicted 17%
variance, 26% of MS-
DSS at follow-up, 22%
of BVD
severity model

CNS repair; 3. Complement/coagulation; and
4. Adaptive immunity and CNS stress).
Cluster 2: predominance of males with
progressive MS, relatively low expression in
the CNS repair module and high expression
in the myeloid lineage/TNF and
complement/coagulation modules. These
patients had a higher MS severity.
Clusters 3 and 4 relatively enriched for
female subjects.
Cluster 3: high expression of adaptive
immunity and CNS module proteins and
enriched with relapsing MS subjects.
Cluster 4: relatively high expression of all
protein modules except for complement/
coagulation, with a relatively low MS severity

matory
other
ells/ml,
K cells, and B

and CD56dim
eripheral

matory
SF plasma cells
cal
s

Neuroinflammatory
diseases vs others:
70% sensitivity, 81%
specificity, 76%
accuracy,ROC-AUC
85%
MS vs other
neuroinflammatory
disorders:
Accuracy vs:
NMOSD: 87.3%;
Susac Syndrome:
95.3%; A
E: 89.4%.
ROC-AUC vs:
NMOSD: 91.5;
Susac Syndrome: 90.7;
AE: 82.7

MS vs other autoimmune diseases: besides
parameters such as intrathecal plasma cells
concomitant with IgG synthesis, the analyses
identified intrathecal IgA and IgM synthesis.
There were other disease-specific parameters,
such as alterations in circulating peripheral
blood CD56bright NKcells and intrathecal
lactate concentrations in NMOSD;
circulating CD4+ and CD8+ T cells in Susac
Syndrome; and circulating and intrathecal
lymphocytes, intrathecal NK T cells,
monocytes, and CD14+CD16+ monocytes
in AE.

D, cluster of differentiation; CIS, clinically isolated syndrome; CNN, convolutional neural network;
-organising feature maps; FT, functional trees; GaussianNB, Gaussian Naïve Bayes; GCIPL, macular
man microRNA Disease Database; IFN, interferon; IL, interleukin; miRNA, microRNA; MS, multiple
; NNA, neural network analysis; OCT, optical coherence tomography; ON, optic neuritis; OND, other
machine with radial basis function; RF, random forests; RNFL, retinal nerve fiber layer; ROC-AUC,
MS, secondary progressive multiple sclerosis; sTNFR, soluble tumour necrosis factor receptor; SVM,
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Reference Training and
testing cohort, N

Independent
validation
cohort, N

Biomarker
profiles

AI
method:
algorithms

Model input Model o

and follow-
severity out

Gross et al.,
Brain. 2021
[ref (44)]

Autoimmune
neuroinflammatory
diseases: n=282 (relapsing
MS n=196, NMOSD n=15,
Susac syndrome n=14, AE
n=57)
Degenerative diseases:
n=93 (amyotrophic lateral
sclerosis n=52, mild
Alzheimer´s Disease n=41)
Vascular conditions: n=97
Non-inflammatory
controls: n=74 (with
somatoform disorders or
who donated CSF during
the course of spinal
anesthesia).
Total n=546

Additional subjects:
n=231
(neuroinflammatory
diseases: n=32;
neurodegenerative
diseases: n=156;
neurovascular
diseases: n=8; non-
inflammatory
controls: n=35)

CSF analysis with
multiparameter
flow cytometry to
identify 34 CSF
and blood
biomarkers after
assessing
for collinearity

Feature
selection with
dimensionality
reduction and
unsupervised
cluster analyses

34 CSF and
blood features

Neuroinflam
processes vs
conditions:
monocytes,
cells in CSF
NK cells in
blood.
MS vs other
neuroinflam
disorders: C
and intrathe
IgG synthes

ADAboost-FT, adaptive boosting applied to functional trees; AE, autoimmune encephalitis; AOPP, advanced oxidation protein products; BVD, brain volume deficit;
CombiWISE, combinatorial weight-adjusted disability score; CSF, cerebrospinal fluid; DT, decision tree; EDSS, Expandid Disability Status Scale; ESOM, emergent sel
ganglion cell-inner plexiform layer; GEO, gene expression omnibus data repository; CNS, central nervous system; GTPase, guanosine triphosphate enzyme; HMDD, Hu
sclerosis; MS-DSS, Multiple Sclerosis Disease Severity Score; MSSS, Multiple Sclerosis Severity Score; NK, natural killer; NMOSD, neuromyelitis optica spectrum disorder
neurological diseases; OPL, outer plexiform layer; PBMCs, peripheral blood mononuclear cells; PPMS, primary progressive multiple sclerosis; RBF/SVM, support vecto
receiver-operating characteristic curve-area under the curve; RRMS, relapsing remitting multiple sclerosis; SH, sulphydryl; sNfL, neurofilament light chain in serum; SP
support vector machine; Th, T helper cells; TNF, tumour necrosis factor; TRAP, total radical-trapping antioxidant parameter.
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relapsing vs progressive MS classifier showed 83.3% sensitivity and

93.8% precision. Associated biological themes included cell cycle

and T cell activation for both progressive forms; protein

ubiquitination, cell migration, and fatty acid metabolism for

PPMS; and GTPase activity regulation, locomotor behaviour, and

blood coagulation in SPMS.

MicroRNAs (miRNAs) play critical roles in post-transcriptomal

gene expression regulation. In MS, miRNAs have been implicated in

various aspects of the disease’s pathophysiology (35). Sun et al. (36)

proposed a convolutional neural network (CNN)-based model to

identify MS-related miRNAs and compared it to other existing

methods: DT, SVM, logistic regression, and Gaussian Naïve Bayes.

Using the miRNA-MS associations from the Human microRNA

Disease Database (HMDD), the CNN model showed the highest

ROC-AUC (0.87). Some of the top 10 predicted miRNAs were

differentially expressed in RRMS or related to Th17 cell

differentiation, whereas another one decreased after initiation of

therapy with interferon b.
L i p i d me t abo l i sm may influenc e infl ammat i on ,

neurodegeneration, myelin damage, and repair processes in MS

(37). Lötsch et al. (38) used unsupervised ML implemented as

emergent self-organising feature maps (ESOM) combined with the

U*-matrix visualisation technique to analyse eicosanoids,

ceramides, and lysophosphatidic acids in serum of 102 PwMS and

301 HC, to find distance and density-based structures. Clear data

structures were observed in eicosanoid and ceramide

concentrations. Whereas the classification of MS vs HC yielded a

moderate performance with eicosanoids (54% sensitivity, 100%

specificity, 77% accuracy) the structures emerging with ceramides

resulted in a high performance (89.2% sensitivity, 100% specificity,

94.6% accuracy).

An imbalance of oxidant and antioxidant molecules has been

implicated in demyelination and axonal damage in MS. Mezzaroba

et al. (39) used supervised ML (neural network analysis [NNA] and

SVM with radial basis function [RBF/SVM]) to evaluate

discriminatory patterns in plasma of 9 oxidants and antioxidants

and zinc serum levels, in 174 PwMS and 182 controls. The

combination of low levels of four antioxidants and increased

levels of one oxidant yielded the best prediction for MS

(sensitivity 98.7%, specificity 91.7%, AUC-ROC 0.990). The SVM

analyses obtained 93.51% training and 92.03% validation

accuracies (39).

Cytokines play an important role in Th cell differentiation and

recruitment of auto-reactive T and B cells in MS. Goyal et al. (40)

used four ML models (SVM, DT, RF, and neural networks) to

identify serum cytokines predictive of MS. They also assessed the

cytokines with age, sex, disease duration, EDSS, and MSSS to

classify MS into remitting and non-remitting MS. They used 910

serum samples from PwMS and 199 from HC (total n=1109). Of

these, 900 were included in the training set and 209 in the testing

set. RF was the model that best predicted MS (sensitivity 75.6%,

specificity 85.7%, accuracy 90.91%, ROC-AUC 0.957) and also had

the highest accuracy (70%) to differentiate relapsing from non-

relapsing MS. In the validation set, the RF model was again the best

discriminator (40).
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Neurofilament light chain (NfL) is a biomarker of axonal

damage in MS (41). Seitz et al. (42) used SVM analysis to test for

associations between baseline serum NfL (sNfL) and different

retinal thickness measures in 156 early MS patients: 110 with no

history of optic neuritis (ON) and 46 with ON. After adjusting for

age, sex, disease duration, and EDSS, a significant correlation was

found only between high sNfL levels and low outer plexiform layer

(OPL) volume in patients with a history of ON. Follow-up OCTs

available for 38 subjects with a mean (SD) follow-up of 2.1 (1.4)

years showed baseline sNfL correlated with absolute OPL atrophy in

ON. sNfL levels predicted OPL volume with 75.9% training and

76.2% testing accuracies. In the longitudinal analysis, sNfL

predicted OPL atrophy with 72.5% training and 71.8%

testing accuracies.

Other studies have focused on CSF biomarkers. Kosa et al. (43)

used RF to search for biomarkers among 1305 proteins in CSF of

227 PwMS to build models predictive of disease severity. To

differentiate natural aging and sex effects from MS-related

mechanisms they used data from 24 HC. MS severity was

assessed using the combinatorial weight-adjusted disability score

(CombiWISE)-based MS Disease Severity Score (MS-DSS)

measured at baseline and follow-up, and the brain volume deficit

(BVD) severity outcome, based on linear regression models of brain

parenchymal fraction and age, calculated from MRIs performed

within 3 months of CSF collection. Initial analyses demonstrated

positive associations of coagulation and complement cascades and

negative associations for NOTCH signalling and neuron

recognition categories with MS severity. After adjusting for age

and sex, the model selected 75 biomarkers explaining 62% of

variance for baseline MS-DSS. For follow-up MS-DSS, 34

biomarkers were selected and 35 for BVD explaining 60% of

variance. The effect sizes decreased to 17%, 26%, and 22% of

variance in the validation cohort (n=98). Using unsupervised

cluster analyses, the authors identified seven patient clusters

differing in CSF protein concentrations from four protein

modules. Of note, one cluster had a predominance of men with

progressive MS, a relatively low expression in the CNS repair

module and high expression in the myeloid lineage/TNF and

complement/coagulation modules. These patients had a higher

MS severity.

Cellular characterisation in blood and CSF can help differentiate

between CNS disorders and clarify their pathophysiological

processes. Gross et al. (44) combined feature selection with

dimensionality reduction and unsupervised cluster analyses to

inve s t i g a t e pa rame t e r s a l t e r ed ac ro s s au to immune

neuroinflammatory diseases [RRMS n=196, neuromyelitis optica

spectrum disorders (NMOSD) n=15, Susac syndrome n=14,

autoimmune encephalitis (AE) n=57], other CNS conditions

(neurodegenerative n=93, vascular n=97), and non-inflammatory

controls (n=74) (total n=546). The validation cohort included 231

additional subjects (neuroinflammatory n=32, neurodegenerative

n=156, neurovascular n=8, non-inflammatory controls n=35).

Exploratory analyses identified four CSF parameters and one

peripheral blood parameter that together discriminated

neuroinflammatory diseases from other groups (70% sensitivity,
frontiersin.org
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81% specificity, 76% accuracy, ROC-AUC of 85%). When aiming to

differentiate MS from other neuroinflammatory diseases, CSF

plasma cells and intrathecal IgG synthesis alone were sufficient to

distinguish RRMS from other neuroinflammatory diseases with

high accuracy and ROC-AUC (NMOSD: 87.3% and 91.5%; Susac

syndrome: 95.3% and 90.7%; AE: 89.4% and 82.7%). Finally, the

authors compared cell profiles in RIS, CIS and early RRMS (≤36

months from disease onset) vs late RRMS (>36 months). Alterations

in the proportions of CD56dim NK cells and biomarkers of

intrathecal inflammation gradually increased during disease

evolution. When splitting RRMS based on inflammatory activity,

minor effects were shown in most intrathecal parameters, whereas

changes in peripheral and intrathecal CD4+CD8+ T cells and

intrathecal plasma cells were more pronounced.
Limitations of AI-based research in MS
fluid biomarkers

AI-based studies using fluid biomarkers in MS offer promising

results. However, these studies have limitations which are worth

being mentioned. In general, all these studies still have relatively

small sample sizes, which, together with the lack of external

validation analyses in many of them, limit the generalisability of

the results. Also, despite the low number of studies published so far,

there is a large methodological variability, which, at times, is not

explained in detail, making it very difficult to replicate the analyses

done (Tables 1–3). These limitations are common to all AI-based

studies that harness biomarker data to improve the diagnosis,

predict or understand the disease, thus hampering the application

of all these models to clinical practice.

In relation to the specific limitations of those studies focused on

diagnosis, the number and types of diseases which have been

compared with are limited. Furthermore, many of the tests

(biomarkers) used by the authors are not available in routine clinical

practice. These aspects reduce the utility of these models in practice, at

least in the short term, suggesting the need for more research.

Regarding the studies focused on prediction of disease evolution,

apart from the general limitations abovementioned, many of them

have cross-sectional designs or, if they have a longitudinal design,

there is a relatively short follow-up time in most of the cases. Also,

very often, the effect of treatment is not taken into account.

Furthermore, most studies were not adjusted for important

demographic, clinical and technical aspects, such as race, ethnicity,

disease duration, brain volume, and the interval between sampling

and relapses or their treatment. Finally, despite the developments in

AI-based models in MS which use raw neuroimaging and deep

learning techniques to predict clinical outcome, the integration of

these into AI-based models which use fluid biomarkers (or the other

way around) is still lacking. Little is known about the complementary

roles of both types of predictors and the potential synergies between

them. However, it is highly likely that only when both are used

together in comprehensive models, a real impact on the clinical

management of MS can be achieved. Such integration requires,

though, intensive methodological research which will hopefully

bear fruit in the near future.
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Lastly, regarding the limitations of the studies focused on

understanding disease mechanisms, many of them are far too

focused on certain paths or predictors, therefore not allowing us

to explain or understand the whole picture. Also, very importantly,

the fact that many of these biomarkers, paths, or predictors, may

explain the same variance of a given outcome measure but we are

not aware of that – because typically one study tends to focus on a

given path – implies that many of the associations found may be

reflecting mere epiphenomena rather than causally related events.

Whereas this might be less relevant for building predictive models,

for those studies which aim at understanding the disease through

AI, this may be deleterious.
Conclusions and future directions

The application of AI-based methodologies to tackle key

challenges in MS is exponentially increasing. However, in this

context, the number of studies published in the literature focusing

on the use of fluid biomarker data is still small. Most of these

publications are focused on serum biomarkers, genetic variants, and

gene expression profiles as predictors. Of note, only half of them

have included an external validation analysis of the developed AI

model, thus hampering a full interpretation of the results and their

potential generalisability.

Importantly, after the assessment of the papers published so far,

it may be said that the research on AI applied to biomarker data is

still quite in its early days and that we are still far from clinical

applications. So far, AI methodologies have been very useful for

biomarker discovery in MS, but the large heterogeneity of methods

and results suggests that we may need many years of research before

prototypes can be launched to help healthcare professionals and

patients in the clinic.

Along the same lines, even though many studies reported much

higher accuracy levels when fluid biomarker, MRI, and clinical data

were combined as predictors of diagnosis or disease evolution, large

studies combining the most important types of predictor acquired in

the clinic are lacking. Only when these take place and are replicated in

large independent cohorts will we be able to comprehend their full

potential and start considering that a change in patient management

thanks to the introduction of those AI-based models is possible. Of

note, for these models to be useful in the clinic, they need to use, as

input data (predictors), routinely-acquired biomarkers, including

laboratory, imaging, and clinical data. On the other hand, it is

possible that a branch of AI-based research in MS, i.e., that focused

on understanding the pathogenic mechanisms and those processes

underlying disability accumulation, continues to exist with the use of

less common (non-routinely acquired) biomarkers. This research is

also important and will surely bring to light crucial knowledge on the

disease, essential for its ultimate eradication. A final conclusion is that

all studies carried out so far confirm the leading role of inflammatory

pathways in MS.

Future directions include the development of larger studies with

validation in independent datasets. Also, future directions should

aim at the design of longitudinal studies with longer follow-ups (for

those mainly focused on future prediction), hopefully accounting
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for the complex effects of disease-modifying treatments and other

dynamic data, as well as the integration of fluid biomarkers,

neuroimaging, optical coherence tomography (OCT) imaging,

and clinical predictor data to build robust and powerful models.

Furthermore, forthcoming research endeavours must transition

from the current exploratory phase of AI-based methodologies

applied to biomarker data in MS to a more translational stage.

This shift necessitates thorough evaluation of the clinical utility of

the constructed AI models. For that, the future lies in creating

guidelines for AI-based analyses to improve the comparability

across studies, to shed light on the steps needed to go from

discovery to clinical practice implementation, and to evaluate

utility of AI-based algorithms in practice. Additionally, we should

be able to learn from AI-based investigations on other

neurodegenerative diseases (45) to overcome the challenges

surrounding these types of studies.

As a final consideration, it is imperative to recognise that

addressing ethical and inequality concerns surrounding AI-based

analyses is just as crucial as resolving technical challenges. With the

exponential growth of AI studies, maintaining research integrity in

AI research demands not only initial attention but also ongoing

evolution, keeping pace with the rapid advancement of science to

meet the needs and expectations of us all.
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