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Objective: The aim of this research was to gain a thorough understanding of the

processes involved in cell communication and discover potential indicators for

treating multiple myeloma (MM) through the use of single-cell RNA sequencing

(scRNA-seq).Andexploredtheexpressionofmultiplemyeloma-relatedsubgroupson

metal ion-related pathways to explore the relationship between MM andmetal ions.

Methods:We performed a fair examination using single-cell RNA sequencing on

32 bone marrow specimens collected from 22 individuals at different points of

MM advancement and 9 individuals without any health issues. To analyze the

scRNA-seq data, we employed advanced computational algorithms, including

Slingshot, Monocle2, and other methodologies. Specifically, Slingshot and

Monocle2 enabled us to simulate the biological functionalities of different cell

populations and map trajectories of cell developmental pathways. Additionally,

we utilized the UMAP algorithm, a powerful dimension reduction technique, to

cluster cells and identify genes that were differentially expressed across clusters.

Results: Our study revealed distinct gene expression patterns and molecular

pathways within each patient, which exhibited associations with disease

progression. The analysis provided insights into the tumor microenvironment (TME),

intra- and inter-patient heterogeneity, and cell-cell interactions mediated by ligand-

receptor signaling. And found that multiple myeloma-related subgroups were

expressed higher levels in MMP and TIMP pathways, there were some associations.

Conclusion: Our study presents a fresh perspective for future research endeavors

and clinical interventions in the field of MM. The identified gene expression patterns

and molecular pathways hold immense potential as therapeutic targets for the

treatment of multiple myeloma. The utilization of scRNA-seq technology has

significantly contributed to a more precise understanding of the complex cellular

processes and interactions within MM. Through these advancements, we are now

better equipped to unravel the underlyingmechanisms driving the development and

progression of this complex disease.
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Introduction

Multiple myeloma (MM) is a type of cancer that affects plasma

cells (PCs) and primarily manifests in the bone marrow (BM). It

constitutes over 10 percent of all hematologic malignancies (1). MM

usually develops from precursor conditions called monoclonal

gammopathy of undetermined significance (MGUS) and

smoldering multiple myeloma (SMM) (2).

Immunodeficiency characterizes multiple myeloma, a

malignant disease that cannot be cured. In comparison to other

blood cancers, this one has a gradual beginning. Patients typically

show signs of monoclonal gammopathy of uncertain significance

(MGUS) at the beginning of their clinical presentation,

characterized by the presence of localized myeloma cells and

indicating a pre-cancerous state (3). Afterward, the illness

advances to smoldering multiple myeloma (SMM) without

harming essential organs (4, 5). Ultimately, patients advance to

multiple myeloma, displaying clinical symptoms of end-organ

dysfunction (6). Continual work is being done to advance

immunotherapy options for multiple myeloma, including

monoclonal antibodies, bispecific T cell engagers, antibody-drug

conjugates, and adoptive cell therapies like CAR-T, CAR-natural

killer (NK), and TCR-T (7, 8). Despite some success with these

methods, multiple myeloma continues to be incurable because of

the development of both natural and acquired resistance to

treatment. Hence, it is imperative to investigate new therapeutic

possibilities for individuals suffering from this ailment.

The use of single-cell transcriptome analysis has become

essential for studying complex biological processes in diverse cell

populations (9). Monocle2 algorithm uses the single-cell

transcriptome expression matrix to model the biological functions

of cell populations. It achieves this by employing unsupervised

learning techniques to delineate distinct branches of cell

developmental trajectories (10). Additionally, the UMAP

algorithm enables the clustering of cells, facilitating the

identification of differentially expressed genes across various

cellular states. This analysis aids in the identification of pivotal

genes that influence diverse differentiation pathways (11).

Traditional methods of bulk RNA sequencing require the analysis

of a combination of all cells, which may hide differences in the typical

transcriptome of particular cell types. On the other hand, scRNA-seq

allows for the analysis of gene expression at a single-cell level,

revealing cell-to-cell communication pathways and facilitating the

discovery of unique cellular conditions in tumors. Single-cell RNA

sequencing offers a more accurate comprehension of the tumor

microenvironment, revealing the reasons behind variations within

and between patients, along with the communication between cells

through ligand-receptor signaling (12). To date, numerous studies

employing scRNA-seq have investigated the expression profiles of

single cells within bone marrow tissues of multiple myeloma (MM)

patients, shedding light on tumor cells and TME cellular components

(13–22). In previous studies, the microenvironment of multiple

myeloma after lymphodepletion was explored by scRNA-seq,

which proved that scRNA-seq has a good role in this regard (23).

However, the precise mechanisms governing cell-cell interactions

between tumors and the TME in MM remain elusive.
Frontiers in Immunology 02
Matrix metalloproteinases (MMPs) and tissue inhibitor of

metalloproteinases (TIMPs) play a vital role in the pathogenesis

of multiple myeloma (MM), especially for tumor invasion and

osteolytic osteopathy (24). So, to study the impact of metal ions on

multiple myeloma, we can start from these two pathways.

In order to fully understand the processes involved in cell

communication and discover possible indicators for treating

myeloma, we carried out an impartial study using scRNA-seq.

The research included 32 bone marrow specimens collected from

22 individuals at different points of multiple myeloma development,

along with 9 donors who were in good health. The objective was to

uncover novel targets for myeloma treatment. These discoveries

offer fresh perspectives for future research endeavors and clinical

interventions in the field of multiple myeloma (25–27).
Methods

Data source

A combined 32 bone marrow specimens were obtained from 22

individuals at different phases of multiple myeloma advancement, in

addition to 9 samples from donors in good health. The selection of

specific bone marrow specimens for our study was based on a careful

consideration of the research objectives and the need to capture the

diverse stages of MM advancement. We aimed to encompass a

comprehensive representation of the disease progression and its

associated molecular changes. ScRNA-seq datas came from GEO

website (https://www.ncbi.nlm.nih.gov/geo/), with GSE number

GSE124310. The samples included: GSM3528753, GSM3528755,

GSM3528757, GSM3528759, GSM3528762, GSM3528764,

GSM3528767, GSM3528769, GSM3528771, GSM3528773,

GSM3528775, GSM3528777, GSM3528779, GSM3528781,

GSM3528783, GSM3528785, GSM3528787, GSM3528789,

GSM3528791, GSM3528794, GSM3528796, GSM3528798,

GSM3528800, GSM3528802, GSM3528804, GSM3528807,

GSM3528809, GSM3528810, GSM3528812, GSM3528814,

GSM3528816, GSM3528818.
Processing of scRNA-seq datas

The research involved analyzing the gene expression data with

Seurat software (version 4.3.0) to isolate top-quality cells (28). After

quality control, the DoubletFinder package was utilized to identify

and remove potential doublet cells (29, 30). The remaining cells

were then normalized, and the top 2000 hypervariable genes were

selected for further analysis. The gene expression data of these genes

were standardized.

Standardized gene expression data underwent Principal

Component Analysis (PCA) (31). The Harmony method was

applied to remove batch effects between samples. For UMAP

dimensionality reduction and visualization of gene expression, the

initial 30 significant principal components (PCs) were chosen for

uniform manifold approximation and projection (UMAP)
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dimensionality reduction and visualization of gene expression

(32–34).

To eliminate poor-quality cells, those with unusually high

nFeature and nCount values were eliminated, as well as cells

where mitochondrial gene expression made up over 20% of the

total expression, and cells with erythrocyte gene expression

surpassing 5% of the total expression were also excluded.

The cell clusters obtained from the UMAP analysis were annotated

using the CellMarker database, which is a comprehensive resource for

cell type annotation based on previous literature (http://

xteam.xbio.top/CellMarker/). This annotation process helped

identify the cell types present in the dataset.

Moreover, the research investigated the percentage of various

cell categories in the data, offering a glimpse into the cellular

makeup of the samples under scrutiny.

In general, the preprocessing and analysis of this data enabled

the detection of top-notch cells, elimination of batch discrepancies,

reduction of dimensions, and annotation of cell types, laying the

groundwork for deeper investigation into the diversity and makeup

of cells in the setting of multiple myeloma.
DEGs

The study identified differentially expressed genes (DEGs) (35)

for each cell type by utilizing the FindAllMarkers function (36, 37)

within the Seurat software package (38, 39). This analysis was

performed on the standardized gene expression data. Specifically,

genes expressed in more than 25% of the cells within a cluster and

with a log fold change (logFC) value greater than 0.25 were selected

as potential marker genes for that cluster.
KEGG and GO analysis

In order to explore the functional consequences of these

differentially expressed genes (DEGs), we performed enrichment

analyses using KEGG (Kyoto Encyclopedia of Genes and Genomes)

(40–44) and GO (Gene Ontology) (45, 46). Genes that had an

adjusted p-value below 0.05 were deemed statistically significant in

the analysis. ClusterProfiler software (v0.1.1) was used to analyze

and enrich cluster-specific biomarker genes (47–49).

The researchers conducted enrichment analyses to understand

the biological processes, molecular functions, and pathways linked to

the various cell types identified in the study. This data can provide

insight into the operational traits and possible functions of particular

cell varieties within the framework of multiple myeloma (50).
Distinguishing between myeloma cells and
non-cancerous plasma cells
using inferCNV

The researchers in the study sought to differentiate myeloma

cells from non-cancerous plasma cells by analyzing the copy

number variation (CNV) signal in various genomic regions. The
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inferCNV package (51) was employed, accessible on GitHub at

https://github.com/broadinstitute/inferCNV/wiki.

T-NK cells were utilized as a reference to predict the initial

CNV signal, leading the researchers to identify myeloma cells as

subgroups with significant copy number variation. By using this

method, they were able to pinpoint genetic areas that showed

notable changes in copy numbers in myeloma cells when

compared to non-cancerous plasma cells.
Determination of cell subgroups

After extracting all myeloma cells, they were normalized again to

identify the top 2000 hypervariable genes. The expression data of these

genes were then standardized. Following this, the standardized gene

expression data underwent principal component analysis (PCA).
Trajectory analysis

To investigate the tumorigenesis of myeloma cells, the

researchers employed three software packages to analyze the

trajectory of myeloma cell subgroups.

The CytoTRACE algorithm was used to evaluate the stemness

of cells in each subgroup. Stemness refers to the degree to which a

cell retains its ability to differentiate into various cell types. By

evaluating the stemness of myeloma cell subgroups, the researchers

aimed to gain insights into the differentiation potential and

hierarchy within the cell population.

TheMonocle software toolkit (52) was employed to reconstruct the

trajectory of cell differentiation. Monocle is a well-liked software used

for examining data from single-cell RNA sequencing and predicting

the paths of development (53). By utilizing Monocle, we aimed to

understand the progression of myeloma cells from less differentiated to

more differentiated states. The examination may offer understanding

into the cellular mechanisms and control systems implicated in

myeloma tumor formation. Utilizing the DDRTree technique, the

data was condensed to observe the evolution of cell clusters along

the novel path. DDRTree is a dimensionality reduction technique that

helps reveal the underlying structure and relationships within high-

dimensional datasets. By applying DDRTree, we could observe the

progression and branching patterns of myeloma cell subgroups in a

reduced-dimensional space.

Furthermore, the slingshot method was employed to analyze the

cell trajectory during the differentiation of myeloma cells. Slingshot is a

computational method that infers cell lineages and estimates the

expression levels of each lineage over time. By using slingshot, the

researchers aimed to gain insights into the temporal dynamics and

lineage relationships of myeloma cell subgroups during the process

of differentiation.
Intercellular interaction analysis

Researchers used the ‘CellChat’ package (version 1.6.1) to study

the network of interactions between myeloma subgroups and other
frontiersin.org
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cells in the microenvironment (54). The purpose of this package is

to examine and deduce communication between cells through

signal pathways and interactions between receptors and ligands.

The researchers utilized the CellChat software to investigate the

interactions between ligands and receptors of niche cell subtypes

(microenvironment cells) and malignant cells (myeloma

subgroups). Ligands are signaling molecules secreted by cells,

while receptors are proteins on the cell surface that can bind to

specific ligands and initiate signaling pathways. By identifying the

ligand-receptor pairs between different cell types, the researchers

aimed to understand the potential signaling interactions and

communication between the microenvironment cells and

myeloma subgroups.

Furthermore, the CellChat package allowed the researchers to

explore how signal pathways were coordinated among various cell

types. This analysis helps in understanding the overall

communication network and signaling crosstalk between different

cell populations within the myeloma microenvironment. By

studying the coordination of signal pathways, the researchers

could gain insights into the complex cellular interactions and

regulatory mechanisms involved in myeloma tumorigenesis

and progression.
SCENIC analysis

For the research, we employed the pyscenic software (v0.10.0)

in Python (v3.7) to build a gene regulatory network and pinpoint

consistent cell conditions with scRNA-seq data.

Initially, pySCENIC was utilized to assess the enrichment of

transcription factors (TFs) and the effectiveness of regulators (55).

This analysis aimed to identify TFs that were enriched in specific

cell states and regulators that were active in driving gene expression

changes within those states. By assessing TF enrichment and

regulator activity, the researchers gained insights into the

regulatory mechanisms underlying cell state transitions and gene

expression patterns.

We utilized co-expression and DNA motif analysis to build the

gene regulatory network. Co-expression analysis identifies genes

that are co-regulated and likely to be part of the same regulatory

network. DNA motif analysis involves examining the presence of

specific DNA sequence motifs, which are binding sites for TFs, in

the regulatory regions of genes. The scientists created a gene

regulatory network by analyzing co-expression and DNA motifs

to deduce the regulatory connections between transcription factors

and target genes.

To determine the cell state, we examined the activity of the gene

regulatory network in each cell. Through evaluating the behavior of

transcription factors and controllers in the system, scientists were

able to categorize cells into distinct conditions and pinpoint steady

cell conditions by analyzing their gene expression profiles and

regulatory behavior. To guide the search for the transcription

factor regulatory network around the transcription initiation site,

we utilized the ranking of gene motifs within a 10 kb region

surrounding the transcription initiation site. This ranking
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provided a guide for identifying potential TF binding sites and

regulatory interactions in the vicinity of gene promoters.

In this study, we employed the pySCENIC software to construct

a gene regulatory network and identify consistent cell conditions

using scRNA-seq data. They utilized pySCENIC to assess the

enrichment of transcription factors (TFs) and regulators, gaining

insights into the regulatory mechanisms underlying cell state

transitions and gene expression patterns. Co-expression and DNA

motif analysis were used to build the gene regulatory network,

identifying co-regulated genes and potential TF binding sites. By

evaluating the activity of the gene regulatory network, we

categorized cells into distinct conditions and pinpointed steady

cell conditions based on gene expression profiles and regulatory

behavior. The ranking of gene motifs around the transcription

initiation site guided the search for potential TF binding sites and

regulatory interactions.

Overall, this method played a crucial role in deciphering the gene

regulatory landscape and understanding cell states in the study.
Results

scRNA sequencing annotated major cell
types in multiple myeloma progression

A combined 32 bone marrow specimens were obtained from 22

individuals at different phases of multiple myeloma advancement,

in addition to 9 samples from donors in good health. Through the

use of scRNA-seq, we were able to pinpoint the primary cell

categories contributing to the advancement of multiple myeloma.

After performing initial quality control measures and

eliminating batch effects, we retained a total of 24,181 cells for

further analysis. These cells were categorized into 21 distinct

clusters, each assigned a different color (Figure 1A). By analyzing

the distinct gene expression patterns in these groups, we categorized

them into six cell types (56): Monocytes (clusters 2, 6, 10, 13, 17),

Hematopoietic Progenitor Cells (HPCs) (clusters 11, 12, 14, 20),

Plasmacytoid Dendritic Cells (pDCs) (cluster 18), B cells (clusters 8,

19), T_NK cells (clusters 0, 1, 3, 4, 5, 9, 15, 16), and Plasma cells

(cluster 7) (Figure 1B).

For visualizing the distinct cellular shapes of each type of cell,

we utilized Uniform Manifold Approximation and Projection

(UMAP) to reduce dimensionality (Figure 1C). Additionally, we

utilized UMAP to illustrate the distribution of the 24,181 cells

across different sample groups and cell cycle phases (Figures 1D, E).

Figure 1F displayed a dot plot showing the top 5 genes with high

expression levels in different cell types. As MM is a type of blood

cancer defined by the existence of unusual plasma cells in the boneEI

marrow, we examined the average expression level of five genes

(IGKC, IGHG3, IGHG4, IGHG1, IGLL5) in the six cell types and

illustrated their expression patterns in Figure 1G. Interestingly, these

five genes exhibited predominantly elevated expression in plasma cells,

aligning with the characteristic abnormal plasma cells observed in

multiple myeloma, which underwent monoclonal immunoglobulin

(IG) malignant proliferation in the bone marrow (57, 58).
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FIGURE 1

scRNA sequencing revealed major cell types during the progression of multiple myeloma (MM). (A) UMAP plot showed 21 clusters of cells from
multiple myeloma patients. Each point represented an individual cell colored according to the cell cluster. (B) Chord diagram displayed different cell
types (T_NK cells, Monocytes cells, HPCs, pDCs, Plasma cells, B cells) within multiple myeloma cells. Different colors represented different cell types.
(C) Facet plots showed the distribution of cell clusters corresponding to six different cell types in multiple myeloma. (D) UMAP plot displayed the
distribution of five different groups corresponding to the 21 cell clusters in multiple myeloma patients. Different colors represented different groups.
(E) UMAP plot illustrated how phases were distributed among the six distinct cell types in cases of multiple myeloma. (F) Dot plot displayed the
differential expression of Top5maker genes in the six different cell types of multiple myeloma. The dots’ size indicated the proportion of gene
expression in the subgroups, while the intensity of color indicated the genes’ expression level. (G) Box plots showed the expression of Top5maker
genes in Plasma cells. (H) Bar plots showed the proportions of the six different cell types in different groups (above) and different phases (below) in
multiple myeloma. Different colors represented different cell types. (I) Volcano plots illustrated the gene expression differences in the six distinct cell
types of multiple myeloma. (J) Word cloud plots showed the enrichment of gene pathways in the six different cell types of multiple myeloma. The
size of the letters represents the number of enriched pathways, and the color represents the enrichment scores of the pathways in different cell
subgroups. (K) GO-BP enrichment analysis revealed the biological processes linked to the six distinct cell types found in multiple myeloma.
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We used a histogram to demonstrate how the six cell types are

distributed among various groups and stages. Notably, T_NK cells

constituted the lowest proportion in the normal bone marrow

(NBM) group, but their proportion increased in all other groups.

Conversely, plasma cells accounted for a larger proportion in

multiple myeloma (MM) samples and the G1 cell cycle

phase (Figure 1H).

To describe the differentially expressed genes and biological

processes among the six cell types, we utilized volcano diagrams

(Figure 1I) and word cloud diagrams (Figure 1J), respectively. The

volcano diagrams could detail five gene types that were highly

expressed in each cell type. The word cloud plots described in detail

the biological processes with high expression in each cell type,

among which the biological process with the highest correlation

with these three cell types (T_NK cells,pDCs,Monocytes) was

leukocyte, the biological process with the highest correlation with

HPCs was cycle, the biological process with the highest correlation

with B cells was immune, and the biological processes with the

highest correlation with plasma cells were endoplasmic, reticulum.

Furthermore, a heatmap was utilized to display the outcomes of

gene ontology biological process (GO-BP) enrichment analysis for

the varying gene expression in the six cell types (Figure 1K).
Identification of multiple myeloma
cell subtypes

To gain a deeper insight into the features of plasma cells in

multiple myeloma, we utilized inferCNV (Supplementary Figure 1)

for the analysis of single-cell RNA-seq data derived from multiple

myeloma cells. This allowed us to discern myeloma cells and

conduct additional subclustering. As a result, we successfully

clustered a total of 1,488 multiple myeloma cells into four distinct

cell subgroups.

The four identified cell subgroups were as follows: C0 IGLL5+

Myeloma Cells (724 cells), C1 IGHG4+ Myeloma Cells (310 cells),

C2 MALAT1+ Myeloma Cells (305 cells), and C3 IGHG1+

Myeloma Cells (149 cells). We visualized the distribution of these

four cell subgroups across sample groups and cell cycle phases, as

depicted in Figure 2A.

To highlight the highly expressed genes specific to each of the

four cell subtypes in multiple myeloma, we utilized a dot plot,

showcasing the top 5 genes for each subtype (Figure 2B). Moreover,

we visualized several relevant features of these four cell subgroups,

including S.score, G2M.score, nFeature_RNA, and nCount_RNA,

as shown in Figure 2C.

The distribution of the four cell subgroups across different

sample groups was demonstrated using histograms in Figure 2D.

Notably, we observed that C0 IGLL5+ Myeloma cells were only

present in two patients within the multiple myeloma (MM) group.

To fully grasp the variations in gene expression and biological

functions within the four cell subgroups, we utilized volcano plots

(Figure 2E) and word cloud plots visualizations (Figure 2F). Among

them, the biological processes with the highest correlation with C0

IGLL5+ Myeloma Cells were endoplasmic and reticulum. The

biological process with the highest correlation with C1 IGHG4+
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Myeloma Cells was subunit; The biological process most associated

with C2 MALAT1+ Myeloma Cells was biosynthetic; The biological

process most associated with C3 IGHG1+ Myeloma Cells was

electron. Additionally, an analysis was performed to enrich the

gene ontology biological process (GO-BP) for the genes that were

expressed differently in the four cell subgroups, and the findings

were visualized in Figure 2G using a heatmap.
Visualization of a pseudotime analysis of
multiple myeloma cells by CytoTRACE
and monocle

To elucidate the differentiation and developmental relationship

among the four cell subgroups of multiple myeloma cells, we

conducted an analysis of cell differentiation using CytoTRACE

(Figure 3A). The results were visualized, and it became evident

that the four cell subgroups exhibited a differentiation pattern from

C0 to C2, C3, and finally C1 (Figure 3B). Specifically, the C0 cell

subgroup displayed the highest degree of cell stemness, indicating

its primitive nature in the differentiation hierarchy.

To further investigate the genes associated with the most and

least differentiated cells, we utilized a bar chart that displayed these

genes based on their correlation with CytoTRACE (Figure 3C). This

visualization allowed us to identify the genes that exhibited the

strongest and weakest associations with the differentiation process.

To visualize the distribution of the four cell subgroups along the

pseudotime series, we employed UMAP and ridge plots. Notably,

the C0 IGLL5+ Myeloma cells were found to be positioned towards

the end of the pseudotime series (Figures 3D, E).

To provide a comprehensive depiction of the cell subgroup

states along the pseudotime series, we utilized UMAP plots and

histograms. Based on these visualizations, we identified three

distinct states. Specifically, the C0 IGLL5+ Myeloma Cells were

primarily located in state 2, while the C1 IGHG4+ Myeloma Cells

were predominantly distributed across state 1 and state 3. The C2

MALAT1+ Myeloma Cells exhibited distribution across all three

states, whereas the C3 IGHG1+ Myeloma cells were mainly found

in state 1 and state 3 (Figures 3F, G).

To explore the relationship between the pseudotime sequence

and the cell cycle phase, we employed box plots. The findings

indicated that the levels of expression in the four cell subgroups

were elevated during the G1 phase in contrast to the G2M and S

phases, with statistical significance (p<0.01) (Figure 3H).

UMAP plots were further utilized to showcase the distribution

of the four cell subgroups along the pseudotime sequence. The cell

subgroups exhibited differentiation from the two branches on the

right side towards the left side, converging at the first branch point,

and continuing to differentiate towards the left. Most cells of the C3

subgroup were located at the beginning of the pseudotime series,

while the majority of cells in the C0 subgroup were positioned at the

end of the pseudotime series. The C1 and C2 subgroups displayed

distribution at various points along the pseudotime series

(Figures 3I–K). The heatmap and facet plots of the top genes for

each subgroup along the pseudotime series further supported these

observations (Figures 3L, M).
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FIGURE 2

Visualization of multiple myeloma cell subpopulations. (A) UMAP visualization displayed four distinct groupings of myeloma cells from MM patients
along with the cell count in each group (top left); another UMAP visualization depicted the cell subgroups associated with the four groupings (top
right); additionally, a UMAP plot illustrated the arrangement of categories linked to the four cell subgroups (bottom left); lastly, a UMAP plot
showcased the spread of stages connected to the four cell subgroups (bottom right). Each point represented an individual cell colored according to
the cell subpopulation. (B) A dot plot was used to show the variation in expression levels of the top 5 genes in the four different cell subgroups. Dot
size indicated gene expression percentage in subgroups, while color intensity indicated gene expression level. (C) UMAP plots displayed the
important characteristics of the four cell subgroups: S.score, G2M.score, nFeature_RNA, nCount_RNA. (D) Bar graphs displayed the distribution of
the four cellular subgroups in every sample across the five categories the groups represented. (E) Volcano plots exhibited the gene expression of
differentially expressed genes across the four cell subgroups. (F) Gene pathway enrichment in the four cell subpopulations was demonstrated
through word cloud plots. The size of the letters represented the number of enriched pathways, and the color represented the enrichment scores of
the pathways in different cell subpopulations. (G) The GO-BP enrichment analysis revealed the biological processes linked to the four
cell subgroups.
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FIGURE 3

Visualization of pseudotime analysis of multiple myeloma cells using CytoTRACE and monocle. (A) The differentiation status analysis of multiple
myeloma cells was shown in a 2D plot on the left using CytoTRACE. Colors indicated the degree of differentiation. The CytoTRACE results for
various subpopulations of multiple myeloma cells were displayed in the plot on the right. Various colors indicated distinct groups of cells. (B) Box
plot showed the predicted ordering of cell subpopulations by CytoTRACE. (C) Bar plot showed genes correlated with the highest and lowest
differentiation levels based on their correlation with CytoTRACE. (D) The pseudotime distribution of cell subpopulations in multiple myeloma was
visualized on a UMAP plot. (E) Ridge plot displayed the pseudotime distribution of cell subpopulations in multiple myeloma. (F) UMAP plot illustrated
the distribution of pseudotime for cell subpopulations in multiple myeloma. (G) A bar graph displayed the percentages of the four cellular subgroups
in various stages throughout the pseudotime. (H) Box plot displayed the expression patterns of different phases along the pseudotime. *, p ≤ 0.05;
**, p<0.01; ***, p<0.001; ****, p<0.0001 indicated significant differences; ns indicated no significant difference. (I) The UMAP visualization depicted
how the four cell subpopulations were distributed across pseudotime. (J) UMAP plot displayed the distribution of the four cell clusters along the
pseudotime. (K) UMAP plot displayed the pseudotime trajectory of multiple myeloma cells. (L) Expression patterns of multiple myeloma-related
genes along the pseudotime were shown. The x-axis represented the pseudotime order, and the y-axis represented the average expression level of
each gene in the current cell state. (M) Facet plots displayed how the four cell subpopulations were distributed across the pseudotime. (N) Violin
plots showed how genes were expressed in the four cell subpopulations over pseudotime. (O) UMAP visualizations showed how named genes were
distributed across the four cell subpopulations along the pseudotime. (P) Scatter plots displayed the variations in gene expression of identified genes
in four cellular subgroups across the pseudotime.
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To illustrate the distribution of specific genes along the

pseudotime sequence of the four cell subgroups, we employed

violin plots, UMAP plots, and pseudotime scatter plots

(Figures 3N–P). These visualizations allowed us to examine the

expression patterns and dynamics of the named genes within each

cell subgroup throughout the pseudotime progression. By analyzing

the violin plots, we could observe the distribution and variation in

gene expression levels across the pseudotime series. The UMAP

plots provided a spatial representation of the gene expression

patterns within the cell subgroups, enabling us to identify any

spatial clustering or dispersion of cells based on gene expression.

The pseudotime scatter plots showcased the gene expression levels

of individual cells within each subgroup along the pseudotime axis,

providing insights into the temporal dynamics of gene expression

changes during cell differentiation. Collectively, these visualizations

facilitated a comprehensive understanding of how the named genes

were expressed and regulated within the pseudotime sequence of

the four cell subgroups.
Pseudotime trajectory slingshot analysis of
multiple myeloma cell subgroups

To investigate the presence of continuous branching lineage

structures in multiple myeloma cells, we utilized slingshot to

analyze the pseudotime trajectories of the four cell subgroups. As

a result, two lineages, namely lineage1 and lineage2, were

identified (Figure 4A).

To visualize the distribution and trajectory of each lineage,

UMAP diagrams were employed. The differentiation end of

lineage1 was represented by the C0 subgroup, while the

differentiation end of lineage2 was represented by the C3

subgroup (Figures 4B, C). These diagrams provided a spatial

representation of the two lineages and demonstrated their distinct

trajectories along the pseudotime axis.

Additionally, a GO-BP enrichment analysis was conducted to

understand the biological processes linked to each lineage. In

lineage1, the C1 subgroup was found to be related to renal-related

biological processes, while the C3 subgroup was associated with

small-related biological processes. The C4 subgroup was linked to

differentiation-related biological processes, and the C1 and C2

subgroups were associated with proliferation and subunit-related

biological processes, respectively. In lineage2, the C3 subgroup was

found to be related to Wnt-related biological processes (Figure 4D).

To further explore the expression patterns of named genes

within different subgroups along lineage1 and lineage2, scatter plots

were utilized. The graphs displayed the spread of identified genes

among the subcategories in each lineage and illustrated the changes

in differentiation over the pseudotime series (Figure 4E). It was seen

that C0 IGLL5+ Myeloma Cells was expressed higher at the

end of lineage1. The visual representations offered important

understandings on how the named genes are expressed and

regulated in lineage1 and lineage2 within multiple myeloma cells.
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CellChat analysis between cells

To comprehensively investigate complex cellular responses and

understand cell-cell interactions, we conducted an analysis of cell-

cell relationships and ligand-receptor communication networks.

Initially, we constructed an intercellular communication network

that encompassed various cell types, including the four subtypes of

multiple myeloma cells, Monocytes, B cells, T_NK cells, Plasma

cells, and others.

Figure 5A displayed the network visualization, showing

connections between cell types as lines with varying thickness to

represent the number of interaction pathways. A thicker line

indicated a greater number of interactions. Moreover, the

thickness of the line symbolized the strength of the connection,

where a thicker line denoted a more powerful interaction.

By analyzing this intercellular communication network, we

gained insights into the extensive connections and communication

pathways between different cell types, providing a systematic

understanding of the cellular interactions involved in multiple

myeloma and its surrounding microenvironment.

To gain further insights into cellular communication and

signaling pathways, we employed the gene expression pattern

analysis tools available on CellChat. Our aim was to investigate

how different cell types interact and communicate with each other.

Our initial goal was to uncover the connection between hidden

communication patterns and secretory cell clusters, in order to

understand the patterns of outgoing communication. We

discovered three distinct incoming signal patterns: Pattern 1

(involving T_NK cells and pDCs), Pattern 2 (involving C0 IGLL5

+ Myeloma Cells), and Pattern 3 (involving C3 IGHG1+ Myeloma

Cells). Additionally, we observed three outgoing signal patterns:

Pattern 1 (involving C0 IGLL5+ Myeloma Cells), Pattern 2

(involving C3 IGHG1+ Myeloma Cells), and Pattern 3 (involving

T_NK cells, B cells, and pDCs). Each pattern was associated with

specific incoming and outgoing signals (Figure 5C).

We used CellChat to quantitatively measure the ligand-receptor

network in order to identify important signals related to the four

myeloma cell subgroups. We used pattern recognition techniques to

forecast the main incoming and outgoing signals. In the context of

multiple myeloma, every cell type has the potential to function as a

secretory cell by transmitting signals, as well as a target cell by

receiving signals. The interaction between different cell types

through ligand-receptor signaling is thought to play a role in the

progression of multiple myeloma (Figure 5B).

Through examination of the ligand-receptor network and

detection of crucial incoming and outgoing signals, we developed

a more profound comprehension of the signaling connections

among various cell types in multiple myeloma. The information

offered valuable understanding of the processes involved in the

disease’s development and advancement.

CellChat used a pattern recognition technique relying on non-

negative matrix factorization to comprehend the coordination of

functions among various cell populations and signaling pathways.
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Through this analysis, we discovered three outgoing signal patterns

and three incoming signal patterns. The output revealed that a

significant portion of the incoming signaling in myeloma cells was

characterized by pattern 2 and pattern 3. These patterns indicated

various routes, such as BAFF, PECAM1, CADM, and more. On the

other hand, the signaling from T_NK cells, B cells, pDCs, and HPCs

exhibited pattern 1, which was associated with pathways such as

MIF, CD99, CLEC, and others.

These findings provided insights into the coordinated

communication and signaling between different cell populations

in multiple myeloma. Analyzing the worldwide communication

trends and important indicators can enhance our comprehension of

how different pathways and cell types interact, leading to a more

thorough understanding of the illness.
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Furthermore, the analysis of target cell communication patterns

revealed that the outgoing signaling from myeloma cells was

predominantly characterized by pattern 1 and pattern 2. These patterns

involvedsignalingpathwayssuchasAPP,MK,CADM,PECAM1,BTLA,

and others. In contrast, the signals released byT_NKcells, B cells, pDCs,

HPCs,andMonocytesshowedadifferentpattern,pattern3,influencedby

pathways like CLEC andCD99 (Figure 5D).

Interestingly, we observed thatMIF played a significant role in both

incoming and outgoing signaling of C0 IGLL5+ Myeloma cells.

Additionally, CLECwas found to be highly expressed inT_NKcells and

playedacrucial role inboth incomingandoutgoingpatterns (Figure5E).

A chord diagram was used to illustrate the connections between

the four subgroups of myeloma cells and other types of cells

(Figure 5F). The diagram offered a thorough depiction of the
FIGURE 4

Pseudotime trajectory analysis of multiple myeloma cell subpopulations using slingshot. (A) UMAP visualization displayed the spread of two distinct
paths of development modeled by pseudotime in every cell of multiple myeloma. (B) UMAP plot displayed Lineage1’s changes over pseudotime on
the left and its differentiation trajectory over pseudotime on the right. (C) UMAP plot displayed Lineage2’s changes over pseudotime on the left and
its differentiation trajectory on the right. (D) The analysis of GO-BP enrichment revealed the biological processes associated with the two
pseudotime paths of various subpopulations of multiple myeloma cells. Left: Lineage1; Right: Lineage2. (E) Scatter plots displayed the paths of
identified genes in the four subsets of multiple myeloma cells across the two lineages derived from slingshot visualization.
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interaction and communication among various cell groups in the

setting of multiple myeloma.

The results illuminated the complex web of communication and

signaling interactions among different cell types in cases of multiple

myeloma. The identification of key signaling pathways and their

associations with specific cell populations contributed to our

understanding of the disease’s complexity and may have

implications for developing targeted therapeutic approaches.
Frontiers in Immunology 11
Visual analysis of MIF and CLEC
signaling pathways

To investigate the functional pathways of MIF and CLEC

signaling, we conducted a visual analysis of these pathways.

Studies of the role of MIF (which largely functions via the type II

transmembrane receptor CD74) in prostate, bladder and kidney

cancers suggested that it is a pro-tumorigenic factor in
FIGURE 5

CellChat analysis of interactions between all cells. (A) Circular diagrams displayed the quantity of connections (on the left) and the intensity of
connections among every cell (on the right). (B) The bubble plots for outgoing contributions and incoming contributions displayed the
communication patterns among different subpopulations of multiple myeloma cells and other types of cells (C) Heatmap illustrated the pattern
identification of incoming cells on the left and outgoing cells on the right within all cells. (D) Sankey diagrams illustrated the deduced
communication patterns of secretory cells, indicating the relationship between these patterns and cell populations, along with signaling pathways.
Top: incoming Sankey diagram; Bottom: outgoing Sankey diagram. (E) Heatmaps showed the incoming and outgoing signal strength of all cell
interactions. (F) Interactions between the four cell subpopulations of multiple myeloma cells and other cell types were displayed in chord diagrams.
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genitourinary malignancy (59). Some previous studies have

mentioned that there is a correlation between CLEC and cancer

(60). First, we examined the ligand-receptor relationship between

the C0 subgroup and other subgroups in the MIF signaling pathway

using a dot plot (Figure 6A). This plot demonstrated the

interactions between C0 and other subgroups within the

MIF pathway.

Through the use of algorithmic calculations, we assessed the

significance of individual cell types and categorized them as

facilitators and drivers of MIF signaling in cell communication.

This analysis, known as “centrality measurement,” provided

insights into the key players in the MIF signaling pathway. The

myeloma cell subgroup C0 IGLL5+ displayed the highest level of

expression in the MIF signaling pathway, as depicted in Figure 6B.

Additionally, a scatter plot was created to display the gene

expression related to the MIF pathway in different cell types.

Notably, the myeloma cell subgroup C0 IGLL5+ Myeloma Cells

exhibited high expression of genes related to the MIF

pathway (Figure 6C).

The importance of the MIF signaling pathway was underscored

by these results, especially within the C0 subgroup of myeloma cells.

The dot plot analysis provided a comprehensive view of gene

expression within different cell types, emphasizing the role of the

C0 subgroup in the MIF pathway.

Through clarifying the roles of MIF and CLEC signaling

pathways and their connections to distinct cell groups, we

enhanced our comprehension of the molecular processes involved

in multiple myeloma. This information had the potential to aid in

the creation of specific treatments and actions designed to

understand these communication pathways for medical purposes.

Figure 6D displayed the ligand-receptor interactions between

myeloma cells and other cell types in a visual chord diagram. To

further analyze the MIF signaling pathway, we categorized all nine

identified cell types in myeloma as potential MIF source cells. On

the left side of Figure 6E, we selected four cell types as potential

target cells. The stratification plot revealed that only C0 IGLL5+

Myeloma Cells had the ability to target the MIF released by all nine

cell types.

Conversely, when the remaining five cell types mentioned in

Figure 6E were examined as potential recipients, the graph showed

the attraction of MIFs produced by all nine cell types, as shown

in Figure 6E.

To provide more detailed insights into the cell-cell interactions

within the MIF signaling pathway, Figure 6F displayed the specifics

of these interactions.

These analyses highlighted the complex and multifaceted nature

of the MIF signaling pathway in multiple myeloma. The stratification

plots demonstrated the unique targeting capabilities of C0 IGLL5+

Myeloma Cells and emphasized their role in the MIF-mediated

communication network. Understanding the specific interactions

between different cell types in the MIF signaling pathway can aid

in the development of targeted therapies that disrupt these

interactions and potentially attenuate disease progression.

To investigate the involvement of T_NK cells in the CLEC

signaling pathway, we visualized the pathway and analyzed their

interactions with other subgroups. The dot plot (Figure 6G)
Frontiers in Immunology 12
demonstrated the ligand-receptor relationships between T_NK

cells and other subgroups within the CLEC signaling pathway.

By employing the “centrality measurement” approach, we

determined the relative expression levels of different cell types in

the CLEC signaling pathway. As shown in Figure 6H, T_NK cells

exhibited the highest expression among all cell types in the CLEC

pathway, indicating their significant involvement in this

signaling cascade.

Figure 6I, the dot plot, provided additional visualization of gene

expression levels related to the CLEC pathway in various cell types.

Notably, T_NK cells displayed high expression of genes relevant to

the CLEC signaling pathway.

To visualize the ligand-receptor interactions specifically

involving T_NK cells, the chord plot (Figure 6J) was utilized. It

provided a comprehensive view of the ligands between T_NK cells

and other cells within the CLEC signaling pathway.

The stratified plots (Figure 6K) demonstrated the expression

patterns of T_NK cells in response to the ligands released by other

cell types within the CLEC pathway.

To delve deeper into the specific cell-cell interactions within the

CLEC signaling pathway, Figure 6L showcased the details of

these interactions.

These analyses shed light on the role of T_NK cells in the CLEC

signaling pathway of multiple myeloma. The various types of plots,

including dot plots, chord plots, and stratified plots, along with

detailed information on cell-cell interactions, offered important

insights into the expression patterns and relationships of T_NK

cells. Comprehending the intricacies of these interactions may

enhance our comprehension of the CLEC signaling pathway and

its potential as a target for treatment in cases of multiple myeloma.
Expression of stemness genes in myeloma
cell subgroups

The CytoTrace analysis revealed that C0 IGLL5+ Myeloma

Cells exhibited the highest stemness among the different myeloma

cell subgroups (Figure 3B). In order to delve deeper into the

stemness of these subcategories, an analysis was conducted on the

expression of genes associated with stemness.

The dot plot (Figure 7A) visualized the expression levels of

stemness-related genes across the myeloma cell subgroups,

providing insights into their relative expression patterns.

A heatmap (Figure 7B) was created to fully comprehend the

gene expression related to stemness in myeloma cells. This heatmap

showcased the expression profiles of stemness-related genes

across the different myeloma cell subgroups, allowing for a

comparative analysis.

Furthermore, box plots (Figures 7C–J) were utilized to

emphasize the varying expression of genes associated with

stemness within the different subgroups of myeloma cells. These

plots provided statistical summaries of the gene expression levels,

enabling a quantitative comparison between the subgroups.

By employing these visualization techniques, we gained insights

into the expression profiles and differential expression patterns of

stemness-related genes across the myeloma cell subgroups. This
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FIGURE 6

Interactions analysis between cells in the MIF and CLEC signaling pathways. (A) A graphical representation displayed the connections between
ligands and receptors among the four cell subgroups of multiple myeloma and C0 IGLL5+ Myeloma Cells. (B) The centrality scores of the MIF
signaling pathway network were visualized on a heatmap, showing the varying significance of each module group. (C) Dot plot showed the
relationships between all cell types in multiple myeloma and the marker genes. The size of the dots represented the percentage of gene expression
in the subpopulations, and the color intensity represented the expression level. (D) Circular plot showed the cell interactions in the MIF signaling
pathway, with multiple myeloma cells as receivers. (E) The hierarchical chart illustrated the connections among multiple myeloma cells and other
cells within the MIF signaling pathway. Solid circles and hollow circles represented the source and target cell types, respectively.The color of the
outer circles matched the origin of the signals. (F) Heatmap displayed the cell interactions in the MIF signaling pathway. (G) The dot plot illustrated
the connections between the ligand and receptor in the four different cell subpopulations of multiple myeloma and T_NK Cells. (H) The centrality
scores of the CLEC signaling pathway network were shown on a heatmap, revealing the significance of each module group. (I) Dot plot showed the
relationships between all cell types in multiple myeloma and the marker genes. The size of the dots represented the percentage of gene expression
in the subpopulation, and the color intensity represented the expression level. (J) Circular plot showed the cell interactions in the CLEC signaling
pathway, with multiple myeloma cells as receivers. (K) The hierarchical chart illustrated the connections among multiple myeloma cells and other
cells in the CLEC signaling pathway. Solid circles and hollow circles represented the source and target cell types, respectively. The color of the outer
circles matched the origin of the signals. (L) Heatmap displayed the cell interactions in the CLEC signaling pathway.
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information contributed to our understanding of the stemness

characteristics and heterogeneity within multiple myeloma, which

can have implications for disease progression and potential

therapeutic strategies.
Analysis of gene regulatory networks of
myeloma cell subgroups

In order to identify the core transcription factors (TFs) active in

the different myeloma cell subgroups, a SCENIC analysis was
Frontiers in Immunology 14
conducted. Gene regulatory networks were inferred for each

myeloma cell subgroup using the pySCENIC tool.

Based on previous studies that specifically modulated the

activity of these cell types, the most activated TFs in each

myeloma cell subgroup were determined. Specifically, the

activated TFs included MAF in C0 IGLL5+ Myeloma Cells, LEF1

in C1 IGHG4+ Myeloma Cells, TCF12 in C2 MALAT1+ Myeloma

Cells, and CREB5 in C3 IGHG1+Myeloma Cells (Figure 8A). It was

probable that these transcription factors will have important

functions in controlling the expression of genes and cellular

activities in their specific groups.
FIGURE 7

Expression of stemness-related genes in multiple myeloma cell subpopulations. (A) A graph displayed the levels of stem cell-related genes in the
four distinct groups. (B) The heatmap showed the levels of expression for genes related to stemness. (C–J) UMAP and box plots demonstrated the
variation in gene expression related to stemness in different subgroups of multiple myeloma cells. *, p ≤ 0.05; **, p<0.01; ***, p<0.001; ****,
p<0.0001 indicated significant differences; ns indicated no significant difference.
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The heatmap (Figure 8B) visualized the relationship between the

four myeloma cell subgroups and different phases, providing insights

into theirgeneexpressionpatternsandpotential regulatorymechanisms.

To provide a more visual representation of gene expression,

scatter plots and UMAP plots were employed (Figures 8C–F). These

plots allowed for the visualization of gene expression patterns

within the myeloma cell subgroups and highlighted the distinct

clusters or subpopulations present.

To rank the regulators in the myeloma cell subgroups based on

their regulon specificity score (RSS), the UMAP plots were utilized.

This ranking provided information on the importance and specificity

of different regulators within each myeloma cell subgroup.

By leveraging these analyses and visualization techniques,

we gained a deeper understanding of the core TFs active in
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each myeloma cell subgroup and their potential regulatory

networks. The scatter plots, UMAP plots, and regulon specificity

scores contributed to our knowledge of gene expression

patterns and regulatory mechanisms within multiple myeloma,

offering insights into the underlying biology and potential

therapeutic targets.
Identification of TF regulatory submodules
in myeloma cell subgroups

In the study, we further identified five regulatory modules of the

myeloma cell subgroups using the connection specificity index

(CSI) matrix. These modules were labeled as M1, M2, M3, M4,
FIGURE 8

Gene regulatory network analysis of multiple myeloma cell subpopulations. (A) A visualization using colors represented the activity of the top 5
transcription factors (TFs) in the various cell subgroups of multiple myeloma. (B) The heatmap displayed the relationships among the four cell
subgroups of multiple myeloma and stages. (C–F) The ranking of regulators was displayed based on the regulatory subnetwork-specific scores (RSS)
in the four cell subpopulations of multiple myeloma (top) were shown. The UMAP plots of each subpopulation highlighted the top-ranked
genes (bottom).
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and M5 (Figure 9A). Each module represented a distinct set of

regulatory interactions within the myeloma cell subgroups.

UMAP plots were created to illustrate the expression patterns of

the five TF regulatory modules in the myeloma cell subgroups

(Figure 9B). The graphs visually depicted the levels of expression

and distribution of regulatory modules among various subgroups of

myeloma cells.

Scatter plots were employed to demonstrate the distribution

of myeloma cell subgroups after the SCENIC analysis

(Figure 9C). These plots allowed for the visualization of the

clustering and relationships between the subgroups based on their

transcriptional profiles.

To assess the transcriptional activity scores of the myeloma cell

subgroups on the M1-M5 modules, scatter plots were utilized. The

left panel of Figures 9D–H displayed the transcriptional activity

scores of the four cell subgroups of myeloma cells on the M1-M5

modules. The middle panel showed the transcriptional activity

scores of the five myeloma cell subgroups on the M1-M5

modules. Finally, the right panel presented the transcriptional

activity scores of the three phases of myeloma cells on the M1-

M5 modules. These scatter plots provided insights into the

transcriptional activities and regulatory dynamics within the

myeloma cell subgroups and their respective phases.

Through the use of these visualization methods, we acquired a

thorough comprehension of the regulatory modules and their

patterns of expression in the myeloma cell subcategories. The

scatter plots facilitated the comparison of transcriptional activity

scores between the subgroups and phases, shedding light on the

regulatory mechanisms underlying the development and

progression of multiple myeloma.
Experimental validation

U266 and ARD cell lines were selected for in vitro functional

experiments to validate the function of IGLL5. Controls were

established with a negative control group and an infection group

with IGLL5 knockdown. Following IGLL5 knockdown, the cell

activity assay revealed a notable reduction in the proliferation

capacity of U266 and ARD cells, demonstrating statistically

significant variances (Figures 10A–D).

IGLL5 knockdown significantly attenuated the migration and

invasion abilities of U266 and ARD cells. The transwell assay

showed a notable decrease in the stained area of both cell lines

with suppressed IGLL5 compared to the negative control group

(Figures 10E–H).

In the plate cloning experiment, the colony forming efficiency

was analyzed and calculated, and the results showed that IGLL5

knockdown significantly reduced the colony formation of U266 and

ARD cell lines (Figures 10I, J).

Furthermore, the results of the wound-healing assay

demonstrated that IGLL5 knockdown significantly impaired the

migration ability of U266 and ARD cell lines compared to the

negative control group (Figures 11A, B).
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EdU staining indicated a notable decrease in the cell count of

U266 and ARD cell lines with IGLL5 knockdown compared to the

negative control group (Figures 11C, D).

Therefore, through multiple experiments, it was found that

IGLL5 knockdown can reduce the migration, invasion, and

proliferation abilities of multiple myeloma cells.
Expression of myeloma cells subsets on
the MMP and TIMP pathways

To investigate the potential correlation between myeloma cells

and metal ions, the study showcased the expression of different

subsets of Myeloma Cells on the pathways which were related with

metal ions. Matrix metalloproteinases (MMPs) are members of the

zinc-dependent endopeptidase family and are capable of degrading

almost all protein components in the extracellular matrix (ECM)

(61). Members of the tissue inhibitor (TIMP) family of

metalloproteinases are highly regarded as natural inhibitors of

cancer-promoting metalloproteinases (62). The association

between MMP and TIMP and a variety of cancers had been

previously documented, so we tried to explore the association

between them and MM. Four subsets were visualized through box

plot, UMAP plot, and facet plots, revealing that C0 IGLL5+

Myeloma Cells’ expression on the MMP and TIMP pathways

(Figures 12A–F).
Discussion

In this investigation, the utilization of scRNA-Seq technology

enabled the comprehensive characterization of tumor heterogeneity

and the tumor immune microenvironment in multiple myeloma

(MM). Every unique cell category found in MM, such as Monocytes,

Hematopoietic Progenitor Cells (HPCs), Plasmacytoid Dendritic Cells

(pDCs), B cells, T_NK cells, and Plasma cells, were successfully

identified. Previous research findings had established multiple

myeloma as a malignant neoplasm originating from the blood

system, distinguished by the presence of aberrant clonal plasma cells

within the bone marrow (57).

To further investigate the malignant plasma cells, here referred

to as myeloma cells, dimensionality reduction techniques were

employed to cluster these cells. This analysis resulted in the

identification of four distinct cell subsets: C0 IGLL5+ Myeloma

Cells, C1 IGHG4+ Myeloma Cells, C2 MALAT1+ Myeloma Cells,

and C3 IGHG1+ Myeloma Cells. Thorough examination of these

cell subgroups from different angles resulted in a complete

understanding of their molecular and cellular characteristics.

By employing slingshot, monocle, and CytoTRACE, we

successfully demonstrated the differentiation of myeloma cells

along a pseudotime trajectory. Through these analyses, we

identified the specific subgroup of myeloma cells that became the

focus of our study, namely the C0 IGLL5+Myeloma Cells subgroup.

The selection of this subgroup was based on several key factors.
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Firstly, in the predicted ordering generated by CytoTRACE, the

expression level of C0 IGLL5+ Myeloma Cells exhibited the highest

magnitude, indicating their superior differentiation ability

compared to other subgroups. This finding suggested that the

cells within this subgroup possess the highest level of cell

stemness (63).
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Secondly, in the pseudotime series analysis, a significant

proportion of cells within the C0 IGLL5+ Myeloma Cells

subgroup were located at the terminal stage of the differentiation

trajectory. This observation indicated a high degree of malignancy

associated with this subgroup. It is worth noting that cell stemness is

closely intertwined with tumor metastasis (64), further supporting
FIGURE 9

Identification of TF regulatory module in multiple myeloma cell subpopulations. (A) Identification of five regulatory modules in multiple myeloma cell
subpopulations based on the connectivity specificity index (CSI) matrix were shown. (B) UMAP plots showed the expression of the five TF regulatory
modules in multiple myeloma cell subpopulations. (C) Scatter plots illustrated the distribution of multiple myeloma cell subpopulations after SCENIC
analysis. (D-H) Scatter plots showed the transcriptional activity scores of the four cell subpopulations of multiple myeloma on modules M1-M5 (left);
scatter plots showed the transcriptional activity scores of the five groups of multiple myeloma cells on modules M1-M5 (middle); scatter plots
showed the transcriptional activity scores of the three phases of multiple myeloma cells on modules M1-M5 (right).
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the notion that the high stemness of this subgroup is closely linked

to its malignancy.

Lastly, the analysis conducted using slingshot revealed that the

C0 IGLL5+Myeloma Cells subgroup was situated at the endpoint of

lineage1, which corresponded to the conclusion drawn from the
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aforementioned analyses. This alignment further validated our

perspective on the differentiation and malignancy of this subgroup.

In summary, the selection of the C0 IGLL5+ Myeloma Cells

subgroup was based on their robust differentiation ability, their

positioning at the end of the differentiation trajectory with a high
FIGURE 10

IGLL5 significantly affected the proliferation and migration of multiple myeloma cell lines. (A) Following IGLL5 knockdown, a notable reduction in cell
viability of U266 cell line was observed using a CCK-8 assay. (B) CCK-8 test indicated a notable reduction in the survival of ARD cells following the
suppression of IGLL5. (C, D) Bar graph showed the relative IGLL5 mRNA expression in U266 and ARD cell lines. (E, F) Transwell assay showed a
significant decrease in cell migration of both U266 and ARD cell lines after IGLL5 knockdown. (G, H) Cell invasion of both U266 and ARD cell lines
significantly decreased after IGLL5 knockdown. (I, J) Plate cloning experiment showed a significantly lower cell colony formation in the IGLL5
knockdown group compared to the negative control group. *, p ≤ 0.05; **, p<0.01; ***, p<0.001 indicated significant differences; ns indicated no
significant difference.
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degree of malignancy, and their alignment with lineage1 as

indicated by slingshot analysis. These findings collectively

supported the notion that this subgroup held significant relevance

to the progression of multiple myeloma.

Prior research had offered important information on the

importance of the gene known as IGLL5 in relation to multiple

myeloma. These studies had consistently demonstrated that the

expression level of IGLL5 is significantly elevated under disease

conditions compared to the precursor state (65). Furthermore,

alterations in IGLL5 had been linked to a higher likelihood of

disease advancement (66). Notably, an independent analysis
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revealed that IGLL5 mutation serves as a contributing factor to

the heightened risk of early progressive disease in multiple myeloma

patients (67).

These findings led us to theorize that the C0 IGLL5+ Myeloma

Cells subgroup is strongly linked to the advancement of multiple

myeloma. The elevated expression level of IGLL5 and its identified

mutations in disease conditions strongly suggested its involvement

in disease development and progression. Previous studies have

found that IGLL5, a other biomarker that is more specifically

expressed under dominant disease conditions, has the potential to

serve as an emerging biomarker for targeted therapy (65).Therefore,
FIGURE 11

In vitro validation of IGLL5. (A, B) Scratch assay demonstrated a notable widening of the scratch after 48 hours in U266 and ARD cell lines post IGLL5
knockdown, in comparison to the negative control group. *, p ≤ 0.05; **, p<0.01; ***, p<0.001 indicated significant differences; ns indicated no
significant difference. (C, D) EdU staining showed a decrease in cell proliferation ability after IGLL5 knockdown.
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this subgroup, characterized by the expression of IGLL5, held

significant relevance in understanding the mechanisms underlying

the progression of multiple myeloma.

By utilizing the CellChat communication pattern analysis, we

were able to uncover the coordinated interactions between the C0

IGLL5+Myeloma Cells subgroup and other cell types. The CellChat

analysis offered important information on the connections among

different types of cells in myeloma. By employing the CellChat
Frontiers in Immunology 20
communication pattern analysis, we delved deeper into the complex

web of cellular interactions within the context of multiple myeloma.

This innovative approach allowed us to unravel the intricate

relationships between different cell types, shedding light on the

dynamic interplay within the tumor microenvironment.

In particular, our study shed new insights into the coordinated

interactions involving the C0 IGLL5+ Myeloma Cells subgroup

and various other cell types. We discovered a network of
FIGURE 12

Expression of myeloma cells subsets on the MMP and TIMP Pathways. (A–C) Box plot, UMAP plot, and facet plots showed the expression of
myeloma cells subsets on the MMP pathways. (D–F) Box plot, UMAP plot, and facet plots showed the expression of myeloma cells subsets on the
TIMP pathways.
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communication pathways through which these cells engage with

their surrounding microenvironment. This intricate intercellular

crosstalk is crucial for the development and progression of multiple

myeloma. Through this analysis, we identified specific

communication patterns and their corresponding signal pathway

expressions. Notably, the MIF (Macrophage Migration Inhibitory

Factor) signal pathway was found to be associated with the C0

IGLL5+ Myeloma Cells subgroup, indicating its importance in the

signaling network of this subgroup. The MIF signaling pathway was

probably important in the biological processes and functions of the

C0 IGLL5+ Myeloma Cells subgroup.

Additionally, the analysis revealed the CLEC signal pathway,

which was associated with T_NK cells. This finding suggested that

the CLEC signal pathway is an important signaling mechanism in

the interaction between T_NK cells and the C0 IGLL5+ Myeloma

Cells subgroup. Exploring the distinct signal pathways linked to

various cell types can offer valuable understanding of the

mechanisms behind cell-cell interactions and their potential

impact on multiple myeloma.

In summary, the CellChat communication pattern analysis

identified the MIF signal pathway as an important signaling

mechanism associated with the C0 IGLL5+ Myeloma Cells

subgroup and the CLEC signal pathway as a significant pathway

corresponding to T_NK cells. The results illuminated the

synchronized responses and connections among the C0 IGLL5+

Myeloma Cells subgroup and various cell types, offering important

insights into the tumor microenvironment and possible treatment

targets for multiple myeloma.

The findings from the analysis of the MIF signaling pathway

further supported the strong correlation between the C0 IGLL5+

Myeloma Cells subgroup and this pathway. The results indicated

that the C0 IGLL5+ Myeloma Cells subgroup had the largest

number and the highest centrality score within the MIF signaling

pathway. This implication indicated that this particular subset was

essential in initiating and controlling this process. Moreover,

previous studies had reported that MM cells express high levels of

MIF (68), which aligned with the current findings and reinforces the

significance of the C0 IGLL5+ Myeloma Cells subgroup in this

study. These results collectively highlighted the importance of this

subgroup and its association with the MIF signaling pathway in

multiple myeloma.

Regarding the CLEC signaling pathway, the analysis

demonstrated its strong association with T_NK cells. This finding

supported the notion that the CLEC signaling pathway is primarily

related to the activity and function of T_NK cells. Furthermore,

previous studies had indicated that CLEC represented a therapeutic

target for immune regulation and was associated with immune

responses (69). This suggested that the CLEC signaling pathway

may have implications in modulating immune responses and

potentially influencing the immune microenvironment in

multiple myeloma.

Taken together, the analysis of the MIF and CLEC signaling

pathways reinforced the importance of the C0 IGLL5+ Myeloma

Cells subgroup and its association with the MIF pathway, as well as

the relevance of the CLEC pathway to T_NK cells. The discoveries
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offered important understanding of the fundamental processes of

cell communication and immune control in multiple myeloma,

which could aid in creating specific treatments and immune-

modifying approaches for the condition.

The SCENIC analysis and gene regulatory network analysis

conducted in the study aimed to identify key transcription factors

(TFs) in different myeloma cell subgroups and explore the gene

regulatory networks associated with these subgroups. The analysis

identified five main modules (M1, M2, M3, M4, and M5) within the

myeloma cell subgroups. Additionally, the most activated TFs in

each subgroup within the M1-M5 modules were identified as

follows: MAF in the C0 IGLL5+ Myeloma Cells subgroup, LEF1

in the C1 IGHG4+ Myeloma Cells subgroup, TCF12 in the C2

MALAT1+ Myeloma Cells subgroup, and CREB5 in the C3 IGHG1

+ Myeloma Cells subgroup.

MMP (matrix metalloproteinases) affects tissue integrity and

promotes cancer cell invasion and metastasis. MMP is one of the

underlying causes of multiple myeloma bone disease. TIMP (tissue

inhibitors of metalloproteinases), as an important regulatory factor

for MMP hydrolysis or activation, also participates in the

development and progression of multiple myeloma and the

formation of bone disease. Understanding the intricate

relationship between MMP, TIMP, and multiple myeloma is

crucial for identifying potential therapeutic targets and developing

strategies to mitigate the devastating consequences of bone disease.

By elucidating the specific mechanisms underlying the

dysregulation of MMP and TIMP, researchers can pave the way

for novel treatment approaches aimed at restoring the balance of

these crucial factors and ultimately improving the outcomes for

multiple myeloma patients.

The examination yielded important information on the

regulatory systems and crucial transcription factors linked to

various myeloma cell subcategories, revealing the molecular

processes driving the advancement and spread of multiple

myeloma. Identifying the distinct TFs and their regulatory

functions within each subgroup could lead to the discovery of

therapeutic targets and the creation of individualized treatment

plans for individuals with multiple myeloma.

It is crucial to mention that this research had constraints,

specifically the limited number of samples chosen, which only

reflected a small portion of individuals with multiple myeloma.

Hence, additional research with increased sample sizes is necessary

to confirm and build upon these results. The researchers recognized

this constraint and emphasized the importance of further studies to

confirm the involvement of IGLL5+ Myeloma Cells in multiple

myeloma. ScRNA-seq could be used to characterize the abundance

and functional status of MM-related cell types, as well as to detect cell-

to-cell communication, and analyze the relationship between different

cell interactions to study the pathophysiological characteristics of the

MM microenvironment, thereby predicting the development and

prognosis of MM. With the progress of the times, more and more

new drugs and materials are used in cancer research (70), the main

objective is to enhance the existing knowledge of clinical therapy for

multiple myeloma, which could impact treatment choices and the

ongoing monitoring of patients in the long run (70–72).
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Conclusion

In this study, scRNA-seq technology was utilized to

comprehensively characterize tumor heterogeneity and the tumor

immune microenvironment in MM. Distinct cell types present in

MM were successfully identified, and four distinct cell subsets of

myeloma cells were identified using dimensionality reduction

techniques. The C0 IGLL5+ Myeloma Cells subgroup,

characterized by the expression of IGLL5, was selected for further

investigation due to its robust differentiation ability, high degree of

malignancy, and alignment with lineage1. Previous researches had

shown a strong connection between this particular subset and the

advancement of multiple myeloma, underscoring the importance of

IGLL5 in the progression of the disease. CellChat analysis revealed

coordinated interactions between the C0 IGLL5+ Myeloma Cells

subgroup and other cell types, with the MIF and CLEC signaling

pathways identified as important pathways associated with this

subgroup. The analysis of the MIF and CLEC signaling pathways

reinforced the relevance of the C0 IGLL5+ Myeloma Cells subgroup

and provided insights into cell-cell interactions and immune

regulation in multiple myeloma. Through SCENIC and analysis

of gene regulatory networks, important transcription factors and

regulatory networks linked to various myeloma cell subgroups were

identified, providing valuable understanding of the molecular

processes driving disease progression. Nevertheless, the research

was constrained, necessitating additional studies with more

participants to confirm and build upon these results, aiming to

impact the clinical care and monitoring of patients with

multiple myeloma.
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