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Introduction: This study leverages bioinformatics and medical big data to

integrate datasets from the Gene Expression Omnibus (GEO) and The Cancer

Genome Atlas (TCGA), providing a comprehensive overview of immunogenic cell

death (ICD)-related gene expression in colorectal cancer (CRC). The research

aims to elucidate the molecular pathways and gene networks associated with

ICD in CRC, with a focus on the therapeutic potential of cell death inducers,

including ferroptosis agents, and their implications for precision medicine.

Methods: We conducted differential expression analysis and utilized advanced

bioinformatic techniques to analyze ICD-related gene expression in CRC tissues.

Unsupervised consensus clustering was applied to categorize CRC patients into

distinct ICD-associated subtypes, followed by an in-depth immune

microenvironment analysis and single-cell RNA sequencing to investigate

immune responses and cell infiltration patterns. Experimental validation was

performed to assess the impact of cell death inducers on ICD gene expression

and their interaction with ferroptosis inducers in combination with other

clinical drugs.

Results: Distinct ICD gene expression profiles were identified in CRC tissues,

revealing molecular pathways and intricate gene networks. Unsupervised

consensus clustering refined the CRC cohort into unique ICD-associated

subtypes, each characterized by distinct clinical and immunological features.

Immune microenvironment analysis and single-cell RNA sequencing revealed

significant variations in immune responses and cell infiltration patterns across

these subtypes. Experimental validation confirmed that cell death inducers

directly affect ICD gene expression, highlighting their therapeutic potential.
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Additionally, combinatorial therapies with ferroptosis inducers and clinical drugs

were shown to influence drug sensitivity and resistance in CRC.

Discussion: Our findings underscore the importance of ICD-related genes in

CRC prognosis and therapeutic targeting. The study provides actionable insights

into the efficacy of cell death-inducing therapies, particularly ferroptosis

inducers, and their regulatory mechanisms in CRC. These discoveries support

the development of precision medicine strategies targeting ICD genes and offer

valuable guidance for translating these therapies into clinical practice, with the

potential to enhance CRC treatment outcomes and patient survival.
KEYWORDS

immunogenic cell death (ICD), colorectal cancer (CRC), ferroptosis inducers,
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Introduction

Unlike proinflammatory necrosis, apoptosis has traditionally

been regarded as a form of acceptable cell death. It is currently

established that damage-associated molecular patterns (DAMPs),

which are released after the apoptosis of cancerous or diseased cells,

can trigger both innate and adaptive immune responses.

Immunogenic cell death (ICD), which is triggered by the release
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of DAMPs, can result in the generation of tumor-specific CD8+ T

cells and immunological memory (1).

ICD seems like a potential way to treat cancer, but as of right

now, only a small number of tumor therapeutics—including

radiation, oncolytic virotherapy, oxaliplatin, cetuximab,

bortezomib, photodynamic therapy, and extracorporeal

photochemotherapy—are known to cause ICD. These

medications encourage alterations in the extracellular milieu or

cell surface that are consistent with the induction of ICD (2, 3). The

avoidance of immunological destruction, which can be

accomplished by secreting immunosuppressive substances,

enlisting immunosuppressive cells as T regulatory cells, and

downregulating the activation of cytotoxic lymphocytes, is one of

the primary characteristics of cancer as outlined by Hanahan and

Weinberg in 2011 (4). In this context, the natural history of a

number of solid malignancies, such as melanoma, lung cancer, and

urological tumors, has changed due to the use of immune

checkpoint inhibitors (ICIs) (5, 6). Antigen-presenting cells

(APCs) and cancer cells, in fact, express ligands on their plasma

membranes that bind to immunological checkpoints on

lymphocytes and prevent their activation; ICIs disrupt this

process and allow T-cell function to be restored (6). The

relationship between ICIs and ICD inducers and their possible

function in inducing long-lasting immune responses is poorly

understood. This could ultimately lead to cancer vaccination,

particularly in diseases like gastrointestinal (GI) cancer where the

benefits of immunotherapy alone are not very great (7). With 3.4

million cancer deaths from the disease in 2018 and nearly 26% of all

cancer cases worldwide, gastrointestinal cancer is a serious

problem (8).

Zheng’s study highlights the ways in which ferroptotic colon

cancer cells and antitumor immunity work in concert by boosting

immunogenicity, specifically the production of HMGB1 and the

exposure of CRT (9, 10). In addition to accelerating DC maturation,

these cells also enhance the immunological milieu by raising the

frequency of antitumor immune cells and T cell release of IFN-g
(11). Crucially, immune checkpoint inhibitors (ICIs) become much

more effective when ferroptosis is induced, and this improvement is

reliant on antitumor immunity being activated (12). The study also

discovered that while certain cells, including MDSCs, are resistant

to ferroptosis , neutral ceramidase N-acylsphingosine

amidohydrolase can be inhibited to overcome this resistance (13).

Immune cells, such as CD8+ T cells, collaborate with arachidonic

acid to induce iron poisoning in cancer cells (14).

These results demonstrate the potential of ferroptosis in colon

cancer immunotherapy and offer novel therapeutic approaches for

future ferroptosis-targeted immunotherapy combinations (14). The

identification of treatment-related targets and the investigation of

the activating effects of ferroptosis inducers on immunogenic cell

death and antitumor immunity are necessary because the

therapeutic mechanism of targeting immunogenic cell death-

related genes in tumors through the ferroptosis mechanism of

tumor cells remains unknown (11).
Frontiers in Immunology 03
Materials and methods

Data download and processing

RNA-seq data, related clinical data, and survival data for

colorectal cancer were downloaded from the UCSC-Xena

platform. Included in this were count numbers from the TCGA-

COAD and TCGA-READ data sets, which the TCGAbiolinks

package was used to standardize and process further (15). To be

more precise, the sample bearing the ID “-11A” was classified as

neighboring normal tissue, whilst the remaining samples were

identified as malignant tissue. Of them, 689 samples containing

prognostic data—51 normal tissue samples and 638 malignant

tissue samples—were used in the creation and examination of the

models that followed.
Gene-expression data processing

Initially, we concentrated on creating a list of genes that were

closely linked to immunogenic cell death (ICD) in order to better

understand the molecular mechanisms underlying this

phenomenon. These genes, which have been chosen from

previous research, serve as the cornerstone of our ICD

investigation. We then successfully created a gene expression

matrix specifically for ICD by using differential analysis

techniques to match these genes with expression profiling data

from tumor and normal tissues. The primary dataset for our

ensuing analyses is this matrix. The exact roles of ICD-related

genes in tumor development were determined by using the

Wilcoxon rank-sum test to the ICD gene expression data from

tumor and normal tissue samples in the TCGA database. The

study’s findings demonstrated that there were differences in the

patterns of these genes’ expression between the two sets of samples.

Furthermore, Pearson correlation analysis was used to explore

potential interactions between these genes, revealing expression

connections that improved our understanding of the ICD gene

network. We used the STRINGdb program to build a protein-

protein interaction (PPI) network based on known protein

interactions for ICD-related genes in order to reveal the

molecular processes of ICD at the protein level (16). This

network offers insights into the intricate processes involved in

ICD by visualizing important proteins and their connections.

Lastly, we used the clusterProfiler tool to conduct pathway

enrichment analysis in order to obtain a better understanding of

the possible roles that these genes may play in biological processes.

Significant enrichments of ICD-related genes were found in

particular biological pathways by this study, suggesting that these

genes may play roles in immune response, tumor growth, and other

biological processes. These thorough findings set a strong basis for

further study in this area and offer vital insights on the function of

ICD in tumor development.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1458270
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lei et al. 10.3389/fimmu.2024.1458270
Unsupervised clustering analysis identified
ICDRGs expression patterns

To gain a deeper understanding of the molecular characteristics

and subtype prediction of CRC, we employed an approach focused

on the differential expression of ICD-related genes. Utilizing the

“ConsensusClusterPlus” package (version 1.62.0), we performed

unsupervised clustering analysis on CRC patients, setting the

parameters maxK to “6”, clusterAlg to “hc” (hierarchical

clustering), and distance to “Pearson”. During this process (17),

we identified the optimal number of immune subtypes (K) by

tracking cells, analyzing cumulative distribution functions, and

their relative changes. Subsequently, we collected and analyzed

sample information from different clinical subgroups (such as age,

stage, TNM classification, and survival status) within each subtype.

To visually present this information, we leveraged the tidyverse

(version 1.3.2) and ggplot2 (version 3.3.6) packages to visualize the

classification information of different subtypes across various

subgroups (18, 19). In the subtype analysis phase, we utilized the

TCGA dataset and employed the Kaplan–Meier curve method to

assess the correlation between ICD-related gene consensus

clustering subtypes and survival outcomes, based on subtype

classification, patient survival time, and status. Additionally, we

generated a heatmap of gene expression, revealing the relationship

between gene expression, subtype classification, and clinical

characteristics by observing the expression values of genes in

TCGA samples and the clinical features of each sample. This

integrated analysis not only provided us with a profound

understanding of CRC molecular subtypes but also highlighted

the potential value of ICD-related genes in predicting patient

prognosis and guiding treatment. These findings offer new

strategies and insights for precision medicine in CRC, paving the

way for further research and clinical applications.
Analysis of immune microenvironment
differences between subtypes

In this study, we employed two advanced bioinformatics

algorithms to extensively profile the immune microenvironment

of colorectal cancer samples from The Cancer Genome Atlas

(TCGA). The application of these methods not only sheds light

on the intricate mechanisms of tumor immune response but also

provides crucial scientific evidence for future clinical diagnosis and

therapeutic strategies.

Firstly, we leveraged the CIBERSORT algorithm (http://

cibersort.stanford.edu/index.php), a robust tool based on linear

support vector machine (SVM) principles, to accurately

deconvolve the expression matrix of immune cell subtypes in

tumor samples (20). Through both relative and absolute modes of

computation, we determined the composition of 22 immune cell

types within the samples. The relative mode ensures that the

proportions of different immune cell subtypes sum to one,

reflecting their relative contributions to the overall immune

response. Meanwhile, the absolute mode directly provides the

absolute counts of each immune cell type, offering a more
Frontiers in Immunology 04
intuitive understanding of their actual roles in immune responses.

Furthermore, we utilized the Wilcoxon rank-sum test to analyze the

differences in the proportions of various immune cell subtypes and

calculated the corresponding statistical significance (p-values).

Additionally, we plotted boxplots based on the subgrouping of

immune cell types to visually demonstrate these differences.

Secondly, to assess the enrichment of different immune gene

sets in tumor samples, we employed the ssGSEA (2.0) algorithm to

evaluate 17 immune gene sets from the import database (21). This

approach comprehensively reflects the overall expression levels of

gene sets in samples, thus uncovering their potential roles in

immune responses. Specifically, we focused on the expression

differences of HLA family genes among different immune cell

subtypes, as these genes play a pivotal role in immune responses.

By extracting the expression data of HLA family genes and

combining it with the Wilcoxon rank-sum test, we compared the

expression differences of immune checkpoint genes and HLA

family genes between different immune cell subtypes and

calculated the statistical significance (p-values) between high-risk

and low-risk groups. Finally, we utilized the ggpubr package in R to

plot boxplots, graphically representing these differences (22).

In summary, by integrating the CIBERSORT algorithm and the

ssGSEA algorithm, we comprehensively and in-depth profiled the

immune microenvironment of TCGA colorectal cancer samples.

These findings not only enhance our understanding of the complex

mechanisms of tumor immune response but also provide robust

data support and scientific evidence for future clinical diagnosis and

therapeutic strategies.
Functional enrichment analysis of genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment studies were conducted using several

R packages, such as “org.Hs.Eg.Db,” “ggplot2,” and “clusterProfiler,”

to investigate the biological processes enriched by the genes in key

modules (23). Any GO or KEGG terms that showed significant

enrichment were examined further with a p-value threshold of 0.05.
Establishing a prognosis signature related
to ICDGs

Further, utilizing the limma package in R language, which

employs linear regression and empirical Bayes methods, we

conducted differential expression analysis comparing tumor

samples with normal samples across all TCGA colorectal cancer

datasets. This analysis yielded gene-specific information such as P-

values and logFC. Additionally, we applied the Benjamini &

Hochberg method for multiple testing correction, resulting in

adjusted P-values (adj.P.Value) (24). We evaluated the genes

based on both fold-change and significance, setting thresholds as

adj.P.Value < 0.05 and |logFC| > 1.

Incorporating the clinical survival and prognostic data from the

TCGA colorectal cancer samples, we screened for genes significantly

associated with overall survival prognosis using univariate Cox
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regression analysis from the survival package in R. Genes with a P-

value less than 0.05 were considered significantly correlated.

LASSO Cox analysis identified the genes most relevant to

overall survival. To prevent overfitting, we performed 10-fold

cross-validation using the glmnet package in R. Based on RNA

expression levels, we then calculated a risk score for each patient

using the formula:

Risk   score =  on
i=1coefi  X   id (1)

where coefi represents the coefficient and Xi is the normalized

count for each gene.

Using clinical follow-up data from the GSE17536 and GSE39582

colorectal cancer datasets, we computed the Risk score for each

sample in both the TCGA training set and the GEO validation set.

Samples were then divided into High (Risk score above the median)

and Low (Risk score below or equal to the median) groups. The

Kaplan-Meier curve method from the survival package was employed

to assess the correlation between these groups and actual survival

outcomes. This risk model was further validated for robustness by

evaluating risk scores on an external independent dataset.
Quality control and cell-type identification

For quality control, Seurat (version 4.3.0) was used to count

unique molecular identifiers (UMIs) and mitochondrial genes. Cells

with more than 100 UMIs and less than 15% mitochondrion-

derived UMI counts were selected (25). This study selected the

top 20 components and first 2000 variable genes. The “ScaleData”

function was used to regress the inflow of UMIs and the percentage

of mitochondrion-derived UMI counts. Subsequently, the main cell

clusters were identified by Seurat’s “FindClusters” function.

Unbiased cell type recognition was visualized by umap.
Cell clusters annotation

To delineate the specific marker genes for individual cell

clusters, we employed the ‘FindMarkers’ function in Seurat to

contrast the gene expression profiles of cells within a given cluster

against all other cells in the dataset. This function utilizes a

Wilcoxon rank-sum test to identify differentially expressed genes

(DEGs) between the two groups. Subsequently, the obtained P

values were adjusted for multiple testing using Bonferroni

correction, considering the total number of genes analyzed.

Marker genes were defined as those with an adjusted P value

below 0.05 and exhibiting at least a twofold higher average

expression level in the cluster of interest compared to all other

clusters. To validate the annotation of each cell cluster, we relied on

the expression of canonical marker genes. Specifically, T/NK cells

were identified by the expression of CD3D, CD3E, and NKG7;

memory B cells were characterized by CD79A and MS4A1; plasma

cells were defined by the presence of IGHG1, JCHAIN, and MZB1.

Monocytes and macrophages were distinguished by CD68, CD163,

CD14, and LYZ, while dendritic cells were identified through CD74,

CLEC9A, and CD1C. Fibroblasts exhibited high expression of
Frontiers in Immunology 05
COL1A1, ACTA2, and TAGLN, while endothelial cells were

marked by VWF, PLVAP, and CLDN5. Epithelial cells, on the

other hand, were distinguished by EPCAM, KRT8, and KRT18.

This comprehensive analysis, leveraging both statistical testing and

the expression of established marker genes, allowed us to accurately

annotate and characterize each cell cluster.
Chemotherapy response analysis

Information on drug responsiveness and drug targeting

pathways was gathered using the Cancer Drug Sensitivity

Genomics (GDSC) platform. Subsequently, the pRRophetic

package in R was employed to predict the drug sensitivity of

various phenotypes from gene expression data, and to obtain the

pharmaceuticals associated with different classes after tabulating the

sensitivity data of the two GBM classes to various drugs, thereby

setting the stage for the selection of clinical drugs (26).
Quantitative reverse transcriptase PCR

The HCT-116(human colon cancer cell) lines were procured

from ATCC. Following incubation for a duration of 12 to 24 hours,

these cells were subjected to treatment with various compounds,

including 2uM RSL3 (Selleck, catalog number #S8155), 0.25 mM
disulfiram (Selleck, catalog number #S1680), and 20uM oxaliplatin

(Selleck, catalog number S1224), for specified durations.

Additionally, control groups were maintained without any drug

exposure to serve as references. This experimental setup aimed to

investigate the genome responses to these pharmacological agents.

Control groups were created by combining HCT-116 cells to

compare the expression of MMP1, MMP3, MMP10, MMP12,

CHST13, CXCL1, SERPINA1,SPINK4 WNT5A, between

medication group and human colon cancer cell lines. The

sequence of gene primers is shown in Supplementary Table S1.

Total RNA was extracted using the Redzol kit (Beijing SBS Gene

Technology Co., Ltd), and qRT-PCR was performed using the

SYBR® Premix Ex Taq™ II Kit. The relative mRNA expression

levels were calculated using the 2−DDCt method, with GAPDH as

the internal reference gene.
Distribution of cell subsets of treatment-
related ICDRGs

Next, based on the experimental results, we collected three CRC

single-cell profiles from the geographical dataset to further investigate

the subgroup distribution of treatment-related ICDRGs in CRC. The

GSE144735 dataset was derived from single-cell 3’mRNA sequencing

data of the tumor core, marginal zone, and normal mucosa from six

Belgian patients. Low quality cells were screened by nUMI, nGene

and mitochondrial gene ratio, and 27 414 high quality cells were

finally selected. The GSE146771 dataset was subjected to single-cell

RNA sequencing of multiple colorectal cancer patient samples using

SMART-seq2 and 10x Genomics platforms. Different types of
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immune cells including myeloid cells, B cells, NK cells, T cells and

non-immune cells were enriched by flow cytometry for CD45

staining and sorting. Smart-seq2 platform was used to sequence T

cells from colorectal cancer patients in GSE108989 dataset. The

classification includes CD8+ T cells, helper T cells, regulatory T

cells, etc. Peripheral blood, normal intestinal mucosa, and tumor

samples were subjected to cell sorting and sequencing. These datasets

provide transcriptome data of multiple cell types in tumors and their

microenvironment, which can help to investigate the diversity and

specificity of tumor immune microenvironment.
Statistical analysis

Survival analysis was conducted using the R survival package, and

the Log-Rank test was utilized to assess the survival rates of each

group. The Kruskal-Wallis test was employed to compare the

differences between two or more sets of data, while the Wilcoxon

test was used to compare the differences between the two groups.

Kaplan-Meier technique was applied to generate survival curves for

each subgroup within the dataset. The Spearman correlation analysis

was used to determine the correlation coefficient. Furthermore,

protein-protein interactions were analyzed using the string database

to gain insights into how protein-coding genes interact with one

another. Statistical significance was determined at P<0.05 for all

calculations, which were performed using R versions 4.1.0 and 4.0.0.
Results

Expression levels of ICDRGs in CRC

Transcriptomes and clinical data for 504 normal and colorectal

cancer tissue samples were obtained from the TCGA database. This

study encompasses 452 colorectal cancer patients with both clinical

information and gene expression profiles. The expression of 34

ICDRGs was assessed using the Wilcoxon test, resulting in the

identification of 26 ICDRGs with high tumor expression (|log2

(FC)|, Pvalue < 0.05). The expression correlation of these ICDRGs

was examined based on their tumor expression levels (Figure 1A).

In the TCGA immunogenicity cell death-related gene mutation

analysis, PI3KA, NLRP3, CASP8, EIF2AK3, HSP90AA1K, TLR4,

IL17RA, PRF1, HMGB1 mutation frequency is higher (Figure 1B).

Further, we analyzed the role of these ICDRGs in biological

pathways, biological processes, cellular components, and

molecular functions (Figures 1C–E). Biological pathways are

more enriched in diseases prone to inflammatory response, as

well as NOD−like receptor signaling pathway, and Toll−like

receptor signaling pathway. Biological processes mainly focus on

positive regulation of cytokine production and adaptive immune

response based on somatic cells, etc. The cell components mainly

concentrated on the external side of the plasma membrane,

endocytic vesicle, and so on. The molecular functions mainly

focus on cytokine activity, cytokine receptor binding, and so on.
Frontiers in Immunology 06
Development of the new CRC
subtyping method

Building upon the observed expression differences of ICDRGs

and their roles in various biological pathways, we further investigated

whether these differences could define subtypes of CRC with distinct

clinical outcomes. Utilizing unsupervised consensus clustering

analysis, we identified distinct subtypes of TCGA colorectal cancer

patients based on significantly different immunogenic cell death-

related genes. Notably, when the survival curves indicated the

presence of three subtypes, the patient survival analysis exhibited

statistical significance (Figure 2A). Figure 2B depicts the

categorization of colorectal cancer patients into three molecular

subgroups, revealing varied distributions of molecular classifications

alongside clinical indicators and follow-up data. Specifically, subtype

1 comprised 247 samples, subtype 2 had 222 samples, and subtype 3

contained 163 samples. Notably, a significant difference in survival

outcomes was observed among the three subgroups, with subtype 3

exhibiting better survival prognosis and subtype 1 displaying poorer

prognosis. Additionally, a higher proportion of patients with poor

clinical staging was observed in subtype 1 (Figures 2C, D).
Immune Cell Infiltration Evaluation

Given the distinct subtypes identified and their differing survival

outcomes, we explored the immune cell landscape within these

subtypes to understand their immune microenvironment

characteristics. Utilizing the CIBERSORT method, the 22 immune

cell subtypes present in the TCGA samples were scrutinized within

the three distinct subtype clusters. The analysis revealed significant

infiltration of plasma cells, CD8+ T cells, resting and activated CD4+

memory T cells, follicular helper T cells, regulatory T cells, M0, M1,

and M2 macrophages, activated dendritic cells, resting and activated

mast cells, eosinophils, and neutrophils within these three subtype

clusters, contributing substantially to the overall immune cell

infiltration (Figure 3A, D). Figure 3B depicts the expression levels

of HLA family genes across the three clusters, with cluster 1

exhibiting lower HLA gene expression. Complementing this, ssgsea

analysis also indicated a similar pattern of immune cell infiltration

(Figure 3C). Notably, GSEA revealed a prominent enrichment of

isoforms involved in Ubiquinone and other terpenoid-quinone

biosynthesis, Steroid biosynthesis, Sulfur metabolism, Base excision

repair, Protein export, and the Citrate cycle (TCA cycle) (Figure 3E).
Identification of tumor single cell
landscapes and cell subsets associated
with immunogenic cell death

To further unravel the cellular heterogeneity and explore the

role of ICDRGs at the single-cell level, we analyzed a single-cell

sequencing dataset, GSE178318, retrieved from the GEO database.

The dataset comprises tumor tissues from 15 CRC patients. After
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integration and filtration of the raw data, the remaining cells and

genes were utilized for subgroup identification and annotation.

Figure 4A depicts the cellular subpopulation distribution among

CRC patients. Employing the UMAP dimensionality reduction

method, the expression patterns of individual cells were visualized

based on the clustering results and cell marker annotations derived

from the single-cell sequencing dataset. The results indicate that the

cells can be classified into 28 subgroups, labeled as nine primary cell

types (Figure 4A), ranging from 0 to 27. A heatmap was generated

to illustrate the expression of the top two genes in each cellular

subpopulation (Supplementary Table S2). A bubble plot further

displays the expression and distribution of specific markers for each
Frontiers in Immunology 07
cellular subgroup (Figure 4B), highlighting the heterogeneity

among tumor cells. Additionally, violin plots were utilized to

demonstrate the distribution of ICDRGs across various cellular

subpopulations (Figure 4C).
Construction and validation of the
prognostic model

Recognizing the clinical relevance of the identified ICDRGs, we

moved on to construct a prognostic model to predict patient

outcomes. We performed a differential gene expression analysis
FIGURE 1

Analysis of ICDRGs expression. (A) Box plot of ICDRGS expression in tumor and normal CRC samples. (B) Mutations landscape of ICDRGS. (C) GO
enrichment and pathway analysis of ICDRGs: Biological processes, cellular components, molecular functions. (D) KEGG pathway analysis. (E) Protein
and protein interaction analysis.* <0.05, ** <0.01, *** <0.001 and **** <0.0001.
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between tumor and normal samples, adopting a threshold of FDR

(corrected p-value) less than 0.05 and an absolute log2 fold

change (|log2FC|) greater than 1 to screen for significantly

expressed genes. Among the differentially expressed genes

across subtypes, we further identified 24 genes significantly

associated with prognosis using univariate Cox regression

analysis (P < 0.05) (Figures 5A, B). Utilizing the survival time

and status data from the TCGA training set and two GEO

validation sets (gse17536, gse39582), we employed the LASSO

algorithm to identify and construct a risk model (Figure 5C).
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Ultimately, 16 genes were selected to build the risk scoring model

(Figure 5D). Survival analysis revealed that a higher risk score

correlated with poorer survival outcomes in both the training and

testing groups (P < 0.05) (Figures 5E, F, H, I, K, L). The sensitivity

of the model in predicting prognosis was assessed using time-

dependent receiver operating characteristic (ROC) curves. The

performance was evaluated based on the area under the ROC

curve (AUC). For the training set, the 3-year, 5-year, and 10-year

AUCs were 0.711, 0.668, and 0.769, respectively (Figure 5G).

Similarly, for the testing set GSE17536, the AUCs were 0.668,
FIGURE 2

Consensus clustering of ICDRGs in CRC. The consensus matrices and (A) concensus CDF were performed to assess the stability of clustering and
explore coagulation subtypes. (B) Distribution of clusters in clinical factors. (C) Unsupervised clustering heatmap of ICDRGs in TCGA cohorts.
ICDRGs clusters, tumor stage, age, stage and survival state were used as patient annotations. (D) Prognosis analysis for the ICDRGs group1 and
group2 across different stages of LUSC.
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0.755, and 0.733 (Figure 5J), while for the testing set GSE39582,

the AUCs were 0.627, 0.625, and 0.651 (Figure 5M). The time-

dependent ROC curve analysis demonstrates that our prognostic

model has solid predictive power, with AUC values of 0.711,

0.668, and 0.769 for 3, 5, and 10 years in the training set,

respectively, indicating reliable discriminative ability for

predicting colorectal cancer (CRC) patient survival. These

results suggest that our model could be clinically valuable for
Frontiers in Immunology 09
risk stratification and personalized treatment decisions, offering

accurate predictions for both short- and long-term outcomes.
ICDRGs predict how chemotherapy works

To translate these findings into therapeutic contexts, we next

explored how the identified ICDRGs could predict the efficacy of
FIGURE 3

Immune landscape of ICDRGs cluster. (A) Immune cell infiltration, (B) Gene expression of HLA expression were analyzed between ICDRGs groups.
(C) Ssgsea heatmap of immune cells. (D) A boxplot of the difference in immune cell infiltration in ICDRGs clusters. (E) ICDRGs cluster-based gsea
analysis. Statistical significance at the level of * <0.05, ** <0.01, *** <0.001 and **** <0.0001.
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chemotherapy in CRC patients. Eight chemotherapeutic

medications’ IC50 discrepancies were investigated using the

“pRRophetic” package to predict their sensitivity to drug therapy.

The drug sensitivity data for Sorafenib, Gefitinib, Bleomycin,

Bosutinib, Etoposide, Lenalidomide, Camptothecin, and
Frontiers in Immunology 10
Methotrexate in the CRC risk model were presented in

Figures 6A-H, respectively. Among them, Gefitinib, Bosutinib,

Etoposide, Lenalidomide, and Camptothecin had higher IC50

levels for cluster 1 patients with poor prognosis, providing certain

guidance for the use of clinical chemotherapy drugs.
FIGURE 4

Single-cell atlas of primary CRC and liver metastases. (A) Overview of the workflow for single-cell transcriptome profiling of cells in primary CRC,
matched liver metastases, and blood. (B) Heat map and dotplot showing differential expression of the top expressed genes in each cluster. For each
cluster, the cell marker genes and their relative expression are shown. pDCs, plasmacytoid dendritic cells. (C) The violin diagram shows the
subpopulation expression of ICDRGs in the single cell atlas.
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Analysis of prognostic features of
model genes

Building on the chemotherapy sensitivity data, we further

analyzed the prognostic features of the model genes to understand
Frontiers in Immunology 11
their impact on CRC patient outcomes. We employed single-factor

Cox regression on the aforementioned LASSO regression model to

identify genes significantly associated with prognosis (P < 0.05). In

total, 16 genes were identified: MMP3, WNT5A, MMP1, ADAM9,

MMP10, CHST13, LINC00261, CXCL1, MMP12, G0S2, LY6E,
FIGURE 5

Construction of the risk model. (A) Differential expression analysis of volcanic maps. (B) Partial likelihood deviance was revealed by the LASSO
regression model in the tenfold cross validation. (C) The vertical dotted lines were drawn at the optimal values by using the minimum and 1-SE
criteria. (D) LASSO coefficient profiles of selected genes in the tenfold cross-validation. The vertical dotted lines were drawn at the optimal values by
using the minimum criteria and 1-SE criteria. (E, H, K) Kaplan–Meier curves for the test and training sets, respectively (P < 0.001, log-rank test,
survival rate comparison. (F, I, L) Patients were divided into high-risk and low risk subgroups based on median level of ICDRGs; survival status of
patients in two subgroups. (G, J, M) Time-dependent receiver operating characteristic (ROC) of training and test sets.
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SNORD17, SERPINA1, RNU4-2, RN7SL2, and SPINK4 (Figure 7A).

Subsequently, utilizing univariate Cox regression analysis, we

separately examined the clinical factors including risk, TNM stage,

age, and clinical stage, in accordance with the methodology outlined.

This process allowed us to filter out variables with a p-value less than

0.05 (Figures 7B, C). The expression patterns of these 16 genes

exhibited similarities to the distributions of clinical factors, indicating

their potential impact on crucial clinical follow-up data. Moreover,

survival analysis revealed that the expression of MMP1, MMP3,

MMP10, MMP12, RNU4-2, SERPINA1, WNT5A, RN7SL2,

CHST13, CXCL1, and SPINK4 significantly influenced patient

survival (P value < 0.05) (Figure 7D).
Gene expression level verification via
quantitative reverse transcription PCR

To validate the expression levels of the identified prognostic

genes, we performed quantitative reverse transcription polymerase

chain reaction (qRT-PCR) experiments. After incubating CRC cells

for 12 to 24 hours, we investigated the changes in gene expression.

In contrast to untreated cells, the expression of target genes

significantly varied across different cell lines (Figures 8A–H). The

cell lines used in this experiment showed consistent trends in gene

expression levels, validating our computational predictions.

Supplementary Table S3 lists the sequences of primers utilized in

this study. Additionally, we utilized public datasets to analyze the
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expression patterns of the 16 model genes across diverse clinical

subgroups. The expression analysis results were consistent with the

PCR validation data, corroborating the accuracy and reliability of

our computational model (Figures 8A–H). Moreover, the

prognostic risk model established based on the 16 identified

ICDRGs successfully stratified patients into high-risk and low-risk

groups. Higher risk scores correlated with poorer survival

outcomes, as verified through external GEO datasets. This model

provides a valuable tool for prognostic evaluation and risk

stratification of CRC patients in clinical settings. Based on the

analysis results of the three single-cell datasets, we found that

SPINK4, MMP3 and CXCL1 were mainly distributed in immune

T cells, while MMP1, MMP10, MMP12, and SERPINA1 were

mainly distributed in Myeloid cell (Figures 9A–C).
Discussion

Unlike the majority of non-immunogenic or even tolerogenic

forms of normal cell apoptosis, ICD in cancer cells has the unique

ability to elicit potent antitumor immune responses by activating

antigen-presenting cells (such as dendritic cells, DCs) and

subsequently stimulating cytotoxic T lymphocytes (CTLs) (27).

This ICD process is orchestrated by the translocation of calreticulin

(a “eat-me” signal for DC uptake) from the endoplasmic reticulum to

the cell surface, concurrent with the release of HMGB-1 and ATP,

which provide co-stimulatory signals to DCs (28). Recent research
FIGURE 6

(A–H) The boxplot shows that drug sensitivity prediction score (Sorafenib, Gefitinib, Bleomycin, Bosutinib, Etoposide, Lenalidomide, Camptothecin,
Methotrexate) are distributed differently among risk groups.
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has demonstrated that select chemotherapeutic agents, radiotherapy,

and photodynamic therapy can effectively induce ICD in cancer (29).

Building upon this foundation, recent advancements in cancer

immunotherapy have unveiled a promising approach to tackle the

limitations of PD-1 checkpoint blockade in cold tumors through

inducing ICD using novel agents such as ferroptosis inducers (10).

Ferroptosis, an iron-dependent form of regulated cell death, mimics
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the immunogenic potential of ICD by triggering the release of

damage-associated molecular patterns (DAMPs) (30). This strategy

capitalizes on the potential of ferroptosis inducers to overcome the

immunosuppressive tumor microenvironment by directly targeting

tumor cells, causing them to undergo immunogenic death (31). By

integrating these inducers with other therapeutic modalities,

researchers have devised sophisticated systems that synergistically
FIGURE 7

Correlation between the risk model and clinicopathological features of TCGA–CRC samples. (A) Univariate analysis of ICDRGs, (B) Gene expression
heat maps and annotation of clinical data. (C) Multivariate analysis including ICDRGs, risk model and clinical factors. (D) Single gene survival
analysis. ICDRGs.
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enhance ICD effects. For instance, a system combining polyethylene

glycol (PEG)-functionalized polyphenols with ferroptosis-inducing

agents and manganese dioxide nanoparticles (MnO2 NPs) has

demonstrated remarkable potential (32). Upon systemic

administration, MnO2 NPs decompose within the hypoxic tumor

microenvironment, releasing oxygen and Mn2+ ions (33). This not

only alleviates hypoxia but also facilitates ROS generation, which

synergizes with the ferroptosis-inducing agents to potentiate ICD

(34). The resulting cascade of events promotes the release of tumor-

specific antigens, maturation of dendritic cells, and infiltration of

tumor-specific T cells (35). This ICD-augmenting strategy initiates

robust tumor-specific immune responses, activates antitumor

immunity, and exhibits promising abscopal effects against distant

tumors (36). The integration of ferroptosis inducers within such
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multimodal ICD-enhancing platforms holds significant promise for

expanding the therapeutic landscape of chemotherapy-based ICD in

the context of immune checkpoint blockade (37). By harnessing the

immunogenic potential of ferroptosis, these approaches offer a novel

avenue to overcome the challenges associated with PD-1 blockade in

cold tumors, thereby enhancing overall treatment efficacy and patient

outcomes (38).

Our study leverages comprehensive transcriptomic and clinical

data from TCGA and GEO databases to explore the relationship

between immunogenic cell death-related genes (ICDRGs) and

colorectal cancer (CRC) progression, as well as their implications

for clinical drug response. We identified 26 ICDRGs with distinct

expression patterns in tumors, revealing a unique gene signature

associated with CRC immunogenicity. Notably, the mutation
FIGURE 8

The mRNA expression of (A) MMP1, (B) MMP3, (C) MMP10, (D) MMP12, (E) CHST13, (F) CXCL1, (G) SERPINA1 and (H) SPINK4 in a CRC cell lines and
the adjacent cell lines; ns: no significance, * <0.05, ** <0.01, *** <0.001 and **** <0.0001.
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frequencies of key ICDRGs, such as PI3KA, NLRP3, CASP8, and

TLR4, highlight the potential role of genetic alterations in modulating

immune responses within the tumor microenvironment. The

unsupervised consensus clustering analysis further refined the CRC

patient cohort into three distinct molecular subtypes, each exhibiting

unique survival outcomes and clinical characteristics. Subtype 3 was

associated with better survival prognosis. In contrast, Subtype

1 showed poorer prognosis and higher proportions of

advanced clinical staging, underscoring the need for targeted

therapeutic interventions.

The immune cell infiltration analysis, using CIBERSORT and

ssGSEA, revealed profound immune cell heterogeneity across the

molecular subtypes. There was notable infiltration of plasma cells,
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CD8+ T cells, and various macrophage subsets. This finding

highlights the importance of immune cell composition in shaping

the tumor immune landscape and its impact on patient outcomes.

Additionally, the enrichment of biological pathways involved in

inflammatory responses and immune signaling underscores the

pivotal role of ICDRGs in modulating the immune response to CRC.

Our analysis of single-cell landscapes within CRC tumors offers

unprecedented resolution into the cellular heterogeneity and

ICDRG expression patterns. We identified 28 distinct cellular

subpopulations, each with specific marker expression profiles.

These findings provide a foundation for future studies aimed at

dissecting the intricate interplay between tumor cells and the

immune system.
FIGURE 9

Distribution of genes in single-cell subsets. UMAP cluster map of the three single-cell data as well as the distribution map of cell subpopulation
expression of ICDRGs. (A) GSE144735 (B) GSE108989 (C) GSE146771.
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The construction and validationof a prognosticmodel based on16

differentially expressed genes significantly associated with CRC

prognosis underscore the clinical utility of our findings. The model’s

ability to accurately predict survival outcomes across independent

datasets validates its robustness and generalizability. Moreover, the

prediction of drug sensitivity based on ICDRG expression profiles

offers valuable guidance for personalized chemotherapy regimens.

Specifically, higher IC50 values were observed for Gefitinib,

Bosutinib, Etoposide, Lenalidomide, and Camptothecin in the poor

prognosis cluster, suggesting thatalternative therapeutic strategiesmay

be warranted for these patients.

The functional verification of gene expression changes

following drug treatment, using qRT-PCR, strengthens our

findings. It demonstrates the direct effects of RSL3, disulfiram,

and oxaliplatin on ICDRG expression in CRC cells. The

differential responses of MMP1, MMP3, MMP10, MMP12,

SPINK4, SERPINA1, and CXCL1 to various drug treatments

provide insights into the regulatory mechanisms underlying CRC

drug resistance and sensitivity.

In summary, our study offers a comprehensive view of the

complex interplay between ICDRGs, immune cell infiltration, and

CRC progression. By identifying distinct molecular subtypes and

prognostic gene signatures, we have paved the way for more

targeted and personalized therapeutic approaches in CRC.

Additionally, seven genes (MMP1, MMP3, MMP10, MMP12,

SPINK4, SERPINA1, and CXCL1) were identified as related to

patient survival and showed significant therapeutic effects in wet

experiments. These genes can be used as effective targets for clinical

treatment, and their expression levels can predict patient survival.

Our findings on drug sensitivity prediction and gene expression

changes under drug treatment offer valuable guidance for

optimizing chemotherapy regimens and improving patient

outcomes. These insights hold significant promise for advancing

CRC clinical management and ultimately improving survival rates.

The application of ferroptosis inducers in CRC therapy presents

groundbreaking potential by intricately modulating the tumor

microenvironment. This is achieved through the regulation of

genes such as MMP1, MMP3, MMP10, and MMP12, along with

immune-related genes like SPINK4, SERPINA1, and CXCL1. This

intricate network not only directly impedes tumor cell invasion and

immune evasion but also indirectly triggers immunogenic cell death

(ICD), mimicking natural immune activation signals. The release of

damage-associated molecular patterns (DAMPs) like ATP and

HMGB1 during ICD potently stimulates dendritic cells and

promotes the infiltration of cytotoxic T lymphocytes, thereby

bolstering antitumor immune responses. Moreover, these

ICDRGs have a multifaceted role in reshaping the tumor

microenvironment, distinguishing them from conventional

therapeutic targets. For instance, matrix metalloproteinases

(MMP1, MMP3, MMP10, MMP12), while traditionally associated

with promoting tumor cell invasion and metastasis, have been

shown in recent studies to facilitate ferroptosis in the right

context by inducing lipid peroxidation. Lipid peroxidation is a

critical mechanism of cell death in cancer therapy. The upregulation
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of these MMPs increases the production of lipid peroxides, directly

promoting cancer cell death through ferroptosis. Additionally, these

MMPs help regulate cytokine release during ICD, leading to

enhanced infiltration of immune cells, such as dendritic cells

(DCs) and cytotoxic T lymphocytes (CTLs). This further

intensifies the antitumor immune response. This dual capability

of MMPs to promote direct cancer cell death and enhance the

immune response underlines their potential as a novel therapeutic

target distinct from conventional approaches.

Similarly, immune-related genes such as SPINK4, SERPINA1,

and CXCL1 play crucial roles in modulating immune responses.

CXCL1, for example, is a chemokine that attracts neutrophils and

other immune effector cells to the tumor site, amplifying immune

cell-mediated cytotoxicity. By incorporating these genes into

ferroptosis-inducing strategies, the tumor microenvironment can

be made more immunogenic. This process effectively transforms it

from a tumor-promoting to a tumor-suppressive state. These effects

are particularly relevant in CRC, where immune evasion remains a

significant challenge.

Furthermore, ferroptosis inducers have been shown to

significantly impact macrophages, which are pivotal players in the

immune system and the tumor microenvironment (39).

Macrophages, versatile cells capable of phagocytosing apoptotic

and necrotic debris while secreting both pro- and anti-

inflammatory cytokines, undergo significant alterations under the

influence of ferroptosis inducers. Their activation leads to enhanced

phagocytosis of tumor fragments and the release of

proinflammatory cytokines like TNF-a and IL-1b. This further

intensifies antitumor immunity. The preferential expansion of M1

macrophages, known for their superior antigen-presenting

capabilities and tumoricidal effects, underscores the potential of

ferroptosis inducers to skew the immune landscape toward a more

tumor-hostile state.

Building on this, Mau-Shin Chi et al. have highlighted that

while traditional ferroptosis inducers, such as conventional

radiotherapy, chemotherapeutic drugs, and hyperthermia, often

fail to elicit a robust immune response in clinical settings, newer

ferroptosis inducers show more promise. These novel agents

include various nanoparticles (NPs), sparse-focused radiotherapy

(SFRT), magnetic particle thermotherapy (MPT), and low-

frequency radiofrequency hyperthermia. They possess the unique

ability to induce ferroptosis heterogeneously within tumors, either

randomly or selectively. The study suggests that this uneven

distribution of ferroptosis might not be a disadvantage. Instead,

the peak-to-valley distribution within the tumor could be a viable

strategy to enhance the efficacy of tissue-resident memory T cells

(TRM) in cancer therapy. Combining NPs with conventional

radiotherapy or low-frequency radiofrequency hyperthermia

could sensitize these treatments. This makes the tumor

microenvironment more immunogenic and enhances therapeutic

outcomes. These insights suggest that the therapeutic potential of

ferroptosis inducers lies not only in their direct effects on tumor

cells but also in their ability to modulate the immune

microenvironment in innovative ways.
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For CRC patients who are unresponsive to conventional

therapies, ferroptosis inducers offer a promising avenue that could

synergize with existing immunotherapies, such as PD-1 blockade, to

achieve more precise and effective personalized treatment strategies.

The combination of ferroptosis inducers and immunotherapies

could therefore unlock new opportunities for advancing CRC

clinical management and improving patient outcomes. By

harnessing the power of ferroptosis inducers, particularly those

targeting ICDRGs like MMP1, MMP3, MMP10, MMP12, SPINK4,

SERPINA1, and CXCL1, we may finally realize the full potential of

the immune system in the fight against CRC. The ability of these

novel agents to modulate both the tumor and immune landscapes

marks a significant advancement over existing targets, providing a

dual approach that is both directly cytotoxic to cancer cells and

capable of reprogramming the immune microenvironment for

sustained therapeutic effects.

Undoubtedly, our study is subject to certain limitations that

warrant acknowledgment. Firstly, given the heterogeneity of our

study cohort, which comprises data sourced from diverse high-

throughput sequencing platforms and public datasets, intratumoral

and interpatient tumor heterogeneity is an inevitable factor. Several

studies have highlighted the impact of tumor heterogeneity on the

efficacy of immunotherapy and chemotherapy. Unfortunately, due to

data constraints, we had to overlook the significant heterogeneity

inherent in CRC, which could potentially influence our findings.

Secondly, although our study identified immune interactions and

survival impacts involving inflammatory pathways and ICD targets in

CRC patients, the underlying biological or medical mechanisms

remain elusive. Thus, large-scale prospective studies complemented

by functional and mechanistic experiments are imperative to validate

and elucidate the role of inflammatory pathways in CRC. Thirdly, the

median cutoff value of survival-associated ICD genes was employed

to stratify CRC samples into high- and low-survival groups. However,

it is plausible that an optimized cutoff value tailored specifically for

survival-related ICD genes could offer a more refined stratification

strategy for CRC patients. Lastly, owing to the scarcity of

comprehensive clinicopathological information, we had to curate

and adjust certain clinical data for survival and Cox regression

analyses. This approach, while necessary, might introduce potential

biases and uncertainties regarding the independence of ICD-related

groups as prognostic factors. While our study provides valuable

insights, future endeavors should aim to address these limitations

through more rigorous data collection, analysis, and experimental

validation, ultimately contributing to a deeper understanding of CRC

and the development of more effective therapeutic strategies.
Conclusion

Our comprehensive study has unveiled a set of key immunogenic

cell death-related genes (ICDRGs) that serve as potential targets for

clinical ferroptosis-inducing therapies in colorectal cancer (CRC). By

leveraging transcriptomic and clinical data, we identified these
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ICDRGs, as crucial players in modulating the tumor immune

microenvironment and CRC progression. The distinct expression

patterns and mutation frequencies of these targets highlight their

suitability for targeted intervention. Our analysis further underscores

the potential of these ICDRGs to enhance the efficacy of ferroptosis-

based treatments by selectively inducing tumor cell death while

stimulating anti-tumor immune responses. The development of

therapies targeting these ICDRGs as clinical ferroptosis inducers

holds significant promise for improving CRC patient outcomes and

advancing clinical management strategies.
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