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PD-1 immunology in the kidneys:
a growing relationship
Ruyue Chen †, Qiang Lin †, Hanyun Tang, Xiaomei Dai, Lu Jiang,
Ningxun Cui* and Xiaozhong Li*

Department of Nephrology and Immunology, Children’s Hospital of Soochow University, Suzhou,
Jiangsu, China
In recent years, knowledge regarding immune regulation has expanded rapidly,

and major advancements have been made in immunotherapy for immune-

associated disorders, particularly cancer. The programmed cell death 1 (PD-1)

pathway is a cornerstone in immune regulation. It comprises PD-1 and its ligands

mediating immune tolerance mechanisms and immune homeostasis.

Accumulating evidence demonstrates that the PD-1 axis has a crucial

immunosuppressive role in the tumor microenvironment and autoimmune

diseases. PD-1 receptors and ligands on immune cells and renal parenchymal

cells aid in maintaining immunological homeostasis in the kidneys. Here, we

present a comprehensive review of PD-1 immunology in various kidney

disorders, including renal cell carcinoma, glomerulonephritis, kidney

transplantation, renal aging, and renal immune-related adverse events

secondary to PD-1 immunotherapy.
KEYWORDS

programmed death 1, programmed death ligand 1, renal cell carcinoma,
glomerulonephritis, kidney transplantation, renal aging, immune-related adverse events
1 Introduction

Immune checkpoint molecules are receptor-ligand pairs exerting stimulatory or

inhibitory effects on immune responses. Programmed cell death 1 (PD-1) and

programmed death ligands 1 and 2 (PD-L1 and PD-L2, respectively), as representative

immunosuppressive checkpoints, are members of the cluster of differentiation 28 (CD28)

and B7 families and constitute an inhibitory pathway, which maintains self-tolerance and

affords immune homeostasis (1). PD-1 was first discovered in 1991 by Yasumasa Ishida

using cDNA libraries from unstimulated and stimulated mouse T cells, and then was

named programmed cell death 1 as a molecule associated with activation-induced cell death

in T cells; next year, they published the first PD-1 paper in 1992 (2–4). The complete gene

structure and chromosome location of human PD-1(hPD-1) was reported in 1997 (5). The

identification of the interaction of PD-1 with PD-L1 in 2000 and PD-L2 in 2001 defined the

PD-1 pathway (6–8). It is noteworthy that Galectin 9 (Gal-9) and galectin 3 (Gal-3) can

interact with PD-1 and thus are emerging targets for cancer immunotherapy in different

combinations (9–12) (Figure 1). The major immunosuppressive role of the PD-1 axis is
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responsible for the formation and maintenance of the tumor

microenvironment (TME), autoimmunity, infectious immunity,

transplantation immunity, allergy, and immune privilege (13, 14).

Recent studies have demonstrated that PD-1 and PD-L1

overexpression on tumor cells and tumor-infiltrating lymphocytes

is correlated with poor outcomes in some patients with cancer, and

PD-1/PD-L1 blockade-based immunotherapy has been developed

for cancers including solid tumors and hematologic malignancies

(13). PD-1 was originally identified as an inducible surface receptor

during programmed cell death and is mainly present on the surfaces

of activated T, B, and natural killer (NK) cells, as well as dendritic

cells (DCs), monocytes, macrophages, and myeloid cells (15, 16).

PD-L2 expression is mainly confined to DCs, monocytes, and

macrophages, whereas that of PD-L1 is more widely distributed

on not only T, NK, and B cells and macrophages but also myeloid

DCs, epithelial cells, vascular endothelial cells, various tumor cells,

and various tumor-infiltrating cells (1). PD-L1 expression also

occurs in immune-privileged sites such as the anterior chambers

of the eyes, testes, and placenta (17).

In the kidneys, the PD-1 receptors and/or ligands have been

confirmed to be present on resident innate immune cells in the

renal interstitium and renal parenchymal cells, including proximal

tubule epithelial cells and podocytes in vivo and in vitro (18, 19).

Pippin et al. reported that in aged mouse and human kidneys,

epithelial cells, including podocytes, proximal tubule epithelial cells,

and tubular cells, but not glomerular mesangial and endothelial

cells, demonstrated high PD-1 levels (19). Starke et al. reported that

both PD-L1 and PD-L2 are expressed on human primary renal

proximal tubular epithelial cells in vivo and in vitro, and PD-L1

upregulation on proximal tubular epithelial cells may attenuate

acute T-cell-mediated rejection (20) (Figure 2). In addition, with the
Abbreviations: PD-1, programmed death 1; PD-L1, programmed death ligand 1;

PD-L2, programmed death ligand 2; CD28, cluster of differentiation 28; Gal-9,

galectin 9; Gal-3, galectin 3; TME, tumor microenvironment; NK, natural killer;

DCs, dendritic cells; irAEs, immune-related adverse events; ITIM,

immunoreceptor tyrosine-based inhibitory motif; ITSM, immunoreceptor

tyrosine-based switch motif; CTLA-4, cytotoxic T lymphocyte-associated

antigen-4; ICOS, inducible co-stimulatory molecule; UTR, untranslated region;

sPD-1, soluble PD-1; flPD-1, full-length PD-1; CTLs, cytotoxic T lymphocytes;

TCRs, T-cell antigen receptors; B7-H1, B7 homolog 1; sPD-L1, soluble PD-L1;

mPD-L1, membrane-bound PD-L1; MMPs, matrix metalloproteinases; ADAM, a

disintegrin and metalloproteinase; APCs, antigen-presenting cells; IFN,

interferon; sPD-L2, soluble PD-L2; RGMb, repulsive guidance molecule b;

BMP2, bone morphogenetic proteins 2; BMP4, bone morphogenetic proteins 4;

CRD, carbohydrate-recognition domain; TIM-3, T-cell immunoglobin and

mucin domain-containing protein 3; VISTA, V-domain Ig suppressor of T-cell

activation; LAG-3, lymphocyte-activation gene 3; Gal3BP, a galectin-3-binding-

protein; RCC, renal cell carcinoma; ccRCC, clear-cell RCC; pRCC, papillary RCC;

chRCC, chromophobe RCC; ICI, immune checkpoint inhibitor; SLE, systemic

lupus erythematosus; PGN, proliferative glomerulonephritis; NPGN, non-

proliferative glomerulonephritis; IgAN, IgA nephropathy; HSP, Henoch-

Schönlein purpura; HSPN, HSP nephritis; TIN, tubulointerstitial nephritis;

AKI, acute kidney injury; ATIN, acute TIN; AIN, acute interstitial nephritis.
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increasing therapeutic use of anti-PD-1/PD-L1 immune checkpoint

antibodies in clinical, immune-related adverse events (irAEs)

involving the kidneys are being increasingly reported (21–23). As

such, PD-1 and its ligands potentially play major roles in the

kidneys. Here, we provide a comprehensive review of studies on

the PD-1 pathway in the kidneys, with a focus on renal cell

carcinoma, glomerulonephritis, kidney transplantation, renal

aging, and renal complication secondary to PD-1/PD-L1

inhibitor-related immunotherapy (Figure 3).
2 Structure and signaling of PD-1
receptor and ligands

2.1 PD-1

PD-1, also referred to as PDCD1 or CD279, is a type I

transmembrane glycoprotein, weighing 50-55 kDa and comprising

288 amino acid residues (1). It includes an immunoglobulin

superfamily domain, a 20-amino-acid stalk, a transmembrane

domain, as well as an intracellular domain containing two tyrosine-

based signaling motifs: immunoreceptor tyrosine-based inhibitory

motif (ITIM) and an immunoreceptor tyrosine-based switch motif

(ITSM) (1, 24). According to a comparative analysis of PD-1 against

other proteins demonstrated, PD-1 shares 15%, 20%, and 13%

similarity to the amino acid sequences of CD28, cytotoxic T

lymphocyte-associated antigen-4 (CTLA-4), and inducible

costimulatory molecule (ICOS), respectively (13). PD-1 belongs to

the CD28 superfamily and is encoded by PDCD1 on human

chromosome 2 (1, 24). PDCD1 comprises five exons, each serving a

distinct purpose. In particular, PDCD1 exons 1, 2, 3, and 4 encode a

brief signal sequence, an immunoglobulin domain, stalk and

transmembrane domains, and a truncated 12-amino-acid sequence

marking cytoplasmic domain commencement, respectively; moreover,

exon 5 encloses the C-terminal intracellular residues and a substantially

lengthy 3′ untranslated region (UTR) (1, 25). Soluble PD-1 (sPD-1) is

produced through alternative splicing of full-length PD-1 (flPD-1)

transcript; only one splice variant lacking exon 3 but retaining other

exons (PD-1Dx3) may encode sPD-1 (26, 27).

PDCD1 was initially identified as a gene induced only during

programmed cell death (3). PD-1 is a key immunosuppressive

checkpoint, predominantly present in activated T, B, and NK

cells, as well as macrophages, DCs, monocytes, and myeloid cells

(1). PD-1 expression is also strong in immune-privileged regions,

such as the cornea, retina, and iris-ciliary body. Its distribution is

wider than that of other CD28 family members, the expression of

which is restricted on T cells, which results in PD-1 demonstrating

broader spectra of immune responses (17).

PD-1 binds to two classical ligands: PD-L1 and PD-L2; this results

in the inhibition of T-cell proliferation, activation, cytokine production,

and altered metabolism, as well as cytotoxic T lymphocytes (CTLs)

killer functions and eventual activated T-cell death (1). The inhibitory

function of PD-1 depends on its relationship with SHP-2, a

phosphatase (1). After interacting with its ligands PD-L1 or PD-L2,

PD-1 becomes activated and recruits SHP-2 in proximity to T-cell

antigen receptors (TCRs), which dephosphorylates protein molecules
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critical for TCR signaling and affects the downstream signaling

pathways (28–31). The bonding of the SH2 domains of SHP-2 with

ITSM in PD-1 triggers PD-1 dimerization and SHP-2 activation (1).

sPD-1 functions as a PD-1 ligand blocker and suppresses the

interactions of PD-1 with PD-L1 and PD-L2 and the those of PD-L1

with B7-1 (also called CD80) (27, 32). Gal-9 can interact with PD-1 on

T-cell surfaces (12); this interaction plays a role in sustaining the

presence of PD-1+TIM-3+ T cells and reducing Gal-9/TIM-3-induced

cell death (12). Notably, studies have recently revealed the presence of

direct PD-1-Gal-3 interactions, highlighting the significance of

targeting Gal-3 in immunotherapy through various combination

approaches (9–11) (Figure 4).
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2.2 PD-L1

PD-L1, or B7 homolog 1 (B7-H1)/CD274, is a 33-kDa type I

transmembrane protein, comprising 290 amino acid residues,

encoded by CD274 on human chromosome 9, and belonging to

the B7 family (1, 13). CD274 comprises seven exons (33), with exon

1 encoding a 5′-UTR, and exon 7 encoding a part of the intracellular
domain and a 3′-UTR of mRNA. The first 18 amino acids form the

signal peptide sequence, which is removed during protein

processing (33). PD-L1 comprises a large extracellular region

containing immunoglobulin (Ig) V-like and IgC-like domains,

followed by a hydrophobic transmembrane domain and cytosolic
FIGURE 1

The timeline of discovery of the PD-1 receptors and ligands.
FIGURE 2

PD-1 axis in immune cells and renal parenchymal cells. PD-1 receptors and ligands on resident innate immune cells in the renal interstitium and
renal parenchymal cells, including renal proximal tubule epithelial cells and podocytes, aid in maintaining immunological homeostasis within
the kidneys.
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tail (33). Extracellular PD-L1 can mainly be classified into free

soluble (sPD-L1) and exosomal membrane-bound (mPD-L1)

forms, distributed throughout the body via blood circulation (34).

sPD-L1 forms through proteolytic cleavage of mPD-L1 (32).

Various proteases, such as endogenous matrix metalloproteinases

(MMPs) and a disintegrin and metalloproteinase (ADAM), can

cleave mPD-L1, thereby enabling sPD-L1 release (32).

PD-L1 is present in various immune cells including T, B, and NK

cells, as well as epithelial cells, vascular endothelial cells, antigen-

presenting cells (APCs), multiple tumor cells, and tumor-infiltrating

cells (1). PD-L1 overexpression can be triggered on tumor cells either

by genetic alterations (innate expression) or through stimulation with

interferon (IFN) g released from effector T cells, including CD8+ T

cells (acquired expression) (13). PD-L1 expression is also observed in

immune-privileged regions such as the eye and placenta, where its

overexpression begins from the fourth gestation month (17). sPD-L1

can be detected in the plasma of healthy individuals, whereas sPD-L1

levels are elevated in individuals with an autoimmune disease or

cancer (26, 35, 36). In general, cancer cells and mature DCs are

considered the main sources of sPD-L1 (36–38).

PD-1-PD-L1 interactions hinder T-cell receptor-mediated

cytotoxicity and CD8+ T-cell proliferation, impeding adaptive

immune response against cancer cells; this allows cancer cells to

escape destruction and evade immune monitoring (39). Notably,
Frontiers in Immunology 04
recent studies have revealed that the PD-L1-B7-1 ligand-ligand cis-

interaction alters trans interactions with other immune

checkpoints; this provides newer perspectives on mechanisms

underlying the currently known immune pathways and

immunotherapeutic modalities (6, 40). B7-1 is a type I

transmembrane protein belonging to the B7 family and existing

as a monomer or homodimer. B7-1 expressed on APCs binds to

CD28 and CTLA-4 on T cells, eliciting costimulatory and

coinhibitory signals, respectively (41). When PD-L1 binds to B7-1

in a cis configuration, PD-L1 cannot engage PD-1 (6, 40). The PD-

L1-B7-1 cis-interaction disrupts the B7-1 homodimer and reduces

its avidity to CTLA-4, thereby reducing B7-1 transendocytosis (6,

42). The binding of B7-1 to PD-L1 does not prevent the interaction

of B7-1 with CD28, consequently leading to the formation of a

trimeric complex (6). However, the effects of the PD-L1-B7-1 cis-

heterodimer on the B7-1-CD28 interaction remain inconclusive due

to conflicting reports (40). Sugiura et al. demonstrated that

elimination of PD-1 restriction via targeting the cis-PD-L1-B7-1

duplex effectively alleviated autoimmune disease symptoms in

murine models with arthritis, multiple sclerosis, or Sjögren’s

syndrome (43). Moreover, the relative levels of PD-L1 and B7-1

affected the overall outcome (6). sPD-L1 retains binding ability and

inhibitory properties identical to those of mPD-L1 and can bind

with PD-1 or B7-1 (26, 32) (Figure 4).
FIGURE 3

Mechanisms of PD-1-mediated inhibition in kidney health and disorders. After interacting with PD-L1 or PD-L2, PD-1 recruits the phosphatase SHP-
2 in proximity to TCR, which attenuates key TCR proximal signaling. In cancers and age-related disorders, cancer or senescent cells escape the
immune system because of the abnormal immune surveillance mediated by immune checkpoint molecules. In autoimmune disorders and allogenic
transplantation, abnormal immune responses to self or foreign antigens expressed in transplant induce tissue damage and organ rejection.
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2.3 PD-L2

PD-L2, also referred to as B7-DC or CD273, is a type I

transmembrane protein, belonging to the B7 ligand family,

comprising 270 amino acid residues, and encoded by PDCD1LG2

located on human chromosome 9. This gene is oriented in a

direction identical to that of CD274, which encodes PD-L1, 42 kb

apart (44–46). Both PDCD1LG2 and CD274 present similar exon

organization with a 5′-UTR, followed by a signal sequence, an IgV

domain, an IgC domain, transmembrane domains, and cytoplasmic

exons 1 and 2 with 3′-UTR (46). Two novel variants of human PD-

L2, other than the full-length isoform encoding the common PD-L2

mRNA (type I), have been discovered in activated leukocytes (1): A

type II splice variant forms through the exclusion of exon 3 via

splicing and retention of all other segments without frame
Frontiers in Immunology 05
alteration; the resulting protein lacks the IgC-like domain but

retains the Ig constant-like domain, making it shorter in the

extracellular area (2). A type III variant forms through the

splicing of exon 3 into an alternative acceptor site located 5 bp

downstream of the conventional site, which causes a frameshift; the

translated protein, lacking a transmembrane domain, might exist in

a soluble form as soluble PD-L2 (sPD-L2) (27, 47).

PD-L2 is mainly present on APCs, such as macrophages and

DCs, and its expression can be induced in other immune and

nonimmune cells by various microenvironmental stimuli,

particularly T helper 2-related cytokines (48). In contrast, both

immune and nonimmune cells express PD-L1 (45). PD-L2

expression has been detected in patients with various

malignancies, and it is considered a predictor of a worse

prognosis (45, 48, 49). In human tumor samples, PD-L2 and PD-
FIGURE 4

Biological regulation of human PD-1/PD-L1/PD-L2 gene, mRNA, and protein structural domains. PD-1 is encoded by PDCD1 on human
chromosome 2, including five exons, each encoding a distinct protein. sPD-1 forms through alternative slicing of the full length PD-1 transcript, and
only PD-1 Dx3 may encode for sPD-1. PD-L1 and PD-L2 are encoded by CD274 and PDCD1LG2 located on human chromosome 9, respectively.
Both PDCD1LG2 and CD274 present an exon organization similar to 5′ UTR, followed by a signal sequence, an IgV domain, an IgC domain,
transmembrane domains, and finally cytoplasmic exons 1 and exon 2 with 3′ UTR. sPD-L1 is generated through proteolytic cleavage of mPD-L1 by
various proteases, such as endogenous MMPs and ADAM. The translated protein lacks the transmembrane domain, eliminated through splicing out
of exon 3; the translated protein may exist as the soluble sPD-L2.
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L1 expression is typically correlated; however, in some subsets of

patient samples, PD-L2 expression is also present in the absence of

PD-L1 expression (50).

Compared with that on PD-1 and PD-L1, research on PD-L2 as

a therapeutic target and predictive biomarker has been scant.

Despite sharing the same receptor PD-1 and having 37%

sequence homology with PD-L1, PD-L2 and PD-L1 exhibit

variations in affinity and tissue expression (45). Studies have

indicated that PD-L2 demonstrates a binding affinity to PD-1 that

is twofold to sixfold higher than PD-L1 (44, 48, 49). Moreover, the

role of PD-L2 has been highlighted in allergy and tolerance studies.

Another crucial binding partner of PDL2 is the recently discovered

repulsive guidance molecule b (RGMb) (6, 51, 52). RGMb, a

glycosylphosphatidylinositol-anchored protein, belongs to the

repulsive guidance molecule family alongside repulsive guidance

molecules a and c (6). Notably, RGMb acts as a coreceptor for bone

morphogenetic protein 2 (BMP2) and bone morphogenetic protein

4 (BMP4), as well as neogenin, forming the supercomplex BMP-

BMPR-RGMb-neogenin within the same cell membrane. PD-L2

can interact with this supercomplex in a trans configuration to

regulate the downstream pathways (6, 51, 53). However, further

relevant research on fully understanding the functional role of PD-

L2 within this supercomplex is warranted (Figure 4).
2.4 Gal-9

Gal-9 is a b-galactoside-binding lectin encoded by LGALS9 located
on human chromosome 17, long arm at locus 11.2 (17q11.2) in

humans (54). It is a 34-39-kDa tandem repeat galectin, consisting of

two carbohydrate-recognition domains (CRDs), N- and C-terminal

CRDs, with similar but distinct specificities for glycans joined with a

linker domain (54–56). Full-length Gal-9 is 355 amino acids long, and

LGALS9, consists of 11 exons, and forms many splice variants

undergoing posttranscriptional splicing, such as Gal-9D5, Gal-9D5/6,
Gal-9D5/10, and Gal-9D5/6/10 (54). Gal-9 has been discovered in

many tissues; it was first discovered and named in mouse embryonic

kidneys (57). T cells can stimulate Gal-9 release in different human

cancer cell lines originating from solid malignant tumors through two

distinct pathways. The first pathway involves translocation of Gal-9

onto the cell surface, followed by its proteolytic shedding, whereas the

second pathway depends on autophagy, followed by lysosomal

secretion; because Gal-9 lacks a secretion sequence, both these

pathways require a protein carrier or trafficker (58). Gal-9 belongs to

the lectin family and thus functions via receptors such as T-cell

immunoglobin and mucin domain-containing protein 3 (TIM-3), V-

domain Ig suppressor of T-cell activation (VISTA), and PD-1 in CTLs

(9, 12, 58, 59).

TIM-3 is a glycoprotein expressed on different immune cells

such as T and B cells, macrophages, monocytes, DCs, NK cells, mast

cells, and APCs (60–63). TIM-3 is involved in immune response

and tolerance regulation. Interactions between Gal-9 and TIM-3

can lead to immunostimulatory or immunoinhibitory effects,

depending on the type of immune cells involved (60). On T cells,

a TIM-3-Gal-9 interaction leads to the weakening of the T helper 1-

mediated immunity and T-cell apoptosis, resulting in an inhibition
Frontiers in Immunology 06
of the immune system. In contrast, on NK cells and DCs, this

interaction leads to an immunostimulatory effect (60, 61). In

addition, TIM-3 ligands also include Psdter, high mobility group

box 1, and carcinoembryonic antigen-associated cell adhesion

molecule 1, which have different effects after binding to different

ligands on immune cells (64).

VISTA, also known as PD-1 homolog or B7-H5, belongs to the

B7 family. Structural analysis has demonstrated that the IgV

domain of VISTA has sequence homology with both CD28 and

the B7 family proteins, whereas the full-length VISTA demonstrates

the highest identity with PD-1 (20, 65). Yasinska et al. reported that

VISTA interacts with Gal-9 with relatively strong affinity, without

preventing interactions between Gal-9 and TIM-3 (59). Soluble

VISTA released by acute myeloid leukemia cells enhances the effects

of Gal-9, most likely by forming multiprotein complexes on the T-

cell surfaces and possibly creating a molecular barrier Gal-9, which

results in changes in the plasma membrane potential of T cells; this

leads to activation of granzyme B inside CTLs, followed by their

apoptosis (59). Furthermore, human VISTA has two confirmed

binding partners with immunosuppressive functions, P-selectin

glycoprotein ligand 1 and V-set and Ig domain-containing 3, and

one less-confirmed partner, V-set and Ig domain-containing 8 (66).

VISTA activity imposes quiescence in mammalian myeloid cells

and naïve T cells and inhibits T-cell activation and cytokine

production; this suggests that VISTA is a promising target for

combination cancer immunotherapy (66).

Recent research has indicated that Gal-9 is a PD-1-binding

protein (9, 12). The binding of Gal-9 to PD-1 is highly specific and

is primarily mediated by the CRD of Gal-9 and the N116-linked

glycan of PD-1. Nevertheless, this association does not affect the

binding of PD-1 to PD-L1 (its natural ligand) or pembrolizumab

and nivolumab (the therapeutic antibodies) (12). The interactions

of PD-1 with Gal-9 and TIM-3 can attenuate Gal-9/TIM-3-induced

apoptosis of PD-1+TIM-3+ T cells in cancers; this result provides a

newer insight into the intricate conflict between cancer cells and the

immune system (12). Moreover, similar to PD-1 and its ligands

(PD-L1 and PD-L2), Gal-9 expression and secretion are

upregulated by IFN signaling (67).
2.5 Gal-3

Gal-3, a lectin with a preference for b-galactoside-containing
carbohydrates, is a structurally unique galectin family member (68).

Full-length Gal-3, consisting of 250 amino acids, is encoded by

LGALS3 on human chromosome 14 (68). Galectins can be classified

into three types based on the number and arrangement of CRDs:

prototype (a noncovalently bound isoform dimer), tandem repeat

type (a covalently attached heterodimer), and chimeric type

(consisting of a C-terminal CRD and an N-terminal peptide

chain) (69, 70). Gal-3 is the only chimeric protein with a C-

terminus CRD linked to an N-terminal domain rich in proline,

glycine, and tyrosine, which can be oligomerized by the N-terminal

CRD according to environmental conditions (69, 71). The N-

terminal domain targets specific cellular targets, the repetitive

collagen-like sequence serves as a substrate for MMP, and the C-
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terminal domain contains the carbohydrate-binding region (72, 73).

The N-terminal peptide harbors two crucial phosphorylation sites:

Ser6 (the major site with 90% phosphorylation) and Ser12 (the

minor site with 10% phosphorylation) (68, 74). Both these sites are

vital in facilitating nuclear export of Gal-3, and they are

indispensable for the antiapoptotic functions of cytoplasmic Gal-3

(68, 75, 76). Thus far, the binding partners of Gal-3 have been

reported to include lymphocyte-activation gene 3 (LAG-3), CD45, a

galectin-3-binding-protein (Gal3BP), and PD-1 (9).

LAG-3 is an inhibitory receptor, highly expressed by exhausted

T cells, as well as a promising immunotherapeutic target. Thus far,

>20 LAG-3-targeting therapeutics are under clinical trials, and a

fixed-dose combination of anti-LAG-3 and anti-PD-1 has been

approved for unresectable or metastatic melanoma treatment (77).

The canonical ligand of LAG-3 is a major histocompatibility

complex class II protein (77, 78). Additional ligands for LAG-3

include Gal-3, liver and lymph node sinusoidal endothelial cell C-

type lectin, fibrinogen-like protein 1, a-synuclein preformed fibrils,

and the TCR-CD3 complex (77). In a pancreatic ductal

adenocarcinoma model, Gal-3 was noted to mediate suppression

of effector CD8+ T-cell function by binding to LAG-3 (9, 79).

Moreover, a blockade of the Gal-3/LAG-3 axis has been validated in

T cells in patients with multiple myeloma (9, 80).

CD45 is a transmembrane protein tyrosine phosphatase

receptor type C, which is expressed exclusively in leukocytes; it

has opposing effects on T-cell receptor activity (81, 82).

Extracellular Gal-3 induces T-cell apoptosis by binding to CD45,

whereas intracellular Gal-3 inhibits the apoptotic process by

binding to BCL-2 (83, 84). Gal3BP, also known as tumor-

associated antigen 90K or Mac-2-binding protein, is a

multifunctional secreted glycoprotein encoded by LGAL3SBP

involved in cell-cell and cell-matrix interactions, upregulated in

patients with cancer or a viral infection, including HIV-1, HCV, or

SARS-CoV-2 infection, with a key role in regulating the antiviral

immune response (85). Interactions between Gal3BP and Gal-3 can

trigger IL-6 expression and release in various cells, such as bone

marrow stromal cells, neuroblastoma cells, and macrophages; this is

because Gal3BP downregulation leads to decreased IL-6 expression,

and Gal3BP/Gal-3-mediated induction of IL-6 involves the Ras-

Mek-Erk1/2 pathway (85–88). In a triple-negative breast cancer

model, tumor-secreted Gal-3 and a Gal-3-binding protein have

been noted to form a complex that interacts with the CD45 receptor

on T cells and induce expansion of regulatory T cells (9, 83).

Notably, PD-1/PD-L1 have recently been demonstrated to

directly interact with Gal-3, highlighting the importance of Gal-3

as an emerging immunotherapy target in different combination

modalities (9–11). Pedersen et al. reported that PD-1 and Gal-3 can

be present on mononuclear cells in blood and synovial fluid and

that Gal-3 can inhibit PD-1 signaling when PD-L1 is present (11).

Clinical trials on the use of Gal-3 inhibitors to improve the

effectiveness of anti-PD-1 therapy for metastatic melanoma and

head and neck squamous cell carcinoma are underway (11, 89).

Much of knowledge of these immunosuppressive molecules has

come from murine studies and lot needs to be worked out in

human diseases.
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3 PD-1 pathway and kidney diseases

3.1 Renal cell carcinoma

Renal cell carcinoma (RCC), the most common form of kidney

cancer, is associated with poor prognosis, with 25%-30% of the

patients being diagnosed at the metastatic stage, and approximately

40% of the patients demonstrating recurrence after surgical excision

(90, 91). Therefore, improved treatment modalities that may reduce

the risk of recurrence in patients with advanced-stage disease,

mainly including antiangiogenics and targeted immunotherapy,

are under investigation. RCC presents as a heterogenous tumor,

and it can be classified into several subtypes with unique

characteristics. Clear-cell RCC (ccRCC) is the predominant

subtype, accounting for approximately 75%-83% of all RCC cases

(90, 92). Several other renal epithelial malignancies are collectively

referred to as non-ccRCC; they include papillary RCC (pRCC),

chromophobe RCC (chRCC), translocation RCC, collecting duct

carcinoma, and unclassified RCC (93). RCC is considered

immunogenic, characterized by the presence of abundant tumor-

infiltrating immune cells, including CD8+ and CD4+ T cells, NK

cells, and myeloid cells with the characteristics of macrophages and

neutrophils (94). These tumor-infiltrating cells block the

development of antitumor immune response in the TME,

including inhibition of the activity of effector T cells and APCs

via the upregulation of suppressive factors such as checkpoint

molecules (93). Immune infiltration of tumors is closely

associated with clinical outcomes in RCC. An increase in the

proportion of regulatory T cells and the levels of the

immunomodulator molecules CTLA-4 and LAG-3 worsens

outcomes in ccRCC. Moreover, M2 macrophages and PD-L2 are

associated with a poor prognosis in pRCC (94).

The utility of immune checkpoints as predictive biomarkers has

been investigated extensively. PD-1 and PD-L1 are associated with

worse clinical outcomes in RCC (92). An increase in PD-1

expression on CD14bright myelomonocytic cells, effector T cells,

and NK cells is significantly correlated with the disease stage in

patients with RCC (95). In addition, a rapid reduction in PD-1

expression on these cells can occur within weeks after surgical

tumor resection (95). Measuring PD-1 levels in peripheral blood

may be a useful indicator of disease progression and response to

anti-PD-1. Among RCC tumor specimens, approximately 10%-57%

have been observed to be positive for PD-L1 and associated with

worse clinical outcomes (96–98). Abbas et al. retrospectively

analyzed intratumoral expression of PD-L1 in patients with

ccRCC and reported a significant association of PD-L1 positivity

with poor clinical prognosis parameters and decreased overall

survival (97). Moreover, PD-L1 expression does not differ

between the various histologic subtypes of RCC (98). PD-L2

expression in RCC has also been found to be associated with

adverse clinicopathological features. Shin et al. detected PD-L2 in

49.6% of the samples, with the highest frequency noted for pRCC;

the positivity was significantly correlated with short progression-

free and cancer-specific survivals in patients with ccRCC (98).

Erlmeier et al. reported high PD-L2 expression in 28.4% of their
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chRCC cases and a significant difference in overall survival

dependent on PD-L2 expression (99).

The targeted immunotherapeutic modalities have rapidly

developed for RCC in recent years. The application of various

immune checkpoint inhibitors (ICIs), alone or in combination, has

demonstrated strong responses in some patients with RCC. In the

phase III CheckMate 025 trial, a 23% objective response rate was

noted in advanced RCC patients treated with the anti-PD-1

nivolumab; in these patients, nivolumab demonstrated efficacy,

safety, and tolerability superior to those of everolimus (100). In

the phase II Keynote-427 study, single-agent pembrolizumab

monotherapy (a humanized monoclonal anti-PD1 antibody)

resulted in an overall objective response of 36% in patients with

advanced ccRCC, and 68.2% of the patients demonstrated a

decrease in the number of target lesions (101). Three recent phase

III trials, namely Checkmate 214, Keynote-426, and Javelin Renal

101, have provided three novel, U.S. Food and Drug

Administration-approved regimens for treating ccRCC:

nivolumab + ipilimumab, pembrolizumab + axitinib, and

avelumab + axitinib, respectively (102). However, some patients

with RCC may not benefit from checkpoint blockade. Trials

assessing appropriate treatment regimens for enhancing

antitumor immune responses are underway.
3.2 Glomerulonephritis

PD-1 and its ligands, PD-L1 and PD-L2, elicit inhibitory signals

to terminate or attenuate the immune response and thus play a

significant role in autoimmunity (17). Systemic lupus

erythematosus (SLE) is a systemic autoimmune disorder,

presenting as immune tolerance loss and immune cell

hyperactivity. Lupus nephritis, a common, severe manifestation of

SLE, is characterized by subendothelial immune complex

depositions, subepithelial immune complex depositions, or both

in the afflicted kidney, resulting in extensive injury and nephron

loss (103). Dysregulated cell signals in SLE may identify pathways

involved in controlling the PD-1 response (104). Expression of PD-

1, PD-L1 and PD-L2 has been determined in tissue, cell and serum

expression in SLE patients (105). George K. Bertsias et al. reported

that PD-1 staining was detected in the glomeruli in 8 of 13 samples

from patients with lupus nephritis compared with 0 of 9 control

samples; similarly, PD-1 was detected in renal tubules in 6 of 13

samples from patients with lupus nephritis but in 0 of 9 control

samples; all 8 PD-1+ lupus nephritis samples were also stained

positive for CD3 expressed in the glomeruli and tubulointerstitial

region, suggesting a correlation between PD-1 and CD3+ T cell

infiltrates in lupus nephritis (106). Compared with healthy controls,

patients with SLE demonstrate higher PD-1+ and lower PD-L1+

immune cell percentages among peripheral blood mononuclear

cells (107). The inhibitory PD-1/PD-L1/2 pathway can also be

restricted by the soluble form of PD-1 (sPD-1). SLE patients with

high disease activity demonstrate significantly higher serum sPD-1

levels than those with low disease activity; this decrease occurs in

accordance with disease amelioration after treatment (108). In a

murine SLE model, the application of anti-PD-L1 could alleviate
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proteinuria and prolong survival via the suppression of CD4+ T-cell

activation, T helper 17 differentiation, autoantibody-containing

immune complex deposition in the kidneys, and cytokine

production (including that of IFN-g, IL-17, and IL-10) (109). In

addition, blood sPD-L2 levels were lower in patients with SLE than

in healthy individuals, and they are positively correlated with

complements 3 and 4 (110). Guiteras et al. designed a human

fusion recombinant protein (Hybri) with two domains: CTLA-4 (to

block the CD28-CD80 costimulatory pathway) and PD-L2 (to

exacerbate the PD-1-PD-L2 coinhibitory pathway); this protein

prevented the progression of proteinuria and anti-dsDNA to

levels similar to those of cyclophosphamide, as well as reduced

the histological score, infiltration of B and T cells and macrophages,

and immune deposition, in NZB/WF1 and MRL/lpr mouse models

of lupus nephritis (Table 1) (111). Besides, the immune checkpoint

blockade targeting PD-1 inhibitory pathways has been a successful

treatment in several cancers; the blocking of these inhibitory

immune checkpoint receptors is also associated with further

irAEs that can resemble lupus-like autoimmune diseases (112,

113). Therefore, PD-1 and its ligands have been identified as

immune regulatory molecules implicated in SLE pathogenesis and

development (104).

Autoimmune glomerulonephritis occurs as a consequence of

autoantibody and T-cell effector functions, which target either

antigens intrinsic to the glomeruli or nonspecific antibodies that

become trapped and accumulate in the glomeruli (15). Grywalska

et al. reported that the frequencies of PD-1- and PD-L1-positive T

and B cells were higher in patients with proliferative

glomerulonephritis (PGN) (seven with IgA nephropathy, and

three with membranoproliferative glomerulonephritis) than in

patients with non-PGN or in control individuals (four with

minimal change disease , and s ix wi th membranous

glomerulonephritis) (114). Studies on experimental autoimmune

glomerulonephritis have demonstrated that stimulation of PD-1

using PD-L1/Fc fusion protein leads to a significant reduction in

albuminuria, serum urea, serum creatinine, crescent formation, and

tubular damage, as well as the numbers of glomerular macrophages,

CD4+ and CD8+ T cells, and PD-1+ cells (115). However, studies on

acute experimental foreign antigen-induced circulating immune

complex glomerulonephritis have shown that the endogenous

PD-1/PD-L pathway elicited by antimouse PD-1/PD-L1/PD-L2

antibody administration does not result in any significant

pathological changes (116). IgA nephropathy (IgAN), the most

common form of primary glomerulonephritis worldwide, is

characterized by increased amounts of aberrantly glycosylated

IgA1 (Gd-IgA1) present in patient serum and glomerular

immune deposits (117). T cells promote IgA production and

mediate the course of IgAN (118). In a study, the percentages of

different subsets of circulating PD-1hiCXCR5− T and CD138+ B

cells were significantly higher in patients with IgAN than in healthy

individuals, and the percentage of these cells was correlated with

disease severity (119). Henoch-Schönlein purpura (HSP), also an

IgA-mediated systemic small-vessel vasculitis, was noted to result in

renal manifestations in 40%-50% of the patients (120). Moreover,

the number of circulating CD4+CXCR5+PD-1+ T follicular helper

cells was significantly higher in patients with HSP nephritis than in
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healthy individuals, and it was negatively correlated with 24-hour

urinary protein levels (121).
3.3 Kidney transplantation

Allogenic transplantation is associated with allograft rejection

risk due to exposure to foreign antigens, and a major factor

triggering organ rejection is T-cell activation during immune

allorecognition (122). PD-1 and its ligands are crucial regulators

of T-cell activation and self-tolerance mechanisms. Both

experimental and clinical evidence has indicated that PD-1

signaling can modulate transplant rejection. Murine models of

kidney transplantation demonstrated that >90% of CD8+ T cells

and approximately 75% of CD4+ T cells in early infiltrates of renal

transplants express PD-1, and blocking PD-1-PD-L1 interactions

using anti-PD-L1 early after transplantation can increase the

amounts of T-cell infiltrates, resulting in terminal acute rejection

(123). Besides, Zihuan Luo et al. developed a membrane-anchored-

protein PD-L1 (map-PD-L1), which effectively anchored onto the

surface of rat glomerular endothelial cells and could bind to PD-1

promoting T cell apoptosis and inhibiting T cell activation; ex vivo

perfusion of donor kidneys with map-PD-L1 significantly protected

grafts against acute injury without using any immunosuppressant in
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kidney transplantation models (124). Studies in humans have

indicated that PD-L1, PD-L2, and PD-1 mRNA and protein

expression is upregulated in biopsies of patients with renal

allograft rejection compared with that in their pre-transplant

biopsies, and a blockade of PD-L1 on tubular epithelial cells

results in a significant increase in the proliferation of CD4+ T

cells and cytokine production in CD4+ and CD8+ T cells in vitro

(20). Melendreras et al. observed that high levels of soluble co-

signaling molecules (sCD30, sCD40, sCD137, sCD40L, sPD-1, and

sPD-L1) in the sera of kidney transplant recipients determined were

strongly associated with a higher risk of graft failure at 3 months

after transplantation than at 6 years after transplantation,

suggesting that these soluble molecules may be useful biomarkers

for predicting long-term graft function (125). Collectively, these

findings underscore the importance of PD-1 co-inhibition in

transplant immunology.

Organ transplant recipients have a higher cancer risk than the

general population, and in these patients, cancer remains the second

most common cause of death (126). Some organ transplant patients

developing cancer are treated with ICIs. In contrast, ICIs can

increase the risk of acute rejection related to T-type cellular

immunity activation, and immunosuppressants can compromise

the antitumor activity of immunotherapy (127). Therefore, the

safety and efficacy of ICIs in organ transplant recipients should
TABLE 1 Interventions targeting the PD-1/PD-L1 pathway for treatment of noncancer disorders.

Disease Targeted therapy Target Species References

SLE PD-L1-Ig PD-1 Mice (109)

SLE Hybri CTLA-4 and PD-L2 Mice (111)

Arthritis Anti-CD80 antibodies (TKMG48) cis-PD-L1-CD80 duplex Mice (43)

Multiple sclerosis Anti-CD80 antibodies (TKMG48) cis-PD-L1-CD80 duplex Mice (43)

Sjögren’s syndrome Anti-CD80 antibodies (TKMG48) cis-PD-L1-CD80 duplex Mice (43)

Colitis Anti-PD-1 agonist mAbs (HM266) PD-1 Mice (130)

aGVHD Anti-PD-1 agonist mAbs (HM266) PD-1 Mice (130)

FSGS Anti-PD-1 antibody PD-1 Mice (19)

Aged-kidney Anti-PD-1 antibody PD-1 Mice (19)

Aged-liver Anti-PD-1 antibody PD-1 Mice (134)

Pulmonary fibrosis Anti-PD-L1 mAb PD-L1 Mice (144)

CAEBV Sintilimab PD-1 Human (163)

CAEBV Pembrolizumab PD-1 Human (164)

CAEBV Sintilimab PD-1 Human (164)

CAEBV Nivolumab PD-1 Human (164)

CAEBV Sintilimab PD-1 Human (165)

CAEBV Sintilimab PD-1 Human (166)

EBV-HLH Sintilimab PD-1 Human (166)

EBV-HLH Nivolumab PD-1 Human (167)
SLE, systemic lupus erythematosus; aGVHD, acute graft versus host disease; FSGS, focal segmental glomerulosclerosis; PD-L1, programmed death ligand 1; CD80, cluster of differentiation 80;
PD-1, programmed death 1; CTLA-4, cytotoxic T lymphocyte-associated antigen 4; PD-L2, programmed death ligand 2.
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be discussed thoroughly. Data pooled from the literature

demonstrated that the overall allograft rejection rate is 36%-41%

in organ transplant recipients after ICI therapy; in particular, graft

rejection rate is 40%-44% for kidney transplant recipients (126,

128). The highest risk is noted in patients treated with PD-1

inhibitors than in those treated with PD-L1 and CTLA-4

inhibitors, whereby nivolumab demonstrated the highest rejection

rate, followed by pembrolizumab (126, 128). A multicenter

retrospective study in kidney transplant recipients demonstrated

that 42% of the patients receiving ICIs developed acute rejection

within a median onset of <4 weeks, 65.5% required dialysis, and

27.5% lost their allograft; in contrast, the acute rejection rate was

5.4% in patients not treated with ICIs (129). Moreover, 50% of the

rejections were T-cell-mediated rejection and the rest were mixed

(T-cell and antibody mediated rejection) in their series of kidney

transplant patients treated with ICIs. Suzuki et al. identified PD-1

agonists inhibiting T cells by triggering immunosuppressive

signaling in murine disease models with acute graft versus host

disease and colitis and indicated their clinical potential for treating

issues related to allogeneic transplantation (130). Taken together,

these results indicate the necessity of considering both rejection

risks and objective response rates and maintaining two-agent

immunosuppression regimens to achieve reasonable tumor

response with a low rejection risk.
3.4 Renal aging

Senescent cell accumulation within tissues is a hallmark of the

aging process. The immune system can clear senescent cells as part

of normal tissue homeostasis. However, the excessive generation

and insufficient elimination of senescent cells in various tissues

promote inflammation and potentially contribute to pathological

aging (131). Senescent cells expressing PD-L1 can escape immune

surveillance, resulting in their accumulation and associated

inflammation (132, 133). PD-L1 mRNA upregulation in bone,

heart, liver, marrow, and lung has been observed in aged mice

(132). Wang et al. recently reported an increase in PD-L1+ cell

population among tdTomato− cells from the liver and kidneys of

aged mice. The author also reported that anti-PD-1 administration

reduced the total number of p16+ cells and the population of PD-

L1+ cells in an activated CD8+ T-cell-dependent manner in

naturally aging mice or a mouse model with normal livers or

induced nonalcoholic steatohepatitis in vivo, ameliorating various

aging-related phenotypes (134). Therefore, PD-1 and its ligands

(PD-L1 and PD-L2) are overexpressed after podocyte injury and

during cellular senescence. PD-1 upregulation activates caspase-3

and induces metabolic disruption, leading to podocyte injury and

loss. Anti-PD-1 ameliorates these effects in vitro and in vivo (19,

134, 135). Preventing aging via PD-1 immune checkpoint blockade

may be a promising therapeutic strategy.

Regardless of the cause of podocyte disease, lost podocytes are

irreplaceable because they are unique, highly specialized, terminally

differentiated, and restricted in a postmitotic state with limited

repair or regeneration ability (136, 137). Podocyte number and

density decrease with advancing age (138, 139). Global
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transcriptomic changes that occur in aged mouse podocytes

indicate that decreased expression of canonical podocyte marker

genes, junctional and adhesion proteins, and prosurvival pathway

proteins synergizes with an increase in the activities of

inflammatory response pathways and a decrease in those of

podocyte-specific signaling (139). Pippin et al. reported that the

PD-1 pathway activity increases in aged mouse and human

glomeruli and that it is correlated with glomerular scarring,

vascular damage, and declined kidney function (19). Moreover,

aged mouse and human kidneys displayed higher PD-1 levels in

podocytes, parietal epithelial cells, and tubular cells but not in

glomerular mesangial cells and endothelial cells (19). In an in vitro

study, interfering with PD-1 signaling in mice by using neutralizing

anti-PD-1 significantly improved the aging phenotype in the

glomeruli, tubular epithelial cells, and the tubulointerstitium in

the kidneys, as well as in the liver, and increased podocyte

lifespan (19).

Age-related diseases are progressive conditions, typically

involving inflammation and fibrotic degeneration. Emerging

studies have indicated that the PD-1/PD-L1 axis plays a critical

role in these diseases associated with the accumulation of senescent

cells with inflammatory and degenerative alterations, such as those

in atherosclerosis, chronic obstructive lung disease, coronary artery

disease, and Alzheimer’s disease (133, 140–143). In fibrotic

processes, fibroblasts are the primary source of myofibroblasts.

PD-1/PD-L1 signaling mediates fibrotic pathological responses by

modulating T-cell immunity, fibroblast activation, and epithelial-

mesenchymal transition (34, 144). In the fibrotic tissues of both

mice and humans, fibroblasts, endothelial cells, and epithelial cells

demonstrate high PD-L1 expression (34, 132, 145–147). Moreover,

tubulointerstitial nephritis (TIN) and renal fibrosis have been noted

to occur after administration of PD-1 or PD-L1 inhibitors for

treating various cancers (34, 148).
3.5 Renal complication secondary to PD-
1 immunotherapy

The increase in clinical use of ICIs has led to an increase in the

number of reported irAEs because ICIs exuberantly activate

immune responses. The renal complications of ICI administration

mainly include acute kidney injury (AKI), proteinuria, and

electrolyte abnormalities, all attributable to renal or extrarenal

irAEs. Compared with extrarenal irAEs, intrarenal irAEs are less

common (149, 150). In a retrospective cohort study, 17% of patients

who received PD-L1 inhibitors for 1 year developed AKI, and 6%

developed sustained AKI; however, only <1% of the patients were

suspected to have PD-L1-related AKI (151). In clinical trials on PD-

1 inhibitors, the pooled incidence of all and grade 3-4 AKIs has been

2.2% and 19%, respectively (152). The mechanisms underlying ICI-

associated AKIs include reactivation of effector T cells, loss of

tolerance versus self-renal antigens, increase in PD-L1 expression

by tubular cells, or establishment of a proinflammatory milieu with

self-reactive antibody release (149). These AKIs are independent of

the drug dose received, but they differ based on the drug type (152).

The incidence of AKIs associated with anti-CTLA-4 + anti-PD-1
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therapy (4.9%) is higher than that of AKIs associated with anti-PD-

1 monotherapy, including nivolumab (2.3%) and pembrolizumab

(2.0%) and that of AKIs associated with anti-PD-L1, including

atezolizumab (1%), durvalumab (1%), or avelumab (0%) (151, 152).

Available pharmacokinetic data have revealed that ICIs are cleared

primarily by nonspecific proteolytic degradation in the plasma and

peripheral tissues, not in the liver or kidneys (150). As such, ICI

dose need not be adjusted for the prevention of kidney impairment;

however, patients with high-grade nonselective proteinuria may

develop impaired efficacy because of drug clearance through

urinary loss (150).

Acute TIN (ATIN) is a predominant lesion observed in the kidney

biopsies of 93% of ICI-related AKI cases (153). In their meta-analysis of

clinical trials, Manohar et al. reported an estimated acute interstitial

nephritis (AIN) rate of 16.6% among patients who developed AKI after

treatment with PD-1 inhibitors; in particular, the AIN rates were 15%

and 21.6% for nivolumab and pembrolizumab, respectively (152).

Izzedine et al. observed that 33.3% of pembrolizumab-treated

patients demonstrated AIN in renal biopsy and that pembrolizumab

withdrawal coupled with corticosteroid therapy most effectively led to

kidney function recovery, proteinuria improvement, or both (154). The

lesions in renal tubules and interstitium present ATIN, alone or in

combination with glomerulopathies (155). Hakroush et al. reported

that all renal biopsies with AIN related to ICI therapy and 27.9% of ICI-

naïve renal biopsies with underlying kidney diseases were positive for

PD-L1, whereas all control kidneys with nephrectomy were PD-L1

negative (156). Both tubular and glomerular PD-L1 positivity occurs in

patients with ICI-related AIN. However, Cassol et al. demonstrated

that tubular epithelial cell membrane was positive for PD-L1 only in

patients with PD-1 inhibitor-associated AIN but not in those with

acute tubular necrosis or AIN secondary to other medications (157).

Relatively few data, mainly in the form of case series, are available on

glomerular diseases associated with ICIs (21, 22, 158–160). A

systematic review indicated the most frequent biopsy-confirmed ICI-

as soc ia t ed g lomeru la r d i sease s were pauc i - immune

glomerulonephritis/renal vasculitis (27%), podocytopathies (24%),

and complement 3 GN (11%) (161). Most patients demonstrated full

or partial recovery after discontinuing ICIs or receiving corticosteroid

treatment; however, 19% of the patients remained dialysis-dependent,

and approximately one-third died. Other nephrotoxicities in the form

of glomerular injury included IgA nephropathy, membranous

nephropathy, antiglomerular basement membrane disease, lupus-like

nephritis, thrombotic microangiopathy, and amyloid A amyloidosis

(155, 161, 162). As such, distinguishing renal irAEs from other causes

of AKI is critical, and kidney biopsy should be only considered when

ICI-associated nephrotoxicity is suspected.
4 Conclusion

PD-1 and its ligands, representative immunosuppressive

checkpoints, constitute an inhibitory pathway mediating immune

tolerance and affording immune homeostasis. Recent years have

enabled a rapid expansion of the current knowledge regarding PD-1

immunology, which involves cancer immunity, autoimmunity,

infection immunity, transplantation immunity, allergy, immune
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privilege, and PD-1/PD-L1 inhibitor-related irAEs. Major

advances have been made in immunotherapy for immune-

associated disorders, particularly cancer therapy; moreover,

therapies involving PD-1/PD-L1 blockade have been approved for

the treatment of various cancers.

In this review, we highlighted the growing relationship between

PD-1 immunology and the kidneys. PD-1 receptors, PD-1 ligands,

or both on immune cells (kidney macrophages, DCs, and

lymphocytes) and renal parenchymal cells (proximal tubule

epithelial cells and podocytes) can aid in maintaining

immunological homeostasis in the kidneys. Understanding these

interconnected networks between PD-1 immunology and distinct

cell populations related to renal cell carcinoma, glomerulonephritis,

kidney transplantation, or renal aging will be critical to the

development of novel drugs targeting PD-1 signaling. Despite the

efficacy of PD-1/PD-L1 inhibitors in cancer therapy, several

molecular targeted drugs have been implicated in the

development of renal complications, which can range from

distinct renal irAEs to extrarenal irAEs. Consequently, PD-1 and

its ligands have significant roles in the kidneys, necessitating further

mechanistic and clinical studies to delve deeper into

their implications.
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