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model by inducing secretory
leukocyte protease inhibitor and
modulating the gut microbiota
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Background: Inflammatory bowel disease (IBD) is a refractory inflammatory

disorder of the intestine, which is probably triggered by dysfunction of the

intestinal epithelial barrier. Secretory leukocyte protease inhibitor (SLPI)

secreted by colon epithelial cells protects against intestinal inflammation by

exerting anti-protease and anti-microbial activities. Daikenchuto (DKT) is one of

themost commonly prescribed Japanese traditional herbal medicines for various

digestive diseases. Although several animal studies have revealed that DKT exerts

anti-inflammatory effects, its detailed molecular mechanism is unclear. This

study aimed to clarify the anti-inflammatory mechanism of DKT using a murine

colitis model, and to evaluate its potential as a therapeutic agent for IBD.

Methods: Experimental colitis was induced in wild-type (WT) mice and SLPI-

deficient (KO) mice by dextran sulfate sodium (DSS) after oral administration of

DKT. The resultant clinical symptoms, histological changes, and pro-

inflammatory cytokine levels in the colon were assessed. Expression of SLPI in

the colon was detected by Western blotting and immunohistochemistry.

Composition of the gut microbiota was analyzed by 16S rRNA metagenome

sequencing and intestinal metabolites were measured by gas chromatography-

mass spectrometry analysis. Intestinal epithelial barrier function was assessed by

oral administration of FITC-dextran and immunostaining of tight junction

proteins (TJPs).
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Results:Oral administration of DKT increased the number of butyrate-producing

bacteria, such as Parabacteroides, Allobaculum, and Akkermansia, enhanced the

levels of short-chain fatty acids, including butyrate, in the colon, induced SLPI

expression, and ameliorated DSS-induced colitis in WT mice. We found that

mouse colon carcinoma cell line treatment with either DKT or butyrate

significantly enhanced the expression of SLPI. Moreover, supplementation of

DKT protected the intestinal epithelial barrier with augmented expression of TJPs

in WT mice, but not in KO mice. Finally, the composition of the gut microbiota

was changed by DKT in WT mice, but not in KO mice, suggesting that DKT alters

the colonic bacterial community in an SLPI-dependent manner.

Conclusion: These results indicate that DKT exerts anti-inflammatory effects on

the intestinal epithelial barrier by SLPI induction, due, at least in part, to increased

butyrate-producing bacteria and enhanced butyrate levels in the colon. These

results provide insight into the mechanism of the therapeutic effects of DKT

on IBD.
KEYWORDS

Daikenchuto (DKT), SLPI, DSS-induced colitis, inflammatory bowel disease (IBD), butyric

acid, Parabacteroides, Allobaculum, Akkermansia
Introduction

Inflammatory bowel disease (IBD), including ulcerative colitis

(UC) and Crohn’s disease (CD), is a recurrent inflammatory

disorder of the gastrointestinal tract that occurs in young people.

It is recognized as a global health problem because the incidence

and prevalence of IBD are rapidly increasing worldwide (1, 2).

However, the pathogenesis of IBD remains largely unknown, and

no fundamental treatment has been developed for it. In recent years,

molecular targeted drugs targeting various cytokines, integrins, and

Janus kinase (JAK) have been developed to treat patients with

refractory IBD with an inadequate response to existing therapies,

such as 5-aminosalicylic acids, immunomodulators, and

corticosteroids (3). While these drugs are effective in treating

refractory IBD, their immunosuppressive side effects and the high

cost of these agents are problematic. Therefore, new therapeutic

drugs for IBD with high safety and cost-effectiveness are desired (4).

Daikenchuto (DKT), a Japanese traditional herbal medicine

(Kampo medicine), is one of the most commonly prescribed herbal

medicines for patients with gastrointestinal disorders, such as

constipation and intestinal obstruction. While Kampo medicine

was introduced in ancient China and developed uniquely as a

traditional medicine in Japan, it is also used in Western countries

due to its effectiveness and high safety profile (5, 6). Although the

mode of action of DKT was unknown for a long time, a

comprehensive analysis of its pharmacological properties has

been conducted at component and molecular levels since the

2000s. DKT consists of an aqueous extract powder prepared from

a mixture of Zingiberis rhizoma (Ginger), Zanthoxyli fructus
02
(Japanese pepper), Panax ginseng (Ginseng radix), and maltose.

DKT has the effects of increasing intestinal blood flow, improving

gastrointestinal motility, and inhibiting fibrosis (7–9). In fact,

several clinical trials have demonstrated the preventive effect of

DKT on intestinal obstruction after abdominal surgery (10, 11). In

addition, several animal studies have demonstrated that DKT exerts

anti- inflammatory effects (12–14) . Moreover , dietary

administration of DKT is known to alter the composition of the

gut microbiota in mice, suggesting that DKT acts on the host’s

immune system by affecting the gut microbiota (15, 16). Shi et al.

reported that DKT ameliorates acute experimental colitis by

altering gut microbial composition and increasing propionate

acids (17). However, the precise mechanisms of its anti-

inflammatory effects and the regulatory function of the intestinal

microbiota remain largely unclear.

Secretory leukocyte protease inhibitor (SLPI) is an endogenous

serine protease inhibitor secreted by glandular tissue that

antagonizes neutrophil proteases, such as neutrophil elastase (NE)

and cathepsin G (18). Previous studies using SLPI-deficient mice

(SLPI-/-) have shown the tissue protective effects of SLPI through

anti-protease activity in the skin, lung, and colon (19–21). SLPI has

also been reported to have antimicrobial activity (22), suggesting

that it regulates the gut microbiota by acting as an antimicrobial

peptide in the intestine.

The purpose of this study was to elucidate the anti-

inflammatory mechanism of DKT and potential involvement of

SLPI using a murine colitis model. Here, we showed that oral

administration of DKT induced the expression of SLPI, in

association with an increase in the number of butyric acid-
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producing bacteria in the colon of mice, and administration of DKT

ameliorated the disease severity of DSS-induced colitis in an SLPI-

dependent manner. These results provide insight into the possible

mechanisms of the therapeutic effects of DKT on IBD.
Results

DKT ameliorates DSS-induced
colon inflammation

To examine the efficacy of DKT on intestinal inflammation,

we first compared the disease severity of DSS-induced colitis with

and without DKT in wild-type (WT) mice. We prepared the

following four experimental groups: a normal water and diet

group (DW), normal water and DKT diet group (DW+DKT), a

DSS-induced colitis group (DSS), and a DSS-induced colitis with

DKT treatment group (DSS+DKT) (Figure 1A). Based on the

study group, mice were given a normal diet or a 3.6% DKT diet for

21 days, followed by 2% DSS for 5 days, as appropriate. Although

the body weight of the DW and DW+DKT groups increased

slightly, both DSS and DSS+DKT groups demonstrated weight

loss, diarrhea, and bloody feces. As shown in Figures 1B, C,

however, the weight loss and colitis symptoms in DSS+DKT

mice were significantly suppressed on day 7 compared to the

DSS group. It is generally accepted that a decrease in colon length

in DSS-treated mice is associated with the severity of

inflammation and fibrosis in experimental colitis (23). Colon

length in the DSS+DKT group was significantly longer than that

in the DSS group (Figure 1D). Histological analysis showed that

severe crypt loss and inflammatory cell infiltration in the colonic

mucosa were seen in the DSS group, while these symptoms were

significantly milder in the DSS+DKT group (Figures 1E, F).

Furthermore, mRNA levels of IL-1b, IL-6, IL-17A, and IFN-g
were significantly up-regulated in the colon of the DSS group

compared to the control DW group. The expression levels of these

pro-inflammatory cytokines in the colon were significantly

suppressed in the DSS+DKT group compared to the DSS group

(Figure 1G). These results indicate that DKT treatment

ameliorates DSS-induced colon inflammation in WT mice.
DKT induces a high expression of SLPI in
intestinal epithelial cells and modulates the
gut microbiota or metabolites

To clarify the protective mechanisms of DKT in the intestine,

we examined whether DKT induces colon protective molecules,

such as antimicrobial peptides or protease inhibitors. CMT93 cells,

a colon carcinoma cell line, were cultured for 24 hours in the

presence or absence of DKT extract powder (DKT-E), and mRNA

expression was examined. As shown in Figure 2A, mRNA

expression of SLPI was significantly increased in CMT93 cells

treated with DKT-E compared to that in untreated control cells,

which was more pronounced than other protease inhibitors,

including b-defensin, regenerating islet-derived protein IIIg (Reg-
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IIIg), and lactoferrin or protease inhibitors, such as serine protease

inhibitor A3N (SerpinA3N) and serine peptidase inhibitor kazal

type 4 (Spink4). We previously reported that lipopolysaccharide

(LPS) stimulation induces SLPI expression (21) (Figure 2B, left),

which depends on the TLR signaling pathway through TRAF6,

since CMT93 cells lacking TRAF6 failed to induce SLPI (Figure 2B

right). Interestingly, however, induction of SLPI expression by

DKT-E treatment, albeit weaker than that induced by LPS

(Figure 2B, left), occurred even in the absence of TRAF6

(Figure 2B, right), suggesting that DKT-E induces SLPI from

intestinal epithelial cells in a TLR ligand-independent manner.

Since the gut microbiota is an important factor in the severity of

colitis (24), we performed 16S rRNA metagenome sequencing

analysis of stool samples of mice treated with DKT. In the gut

microbiota composition profile, the abundance of beneficial

bacteria, such as Parabacteroides, Allobaculum, and Akkermansia,

were increased at the genus level in WT mice after treatment with

DKT (day 0) (Figures 2C, D). Since these species of bacteria are

known to produce short chain fatty acids (SCFAs), we next analyzed

SCFAs in fecal samples using GC/MS. As expected, dietary DKT

increased SCFAs, including butyrate, propionate and acetate in fecal

samples (Figure 2E). Notably, butyrate, a major gut microbiome-

derived SCFA, was significantly higher in WT mice treated with

DKT. Recent studies have demonstrated that butyrate might exert

beneficial effects on barrier integrity by inducing endogenous

antimicrobial peptides (25). Interestingly, the expression of SLPI

mRNA in CMT93 cells was significantly increased after 24 hours of

butyrate treatment compared to that in untreated control cells in

vitro (Figure 2F). Similarly, oral supplementation of butyrate

slightly, but not significantly, increased SLPI expression in the

mice colon (Supplementary Figure 1A). These results suggest that

DKT enhances SLPI expression directly in the colon, as well as

indirectly by modulating the gut microbiota and increasing

butyrate production.
DKT induces SLPI in the intestine in vivo
and attenuates DSS-induced colitis in WT
mice, but not in SLPI-/- mice

Next, we prepared the following four experimental groups to

check the expression of SLPI in vivo: WT mice on a normal diet

(WT-CON), WT mice on a DKT diet (WT-DKT), SLPI-/- mice on a

normal diet (KO-CON), and SLPI-/- mice on a DKT diet (KO-

DKT). After 28 days of feeding, SLPI mRNA levels were

significantly enhanced in the colon of WT-DKT mice, but not in

KO-DKT mice (Figure 3A). In agreement with this finding, SLPI

protein was clearly detected in the colon of DKT-treated WT mice

by Western blotting (Figure 3B). Furthermore, we investigated the

localization of SLPI by immunohistochemistry. SLPI expression was

not observed in colon of mice given normal diet (WT-CON), while

SLPI expression was observed in goblet cells of the colon of mice

treated with DKT (WT-DKT) (Supplementary Figure 1B). These

results indicate that DKT induces SLPI production.

To clarify the role of SLPI in the suppressive effect of DKT on

DSS-induced colitis, we next evaluated the effect of DKT on DSS-
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induced colitis inWT and SLPI-/- mice. Diet-incorporated DKT was

administered from 21 days prior to DSS treatment to the end of the

experiment. We prepared the following four experimental groups:

WT mice on a normal diet (WT-DSS), WT mice on a DKT diet
Frontiers in Immunology 04
(WT-DSS+DKT), SLPI-/- mice on a normal diet (KO-DSS), and

SLPI-/- mice on a DKT diet (KO-DSS+DKT) (Figure 3C). DSS-

treated mice continued to experience a decrease in body weight

from day 5 of DSS administration to the end of the experiment. Oral
FIGURE 1

DKT ameliorates DSS-induced colon inflammation in wild-type (WT) mice. (A) Experimental schematic: a normal water and diet group (DW), normal
water and DKT diet group (DW+DKT), DSS-induced colitis group (DSS), and DSS-induced colitis with DKT treatment group (DSS+DKT) were created
using C57BL/6N mice. (B) Changes in body weight in WT mice were monitored for seven days after DSS treatment (n = 5 in each group). (C) Clinical
symptoms of DSS-induced colitis were determined by the disease activity index (DAI) (n = 5 in each group). (D) Colon length was measured on day 7
(n = 5 in each group). (E) The distal colon was excised on day 7, sectioned, and stained with H&E. Scale bars represent 100 mm. (F) Histological
scores were evaluated on day 7 (n = 5 in each group) (G) mRNA expression levels of the indicated pro-inflammatory cytokines were determined by
quantitative RT-PCR (n = 5 in each group). Statistical analysis was performed using one-way ANOVA followed by Tukey’s multiple comparisons test.
*: P < 0.05 and ***: P < 0.001.
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FIGURE 2

DKT alters the gut environment and induces SLPI in intestinal epithelial cells. (A) Quantitative RT-PCR analysis of the mRNA expression of SLPI and
other antimicrobial peptides or protease inhibitors in DKT extract powder (DKT-E)-treated CMT93 cells. Cells were treated with DKT-E (1 mg/mL) for
24 hours. Relative mRNA expression of the indicated genes in CMT93 cells treated with DKT-E is shown as the fold-increase compared to untreated
control cells (CONT). Graphs show the mean ± SEM (n = 6). (B) Quantitative RT-PCR analysis of the mRNA expression of SLPI in CMT93 and TRAF6-
deficient CMT93 cells (CMT93DTRAF6). Cells were treated with DKT-E (1 mg/mL) or LPS (3 mg/mL) for 24 hours, or were left untreated (CONT).
Graphs show the mean ± SEM (n = 3). (C) Fecal samples from mice fed a normal diet (DW) or DKT diet (DW+DKT) for 21 days (on day 0) were
subjected to 16S rRNA metagenome sequencing to examine the composition of the gut microbiota. The relative abundance of bacterial genera is
shown. Each bar shows relative bacterial abundance in individual mice (n = 5 in each group). (D) Relative bacterial abundance is shown at the genus
level. Data are presented as the mean ± SEM (WT: n = 5, WT+DKT: n = 5) (E) The relative concentrations of the indicated SCFAs in murine feces
before (Day -21) and after (Day 0) DKT administration. Stool samples from the same mice were analyzed by GC/MS. (F) CMT93 cells were stimulated
with sodium butyrate (1 mM) for 24 hours. Relative mRNA expression of SLPI is shown. Statistical analysis was performed using one-way ANOVA
followed by Tukey’s multiple comparisons test or student’s t test. Data are expressed as the mean ± SEM (n = 5 in each group). *: P < 0.05, **: P <
0.01, ***: P < 0.001, ****: P < 0.0001, and NS, not significant.
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FIGURE 3

Induction of SLPI is required for the suppressive effect of DKT on DSS-induced colitis. (A) Quantitative RT-PCR analysis of the mRNA expression of
SLPI in the colon of mice after the treatment of DKT. Graphs show the mean ± SEM (n = 3-4). (B) SLPI protein in colonic tissues of WT and KO mice
with (+) and without (-) DKT. SLPI was detected by Western blotting. (C) Experimental schematic: WT and SLPI-/- (KO) mice were administered DSS
after pre-feeding with a normal diet (DSS) or a DKT diet (DSS+DKT). (D) Body weight changes in WT and SLPI-/- mice were monitored after DSS
treatment (WT-DSS group: n = 10, WT-DSS+DKT group: n = 10, KO-DSS group: n = 7, KO-DSS+DKT group: n = 8). (E) Clinical symptoms of DSS-
induced colitis in WT (n = 10) and SLPI-/- mice (n = 9) were determined by the DAI (F, G). Colon length was compared between DSS-treated WT and
SLPI-/- mice on day 7 (WT-DSS group: n = 10, WT-DSS+DKT group: n = 10, KO-DSS group: n = 7, KO-DSS+DKT group: n = 8). Data from two
different experiments are presented together. Statistical analysis was performed using one-way ANOVA followed by Tukey’s multiple comparisons
test. Data represent the mean ± SEM. *: P < 0.05 and **: P < 0.01. N.S, not significant.
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DKT administration significantly suppressed weight loss in WT

mice, although it failed to do so in SLPI-/- mice (Figure 3D).

The same was true for the DAI. DKT treatment reduced DAI

scores in WT mice, but not in SLPI-/- mice (Figure 3E). Moreover,

DSS-treated mice displayed a reduction in colon length and grossly

thickened walls, which was clearly suppressed by DKT in WT mice,

but not in SLPI-/- mice (Figures 3F, G). These results suggest that

DKT attenuates the severity of DSS-induced colitis in an SLPI-

dependent manner.
Frontiers in Immunology 07
DKT treatment ameliorates DSS-induced
intestinal inflammation in WT mice, but not
in SLPI-/- mice

Next, we examined histopathological changes in DSS-induced

colitis and the efficacy of DKT and found that loss of crypts,

submucosal infiltration of inflammatory cells, and ulceration were

observed in all groups except theWT-DSS+DKT group (Figure 4A).

Numerous neutrophils with a segmented nucleus with 2-5 lobes
FIGURE 4

DKT treatment ameliorates DSS-induced intestinal inflammation in WT mice, but not in SLPI-/- mice. (A) H&E staining of DSS-induced colitis in WT
and SLPI-/- mice treated with DKT (DKT +) or left untreated (DKT -). A higher magnification image of the rectangle in the left panel is shown in the
lowest panel. The scale bar represents 100 mm (upper panels) and 10 mm (lowest panel), respectively. (B) Graph showing the histological score (WT-
DSS group: n = 10, WT-DSS+DKT group: n = 10, KO-DSS group: n = 7, KO-DSS+DKT group: n = 8). (C) The mRNA expression level of pro-
inflammatory cytokines was determined by quantitative RT-PCR (WT: n = 5 in each group; SLPI-/-: n = 6-8 in each group). (D) Neutrophil activity
was measured by MPO assay (WT-DW: n = 5, WT-DW+DKT: n = 5, WT-DSS: n = 5, WT-DSS+DKT: n = 6, KO-DW: n = 6, KO-DW+DKT: n = 6, KO-
DSS: n = 5, and KO-DSS+DKT: n = 5). Statistical analysis was performed using one-way ANOVA followed by Tukey’s multiple comparisons test.
Results are expressed as the mean ± SEM. *: P < 0.05, **: P < 0.01, and NS, not significant.
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were seen to infiltrate the submucosa (Figure 4A, lowest panel). In

addition, the histological score was significantly lower in the WT-

DSS+DKT group than the WT-DSS group (Figure 4B). On the

other hand, there were no significant differences between the KO-

DSS and KO-DSS+DKT groups. We next assessed the mRNA

expression levels of pro-inflammatory cytokines in colonic tissue.

mRNA levels of IL-6, IL-17A, and IL-23p19 were significantly up-

regulated in the colon of DSS-treated WT and SLPI-/- mice as

compared to untreated mice. The expression levels of pro-

inflammatory cytokines in the colon of DSS-treated WT mice

were significantly suppressed by DKT treatment, while no

suppression was observed in SLPI-/- mice (Figure 4C). Consistent

with neutrophil infiltration, MPO activity was increased by DSS

treatment, which was significantly suppressed by the administration

of DKT in WTmice (Figure 4D). These data indicate that treatment

with DKT ameliorates the inflammatory changes induced by DSS in

WT mice in an SLPI-dependent manner.
DKT protects the intestinal epithelial
barrier by suppression of neutrophil
protease in WT mice, but not SLPI-/- mice

The intestinal epithelial barrier is essential for intestinal

homeostasis, and its dysfunction is implicated in the development

of gut inflammation (26). We next examined intestinal epithelial

permeability to assess the effects of DKT on the intestinal epithelial

barrier in the context of DSS-induced colitis. Mice were given FITC-

dextran orally, and intestinal permeability was evaluated by

assessing serum FITC-dextran fluorescence levels. Serum FITC-

dextran fluorescence levels were comparable at baseline in both DSS

and DSS+DKT groups on day 3 because no inflammation was

observed in either group (data not shown), indicating that the effect

of DKT on the intestinal epithelial barrier function is limited in the

early stage of colonic inflammation. On day 7, serum FITC-dextran

fluorescence levels were significantly increased in DSS-treated mice

compared with untreated mice (Figure 5A). Pre-treatment with

DKT significantly suppressed serum FITC-dextran fluorescence

levels to the levels seen in intact WT mice. In contrast, DKT

treatment exhibited little inhibitory effects in SLPI-/- mice

(Figure 5A). Tight junction proteins (TJPs) are also important

components of the intestinal epithelial barrier (27). Therefore, we

examined the expression of occludin and ZO-1 proteins in the colon

using immunohistochemistry, and found a decrease in their

expression in the DSS-treated group compared to the DSS-

untreated group (Figure 5B). Interestingly, pretreatment with

DKT increased the expression of occludin and ZO-1 in DSS-

treated WT mice, but not in the KO group (Figure 5B). These

results indicate that DKT protects the intestinal epithelial barrier by

maintaining TJPs in WT mice in an SLPI-dependent manner. Since

neutrophil proteases are known to disrupt the intestinal epithelial

barrier, we next evaluated the activity of neutrophil elastase (NE), a

specific target of SLPI, in each mouse. NE activities in the colon

were increased by DSS treatment, which was attenuated by DKT

treatment in WT mice (Figure 5C). On the other hand, the

suppressive effect was not seen in SLPI-/- mice. These data suggest
Frontiers in Immunology 08
that DKT suppresses NE activity in neutrophils via the protease-

inhibitory activity of SLPI.
DKT alters the gut microbiota in an SLPI-
dependent manner

To investigate the impact of DKT and SLPI on the gut

microbiota, we analyzed the composition of the gut microbiota by

16S rRNA metagenome sequencing of fecal samples. To assimilate

the gut microbiota in a steady state, WT mice and SLPI-/- mice were

co-housed for several weeks prior to the experiment. 16S rRNA

genes were sequenced and principal coordinate analysis (PCoA)

plots were generated by QIIME 1.9.0 fromMiSeq data. In WTmice,

PCoA plots showed that each group formed a cluster of different

intestinal flora after treatment with DKT in unweighted UniFrac

distances (Figure 6A). On the other hand, PCoA plots showed that

there was no obvious separation in SLPI-/- mice with DKT

treatment (Figure 6B). There was no significant difference in the

profile of the gut microbiota in both WT and SLPI-/- mice at the

phylum level before administration of DKT (day -21)

(Supplementary Figure 2A). However, after the DKT treatment

(day 0), the abundance of beneficial bacteria, such as

Parabacteroides, Allobaculum, and Akkermansia, was significantly

increased at the genus level in WT mice, while there were no

significant changes in these bacteria in SLPI-/- mice (Figure 6C).

These data indicate that DKT might alter the colonic bacterial

community in an SLPI-dependent manner.

We next analyzed the composition of the gut microbiota in mice

with colitis (day 7). Alpha diversity analysis revealed that DSS

treatment reduced microbial diversity in fecal samples from both

WT and SLPI-/- mice (Supplementary Figure 2B). DKT suppressed

the reduction of alpha diversity by DSS treatment in WT mice, but

not in SLPI-/- mice (Supplementary Figure 2B). In beta diversity

analysis, PCoA plots were not clearly separated after DSS treatment

regardless of dietary DKT intake (Supplementary Figure 3A).

Genus-level profiling showed that DSS treatment increased the

relative abundance of Turicibacter, also known as colitogenic

bacteria, in both WT and SLPI-/- mice, and no significant effect of

DKT was observed (Supplementary Figure 3B). Moreover, there

were no significant changes in the gut microbiota at the genus level

between DKT treated and untreated groups of DSS-treated mice

(day 7), probably due to limited activity of DKT under DSS-induced

inflammation in the colon (Supplementary Figure 4).
Discussion

In the present study, we showed that SLPI, directly induced by

DKT in the colon, as well as indirectly by modulating the gut

microbiota and increasing butyrate production, alleviates DSS-

induced colitis by protecting the intestinal epithelial barrier. Our

findings delineate the molecular mechanisms by which DKT

ameliorates IBD.

IBD, such as CD and UC, is characterized by chronic relapsing

inflammation of the intestine. Although the precise mechanism of
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IBD remains unclear, dysfunction of the intestinal epithelial barrier

is crucial for the development and perpetuation of IBD (26). Once

the intestinal barrier function is disrupted by genetic or

environmental factors, bacterial antigens in the intestinal tract

come into contact with immune cells, leading to unwanted

immune reactions and an excessive recruitment of neutrophils to
Frontiers in Immunology 09
sites of inflammation (28, 29). Eventually, the intestinal epithelium

is further damaged by the neutrophil proteases released from

neutrophils (30). Thus, neutrophil proteases must be strictly

controlled to ensure the integrity of the intestinal epithelial barrier.

DKT, a traditional Japanese herbal medicine, has been shown to

increase intestinal blood flow and improve intestinal propulsive
FIGURE 5

DKT protects the intestinal epithelial barrier by suppression of neutrophil protease in WT mice, but not SLPI-/- mice. (A) WT and SLPI-/- mice under
the indicated treatment were given FITC-dextran orally, and blood samples were collected 4 hours later. The graph shows FITC-dextran levels in
serum in the different groups, determined by fluorescence intensity. Data from two different experiments are presented together. (WT-DW: n = 5,
WT-DW+DKT: n = 3, WT-DSS: n = 10, WT-DSS+DKT: n = 4, KO-DW: n = 5, KO-DW+DKT: n = 5, KO-DSS: n = 5, and KO-DSS+DKT: n = 4).
(B) Expressions of occludin and ZO-1 in the colon tissues from mice under the indicated treatment were detected by immunohistochemistry (×200).
Scale bars:100 mm (C) Colonic NE activity was measured by NE assay (WT-DW: n = 10, WT-DW+DKT: n = 10, WT-DSS: n = 10, WT-DSS+DKT:
n = 12, KO-DW: n = 6, KO-DW+DKT: n = 6, KO-DSS: n = 5, and KO-DSS+DKT: n = 5). Data from two different experiments are presented together.
Data were analyzed by one-way ANOVA followed by Tukey’s multiple comparisons test, and are presented as the mean ± SEM. *: P < 0.05,
**: P < 0.01, and NS, not significant.
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motility, as well as to have anti-inflammatory effects in

experimental models. For example, Matsunaga et al. revealed that

DKT attenuated DSS-induced colitis by enhancing the anti-

inflammatory cytokine IL-10 (13). Furthermore, Li et al. have

reported that DKT reduces methotrexate-induced small intestinal
Frontiers in Immunology 10
inflammation by stimulating cell proliferation and protecting the

intestinal barrier (12). In the present study, we found that SLPI was

induced by DKT in a colon carcinoma cell line in vitro, and in the

colon of mice in vivo (Figures 2, 3; Supplementary Figure 1B). SLPI

is an endogenous serine protease inhibitor expressed at mucosal
FIGURE 6

DKT alters the gut microbiota in an SLPI-dependent manner. (A, B) Visualization of principal coordinates analysis (PCoA) of unweighted UniFrac
distances, to show differences in bacterial composition in WT (A) and SLPI-/- mice (B). Each point represents the fecal bacterial microbiota in a single
sample. (C) Relative bacterial abundance is shown at the genus level. Data are presented as the mean ± SEM (WT: n = 5 in each group; SLPI-/-: n = 4
in each group) *: P < 0.05, **: P < 0.01, and NS, not significant. (D) Schematic model for the mechanism of DKT in suppressing colitis, whereby DKT
induces SLPI, which in turn increases beneficial bacteria, such as Parabacteroides, Allobaculum, and Akkermansia, which produce butyric acid and
further induce SLPI. SLPI inhibits neutrophil elastase activity and butyric acid enhances intestinal epithelial proliferation.
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surfaces, mainly by epithelial cells (31). We previously showed that

the protease inhibitory activity of SLPI prevents the intestinal

epithelial barrier dysfunction caused by excessive NE activity in

DSS-induced colitis (21). Thus, SLPI maintains homeostasis of the

intestinal barrier by preventing tissue destruction and regulating the

threshold of inflammatory immune responses in the intestine. In

this study, we revealed that administration of DKT attenuates DSS-

induced colitis in WT mice, but not in SLPI-/- mice (Figure 3). In

particular, increased permeability of the epithelium caused by DSS

treatment was suppressed by DKT in an SLPI-dependent manner

(Figure 5A). This is probably partly due to the fact that DKT

administration maintained the expression of the adhesion

molecules, occludin and ZO-1, under DSS-induced inflammation

in the colon of WT mice, but not in SLPI-/- mice (Figure 5B). These

results indicate that DKT attenuates DSS-induced colitis by

protecting the intestinal epithelial barrier in an SLPI-dependent

manner. Infiltration of neutrophils into the mucosal tissue is a

hallmark of colitis activity. Subsequently, neutrophil proteases, such

as NE, derived from neutrophils damage the gut epithelium,

resulting in increased permeability (30). Given the protease

inhibitory activity of SLPI, it is likely that administration of DKT

might inhibit the activity of NE that is enhanced by DSS-induced

colitis. As expected, the activity of MPO, an indicator of neutrophil

activation, and NE activity were decreased by DKT treatment in

WT mice, but not in SLPI-/- mice (Figures 4D, 5C). These results

suggest that DKT exerts protective effects against colitis due, at least

in part, to induction of anti-protease protein SLPI in the colon.

Interactions between various natural compounds or diets and

the gut microbiota are known to alter intestinal permeability and

the severity of colitis in mice (32, 33). DKT, a combination of four

natural herbs, has been reported to alter the microbiota

composition in mice in a dose-dependent manner (16). Long-

term dietary DKT increases the abundance of a number of

bacteria that produce SCFAs, including butyrate, propionate, and

acetate (15). On the other hand, SLPI is known to have broad

spectrum antimicrobial activity against enteric pathogens, including

Gram-positive and -negative bacteria and fungi (34). We, therefore,

explored the possible involvement of DKT and SLPI in the

regulation of the gut microbiota composition, and its effect on

DSS-induced colitis. In the principal coordinates analysis, the

composition of the gut microbiota was clearly separated between

pre- and post-DKT treatment of mice in the presence of SLPI

(Figure 6A). In particular, administration of DKT increased the

relative abundance of the beneficial bacteria, Parabacteroides,

Allobaculum, and Akkermansia at the genus level (Figure 6C).

These changes were only seen in WT mice, suggesting that DKT

might alter the gut microbiota composition in an SLPI-dependent

manner. SLPI has been known to have not only an inhibitory

property against serine proteases but also an antimicrobial property

against Gram-negative bacteria in vitro (34). It has been reported

that deficiency of certain antimicrobial peptides can alter the

occupancy of specific commensal bacteria and change the

composition of the intestinal microbiota (35). Therefore, the lack

of SLPI may influence to certain commensal bacteria in the gut. In

addition, it has been reported that DKT increases IL-22 following

ILC3 induction (17) and that IL-22 increases certain commensal
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intestinal bacteria (Akkermansia) by induction of antimicrobial

peptides (36). Thus, SLPI induced by DKT, may control the

growth of specific commensal bacteria such as Akkermansia

through its antimicrobial activity. However, the precise

mechanism has not yet been elucidated in this study, and is a

subject for future research.

Parabacteroides spp., core members of the human gut

microbiota, have a close relationship with host health due to its

physiological characteristics on carbohydrate metabolism and

secreting SCFAs (37). A previous animal study has reported that

oral administration of Parabacteroides distasonis and its cellular

components attenuate experimental colitis through the reduction of

pro-inflammatory cytokines and increase in the number of

regulatory T cells in the colon (38). Allobaculum spp., known as a

butyric acid producer, is a newly identified IBD-associated bacteria

that is thought to be closely associated with the host epithelial

barrier (39, 40). Akkermansia spp. reportedly ameliorate the

symptoms of DSS-induced colitis through the upregulation of

NLPR3 (41). Moreover, Akkermansia species enhance the

function of the intestinal epithelial barrier by producing mucin

and TJPs in intestinal epithelial cells (42, 43). Since the initial gut

microbiota has a profound influence on DSS-induced colitis (44),

greater abundance of beneficial bacteria, such as Parabacteroides,

Allobaculum, and Akkermansia, by treatment with DKT might

reduce the susceptibility to DSS-induced colitis. Moreover, these

bacteria are known to produce butyric acid (39, 45, 46), which is

consistent with our observation that DKT treatment increased both,

the relative abundance of these bacteria (Figure 6C) and the amount

of butyric acid in the colon (Figure 2D). Interestingly, butyrate

enhanced the expression of SLPI in a colon carcinoma cell line in

vitro (Figure 2E), suggesting that DKT increases butyrate-

producing bacteria via induction of SLPI expression, which forms

a positive feedback loop whereby butyrate induces further SLPI

expression (Figure 6D). In addition, the expression of SLPI was not

increased by DKT treatment in antibiotics-treated mice

(Supplementary Figure 3C), suggesting that gut microbiota is

required for the proper induction of SLPI. In other word, DKT

directly induces SLPI from intestinal epithelial cells in vitro, but

requires the presence of intestinal bacteria for the proper induction

of SLPI in vivo. SCFAs, such as butyric acid, are known to enhance

epithelial integrity by enhancing intestinal cell proliferation (47)

and modulating TJP expression (48, 49), suggesting that increased

butyric acid contributes to ameliorating DSS-induced colitis.

We found that abundance of the genus Turicibacter, known to

correlate positively with the development of IBD (50), was increased

by DSS treatment in the presence of SLPI, while DKT treatment

failed to inhibit its growth (Supplementary Figure 3B). These results

indicate that the effect of DKT on the gut microbiota composition is

limited to bacterial species.

Although the present findings provide insight into the mechanism

of the colon protective effect of DKT via induction of SLPI, the precise

signaling pathways by which DKT induces SLPI remain unclear. In

general, herbal medicines consist of multiple plant extracts containing

several constituents, which are often believed to work together

synergistically (51). The pharmacological effects of DKT were not

analyzed at the component level in this study. Therefore, determining
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1457562
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ozaka et al. 10.3389/fimmu.2024.1457562
the biological components of DKT that induce SLPI and modulate the

gut microbiota would be of interest for future research.

In conclusion, DKT exerts a protective effect against DSS-

induced colitis, in which SLPI promotes prebiotic effects by

reshaping the gut microbiota and increasing butyrate-producing

bacteria, while enhancing the integrity of the intestinal epithelial

barrier through protease inhibitory activity. Therefore, our findings

shed new light on the mechanism of the therapeutic effect of DKT

on IBD.
Materials and methods

Drugs and chemicals

Daikenchuto (DKT, TJ-100) was obtained from Tsumura & Co.

(Ibaraki, Japan). DKT consists of an herbal medicinal extract

powder (DKT-E) and maltose (ratio 1.25 g to 10 g, respectively).

DKT-E was prepared by spray-drying a hot-water extract mixture

containing the following three crude drugs/herbs in the proportions

mentioned in parentheses: Zanthoxyli fructus (Japanese pepper)

(2.0), Zingiberis rhizoma (Ginger) (5.0), and Panax ginseng

(Ginseng radix) (3.0). DKT was included in PicoLab rodent diet

20 (Land O’ Lakes, Inc., Arden Hills, MN, USA), at 36 g DKT/kg of

diet (3.6% wt/wt) (Oriental Yeast Co., Ltd., Tokyo, Japan). The

dosage of DKT was based on a previous animal experiment (16) and

the human equivalent dosage was adjusted to the mouse dosage

based on the animal’s surface area (52). Ampicillin and vancomycin

were purchased from Wako (Osaka, Japan).
Cell culture and CRISPR/Cas9

CMT93, a mouse colon carcinoma cell line, was purchased from

ECACC (Salisbury, UK). CMT93 cells were cultured in Dulbecco’s

modified Eagle medium (DMEM) containing 10% FCS, 2 mM L-

Alanyl-L-glutamine (Nacalai tesque), 100 U/mL penicillin, and 100

mg/mL streptomycin (Nacalai tesque, Kyoto, Japan). We established

TNF receptor-associated factor 6 (TRAF6) knockout (KO) CMT93

cells using the CRISPR-Cas9 genome editing system. Briefly, a

single guide RNA targeting TRAF6 (5’-GGAGGACAAGGTTGC

CGAAA-3’) was cloned into a Cas9-expressing plasmid (pSpCas9

(BB)-2A-Puro (PX459); addgene plasmid #48139), and the plasmid

was transfected into CMT93 cells, and then subsequently cloned

after a 2-day treatment with 2 mg/mL puromycine. DKT-E was

suspended in distilled water, sterilized by boiling at 95°C, passed

through a 0.45 mm filter, and then added to CMT93 cells at final

concentrations of 330 or 1000 mg/mL. In addition, CMT93 cells

were treated with 1 mM sodium butyrate (Wako Pure Chemical

Industries, Ltd., Kyoto, Japan) or stimulated with 3 mg/mL of LPS

(Sigma-Aldrich, St. Louis, MO, USA) for 24 hours. The cells were

then harvested and total RNA was extracted using TRI Reagent®

(Sigma-Aldrich, St. Louis, MO, USA) for performing quantitative

RT-PCR analysis.
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Animals and ethics statement

Seven-week-old female C57BL/6 mice were purchased from

Japan SLC (Hamamatsu, Japan). SLPI-/- mice, as described

previously (20), were backcrossed with C57BL/6 inbred mice

more than 10 times. Mice were maintained in a specific

pathogen-free facility under conditions of constant temperature

(24 ± 1°C), humidity (50 - 60%), and a 12-hour light-dark cycle with

free access to food and water. All experiments using these mice were

approved by and performed according to the guidelines of the Oita

University Animal Ethics Committee (approval number: 180901A).

This study adheres to standards articulated in the ARRIVE

guidelines.
Study design and colitis induction

A 28-day protocol was designed and mice were fed a normal

diet or a 3.6% DKT diet during this protocol period (day -21 to 7).

To induce colitis, mice were administered 2% Dextran Sulfate

Sodium Salt (DSS) - Colitis Grade (36,000-50,000 MW) (MP

Biomedicals, Irvine, CA, USA) in drinking water for 5 days (days

1-5), followed by normal water for 2 days (days 6-7). Their body

weight and disease activity index (DAI) were monitored daily. DAI

scores were determined according to a previous report (53) as

follows: body weight loss (0: no loss; 1: 1-5%; 2: 5-10%; 3: 10-20%; 4:

>20% loss), stool consistency (0: normal; 2: loose stools; 3: mud

stools; 4: diarrhea), and bleeding per rectum (0: no blood; 2: visual

pellet bleeding; 3: blood around anus; 4: gross bleeding).
Histological analysis

Mice were sacrificed by cervical dislocation on day 28 and their

large intestine was removed. After measuring the length of the

colon, the distal parts of the colon were stained with hematoxylin

and eosin (H&E). The severity of DSS-induced colitis was evaluated

using distal colon sections by a modified histological scoring system

(54) as follows: epithelial cell damage (0: no damage; 1: focal loss of

goblet cells; 2: diffuse loss of goblet cells; 3: focal loss of crypts; 4:

diffuse loss of crypts), cell infiltration (0: no increase; 1: around the

base of the crypts; 2: along the muscularis mucosal layer; 3: mucosal

layer; 4: mucosal and submucosal layer), ulcer (0: no ulcer; 1: focal

erosion; 2: diffuse shallow ulcer on the epithelial surface or focal

ulcer in the mucosal layer; 3: diffuse ulcer involving the entire

mucosal layer). Immunohistochemistry was performed using 2 mm
sections of paraffin-embedded colon tissue. We used primary

antibodies against occludin (Abcam, Cambridge, UK), ZO-1

(Gene Tex, Irvine, CA, USA), and SLPI (R&D Biosystems,

Minneapolis, MN, USA). DAKO EnVision™+ (Rabbit) (Agilent

Technologies) was used as a secondary antibody. Sections were

subsequently counterstained with hematoxylin. All histological

evaluations were performed in a blind fashion.
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Gas chromatography-mass
spectrometry analysis

Metabolites in the cecal contents were analyzed by GC/MS-

TQ8040 (Shimazu, Kyoto, Japan) with a BPX-5 column (30 m ×

0.25 mm i.d.; film thickness 1.00 mm, Trajan Scientific and Medical,

Vic., Australia) for SCFAs, as described previously (55). Mass

spectrum peaks were detected using the GC/MS solution software

(Shimazu), and the retention time correction of peaks was

performed based on the retention time of a standard alkane series

mixture (C9 to C33). Metabolites were identified by the Smart

Metabolites Database (Shimazu), which contains multiple reaction

monitoring transitions for 12 metabolites commonly found in

biological samples for BPX-5. Raw data have been deposited at

figshare with DOI: 10.6084/m9.figshare.26212430.
DNA extraction and 16S rRNA gene
metagenome sequencing analysis

The bacterial genomic DNA was isolated using the standard

protocol with some modifications (56). DNA from mouse feces was

extracted using a phenol/chloroform/isoamyl alcohol method.

Preparation of the 16S rRNA gene metagenome library for MiSeq

(Illumina, Inc., San Diego, CA, USA) was performed according to

the manufacturer’s protocol. Briefly, 10 ng of the DNA template was

amplified using an Advantage-HF 2 PCR kit (Takara Bio Inc., Shiga,

Japan) with universal primers for the 16S rRNA v3-v4 region

( forward pr imer : 5 ’ TCGTCGGCAGCGTCAGATGT

GTATAAGAGACAGCCTACGGGNGGCWGCAG 3’, reverse

primer: 5 ’ GTCTCGTGGGCTCGGAGATGTGTATAAG

AGACAGGACTACHVGGGTATCTAATCC 3’). Subsequently,

index sequences for each sample were added to both ends of the

purified PCR fragments. The concentrations of each amplicon were

measured by the Quant-iT PicoGreen dsDNA Assay Kit (Thermo

Fisher Scientific, Inc.) and mixed equally. The library was applied to
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MiSeq Reagent Kit v3 (Illumina, Inc.) and the sequence was

determined using the manufacturer’s standard protocol. Sequence

data were processed as follows using the 16S rRNA sequence

analysis pipeline, QIIME 1.9.0 (57). Initially, both sequence reads

were joined and sequences with a Phred quality score below 20 were

removed. Chimera elimination by Usearch was performed to

remove contaminated sequences. Open reference OTU picking

was performed against Greengenes 13_8 97% OTU representative

sequences. A summary of taxonomy in each sample was obtained

using the script ‘summarize_taxonomy_through_plots.py’ in

QIIME 1.9.0. Raw data have been deposited at figshare with DOI:

10.6084/m9.figshare.26241974.
Measurement of intestinal permeability

Mice were fasted for 4 hours and administered FITC-dextran (4

kDa MW, 0.6 mg/g body weight) (Sigma-Aldrich) by oral gavage.

Four hours later, blood samples were collected and the fluorescence

intensity of serum FITC at 485/528 nm wavelength was measured

using a microplate reader (Infinite 200 PRO, TECAN,

Männedorf, Switzerland).
Myeloperoxidase assay and neutrophil
elastase activity assay

MPO activity was determined in colon tissues. Briefly, the colon

tissues were homogenized in 500 mL of potassium phosphate buffer

(pH 6.0) containing 0.5% hexadecyltrimethylammonium bromide

(HTAB) (Sigma-Aldrich). Then, the samples were centrifuged at

14,600 rpm for 15 min at 4°C. Thereafter, 7 mL of the supernatant

was mixed with 200 mL of O-dianisidine/Buffer solution, and

absorbance readings at 450 nm were assessed every minute for 30

minutes. Colonic NE activity was measured using a Neutrophil

Elastase Activity Assay Kit, Fluorometric (Abcam), according to the
TABLE 1 Primer sequences used for polymerase chain reaction in this study.

Target Forward 5’-3’ Reverse 5’-3’

m b-actin CTTCCTCCCTGGAGAAGAGCTATGAGC GCCTAGAAGCACTTGCGGTGCACG

m SLPI GGCCTTTTACCTTTCACGGTG TACGGCATTGTGGCTTCTCAA

m BD3 CTTTGCATTTCTCCTGGTGC GCCTCCTTTCCTCAAACT

m Lactoferrin TCAAGAAATCCTCCACCCGC ACACGAGCTACACAGGTTGG

m Reg3g TTCCTGTCCTCCATGATCAAAA CATCCACCTCCGTTGGGTTCA

m Spink4 AGGGAACTGATGGTGTCAGC AGATCAGGTTGGGTGTCTGG

m Serpina3N ATTTGTCCCAATGTCTGCGAA TGGCTATCTTGGCTATAAAGGGG

m IL-1b GAGTGTGGATCCCAAGCAAT TACCAGTTGGGGAACTCTGC

m IL-23p19 CACAGAGCCAGCCAGATCTGAGAAGC CCATGGGAACCTGGGCATCCTTAAGC

m IL-6 CCGGAGAGGAGACTTCACAG CAGAATTGCCATTGCACAAC

m IFN-g ATGAACGCTACACACTGCATC CCATCCTTTTGCCAGTTCCTC

m IL-17A GGCCCTCAGACTACCTCAACC TGAGCTTCCCAGATCACAGAG
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manufacturer’s instructions. The colon tissues were homogenized in

500 mL of HTAB buffer and then incubated with substrate in

reaction buffer. Fluorescence was determined using a microplate

reader at 380/500 nm wavelength every 3 minutes for 30 minutes.
Western blot analysis

Total proteins in the colons were subjected to SDS-PAGE. The

separated protein on a PVDF membrane (Millipore, Darmstadt,

Germany) was incubated with primary antibody against SLPI (1:

1000; R&D Biosystems) overnight at 4°C, followed by secondary

antibody conjugated with horseradish peroxidase, and visualized

with the ECL Western blotting analysis system (GE Healthcare,

Piscataway, NJ, USA). Levels of SLPI were measured by

quantification of the band intensities with ImageQuant TL

software (Roche Diagnosis, Rotkreuz, Switzerland).
Quantitative real-time reverse transcription
polymerase chain reaction

Total RNA from the colon was extracted using TRI Reagent®,

purified using a PureLink RNA Mini Kit (Thermo Fisher Scientific

Inc.) and then reverse-transcribed using a Verso cDNA Synthesis

Kit (Thermo Fisher Scientific Inc.). Quantitative RT-PCR was

performed using a real-time PCR machine (LightCycler 96, Roche

Diagnostics) with a KAPA SYBR FAST qPCR Kit (Kapa

Biosystems, Wilmington, MA, USA). The relative mRNA levels

were normalized to b-actin, and data were analyzed by LightCycler

software (Roche Diagnostics). The sequences of primers used in this

study are shown in Table 1.
Statistical analysis

All data are presented as the mean ± SEM. Differences between

two groups were analyzed by Student’s t test. Multiple comparisons

were analyzed by one-way ANOVA followed by Tukey’s multiple

comparisons test. Alpha and beta diversity analyses in fecal samples

were calculated using QIIME 1.9.0. Univariate analysis between two

groups was performed with the Mann-Whitney U test using

GraphPad Prism7 software (GraphPad Software, San Diego, CA,

USA). The graphs were visualized by Excel Software and GraphPad

Prism 7 software. P values less than 0.05 were considered

statistically significant in all experiments. In the figures, *: P <

0.05, **: P < 0.01, ***: P < 0.001, and ****: P < 0.0001.
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SUPPLEMENTARY FIGURE 1

(A)Quantitative RT-PCR analysis of the mRNA expression of SLPI in the colon

of mice after oral butyrate supplementation. Graphs show the mean ± SEM (n
= 5). (B) Immunohistochemistry of SLPI in the colon tissues from WT mice

treated with normal or DKT diet for 28 days (upper panel: WT-CON, middle
panel: WT-DKT). A higher magnification image of the rectangle in the middle

panel is shown in the lowest panel. The scale bar represents 50 mm (upper and
middle panels) and 10 mm (lowest panel).
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SUPPLEMENTARY FIGURE 2

(A) Fecal samples from mice before the DKT treatment (on day -21) were
subjected to 16S rRNAmetagenome sequencing to examine the composition

of the gut microbiota. The relative abundance of bacteria at a phylum level is

shown. Each bar shows relative bacterial abundance in individual mice (WT
mice: n = 10, SLPI-/- mice: n = 8). (B) Alpha diversity of the gut microbiota is

shown. Data are presented as the mean ± SEM (WT: n = 5, SLPI-/-: n = 4 in
each group). *: P < 0.05 and NS, not significant.

SUPPLEMENTARY FIGURE 3

(A) Visualization of principal coordinates analysis (PCoA) of unweighted

UniFrac distances showing differences in bacterial composition. Each point
represents the fecal bacterial microbiota in a single sample. (B) The relative

abundance of Turicibacter is shown. Data are presented as the mean ± SEM
(WT: n = 5 in each group; SLPI-/-: n = 4 in each group). (C) 1 g/L ampicillin and

0.5 g/L vancomycin were administered in drinking water for seven days to
eliminate bacteria in the intestine. Quantitative RT-PCR analysis of the mRNA

expression of SLPI in the colon of antibiotics-treated WT mice after the

treatment of normal diet (antibiotic group) or DKT diet (antibiotic + DKT
group). Graphs show the mean ± SEM (n = 4). NS, not significant.

SUPPLEMENTARY FIGURE 4

Fecal samples from mice fed a normal diet or DKT diet for 21 days following
DSS treatment for 7 days (on day 7) were subjected to 16S rRNAmetagenome

sequencing to examine the composition of the gut microbiota. The relative

abundance of bacterial genera is shown. Each bar shows relative bacterial
abundance in individual mice (WT: n = 5 in each group; SLPI-/-: n = 4 in

each group).
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