Skip to main content

ORIGINAL RESEARCH article

Front. Immunol.
Sec. Systems Immunology
Volume 15 - 2024 | doi: 10.3389/fimmu.2024.1457324
This article is part of the Research Topic Exploring Immunomodulation to Balance Maladaptive Inflammation and Restore Tissue Homeostasis View all articles

Unravelling the Impact of SARS-CoV-2 on Hemostatic and Complement Systems: A Systems Immunology Perspective

Provisionally accepted
  • National University of Sciences and Technology (NUST), Islamabad, Pakistan

The final, formatted version of the article will be published soon.

    The hemostatic system prevents and stops bleeding, maintaining circulatory integrity after injury. It directly interacts with the complement system, which is key to innate immunity. In coronavirus disease 2019 (COVID-19), dysregulation of the hemostatic and complement systems has been associated with several complications. To understand the essential balance between activation and regulation of these systems, a quantitative systems immunology model can be established. The dynamics of the components are examined under three distinct conditions: the disease state representing symptomatic COVID-19 state, an intervened disease state marked by reduced levels of regulators, and drug interventions including heparin, tranexamic acid, avdoralimab, and garadacimab. Simulation results highlight key components affected, including thrombin, tissue plasminogen activator, plasmin, fibrin degradation products, interleukin 6 (IL-6), the IL-6 and IL-6R complex, and the terminal complement complex (C5b-9). We explored that the decrease levels of complement factor H and C1-inhibitor significantly elevate these components, whereas tissue factor pathway inhibitor and alpha-2-macroglobulin have more modest effects. Furthermore, our analysis reveals that drug interventions have a restorative impact on these factors. Notably, targeting thrombin and plasmin in the early stages of thrombosis and fibrinolysis can improve the overall system. Additionally, the regulation of C5b-9 could aid in lysing the virus and/or infected cells. In conclusion, this study explains the regulatory mechanisms of the hemostatic and complement systems and illustrates how the biopathway machinery sustains the balance between activation and inhibition. The knowledge we have acquired could contribute to designing therapies that target the hemostatic and complement systems.

    Keywords: Hemostatic system, complement system, Systems Immunology, modeling, ordinary differential equations, COVID-19

    Received: 30 Jun 2024; Accepted: 17 Dec 2024.

    Copyright: © 2024 MURAD, Paracha and Nisar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Rehan Zafar Paracha, National University of Sciences and Technology (NUST), Islamabad, Pakistan

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.