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future directions
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More than 50 years have elapsed since the association of human leukocyte

antigens (HLA) with type 1 diabetes (T1D) was first reported. Since then, methods

for identification of HLA have progressed from cell based to DNA based, and the

number of recognized HLA variants has grown from a few to tens of thousands.

Current genotyping methodology allows for exact identification of all HLA-

encoding genes in an individual’s genome, with statistical analysis methods

evolving to digest the enormous amount of data that can be produced at an

astonishing rate. The HLA region of the genome has been repeatedly shown to

be the most important genetic risk factor for T1D, and the original reported

associations have been replicated, refined, and expanded. Even with the

remarkable progress through 50 years and over 5,000 reports, a

comprehensive understanding of all effects of HLA on T1D remains elusive.

This report represents a summary of the field as it evolved and as it stands now,

enumerating many past and present challenges, and suggests possible paradigm

shifts for moving forward with future studies in hopes of finally understanding all

the ways in which HLA influences the pathophysiology of T1D.
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1 Introduction

The human leukocyte antigen (HLA) region genes are well established to be the strongest

contributors to genetic risk for type 1 diabetes (T1D) (1, 2). The association of HLA with T1D

was first reported more than 50 years ago (3), closely following a report of “no relation” of

HL-A with juvenile diabetes (4). Since then, more than 5,000 reports have been published on

the study of HLA-associated T1D risk. Early studies reported data generated from cell-based,
Abbreviations: HLA, Human leukocyte antigen; LD, Linkage disequilibrium; T1D, Type 1 diabetes; KIR,

Killer-cell immunoglobulin-like receptors; LILR, Leukocyte Immunoglobulin-like receptor.
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serologic assays. With the introduction of polymerase chain reaction

(PCR) in the 1980s, DNA-based HLA genotyping methods were

developed, first using differential amplification- (SSP: sequence-

specific priming) or hybridization- (SSOP: sequence-specific

oligonucleotide probes) based methods, progressing to DNA

sequencing of amplified targets (SBT: sequence-based typing), and

leading to next generation sequencing (NGS) of increasingly larger

regions of the HLA genes. The latest improvement in sequencing

technology methods is long read sequencing, which was dubbed the

“method of the year” for 2022 and can allow sequence reads tens of

thousands of bases long (5). This method enables detection of all

polymorphisms in exons, introns, and untranslated sequences in any

given HLA gene and facilitates direct determination of phase

(assignment of sequence reads to a particular chromosome) and

direct determination of haplotypes (sets of HLA alleles found in cis on

one chromosome). The number of HLA loci, the extreme

polymorphism of those loci, and the strong linkage disequilibrium

(LD: non-random tendency of alleles to be found together) between

particular loci, create a complex system where results can easily be

confounded and misinterpreted. Other polymorphic immune system

genes, such as killer-cell immunoglobulin-like receptors (KIRs),

found on NK cells, and leukocyte immunoglobulin-like receptors

(LILR), primarily found on myeloid antigen-presenting cells, are less

well understood, although some have been implicated in T1D risk.

Even with more than 50 years of study, the basis of HLA-associated

T1D risk is not completely elucidated. The recent Food and Drug

Administration approval of teplizumab as a treatment to delay beta-

cell loss increases the urgency for early detection of T1D (6–9).

Identification of individuals at high T1D risk is important for optimal

disease monitoring and patient stratification for use of teplizumab

and other, future treatment and prevention strategies. This report is

intended to provide historical perspective on the association of HLA

with T1D, summarize the current state of the field, and provide

suggestions for moving the field forward with the goal that, one day,

the complexity of HLA-associated T1D risk will finally be fully

understood and will play a key role in accurate diagnosis,

management, precision treatment, and even prevention of

the disease.
2 The basics of HLA structure
and function

2.1 HLA antigens

Classical HLA antigens are cell-surface molecules that include a

peptide binding groove in which either endogenous (for HLA class I)

or exogenous (for HLA class II) peptides bind and are presented to

the T-cell receptor, creating the “tri-molecular complex.” Signaling

through this complex initiates the T cell response to the antigenic

peptide, which can result in anergy, regulatory function, or effector

function. Both HLA class I and class II proteins have a similar

external structure, with the peptide-binding groove formed by amino

acid residues in two immunoglobulin-like domains; however, class II

antigens are heterodimeric proteins comprised of separately encoded
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alpha and beta polypeptides, while class I antigens are comprised of a

single polypeptide chain that forms a complex with the relatively

invariant b2-microglobulin molecule (2).

The genes encoding classical HLA (class I A, B, and C and class

II DR, DQ, and DP) are the most polymorphic known in the human

genome. As of December 2023, the number of alleles assigned in the

IPD-IMGT/HLA allele database for classical HLA loci was 38,008

(10). Early, cell-based genotyping systems only distinguished a

small number of categories for each locus. Rapid increases in

identification of individual alleles began with the advent of DNA-

based typing methods in the early 1990s. Even more rapid

expansion of the catalog of named alleles was fueled by the

development of NGS-based HLA genotyping methods around

2010, and, more recently, advances in long-read sequencing

technology have led to the ability to sequence through and phase

the entire ~4 Mb HLA region. Not surprisingly, most polymorphic

sites in HLA molecules are located in the exons encoding the

peptide-binding groove, creating the basis for presentation of a

large repertoire of peptides for each of the classical HLA antigens.

Exons encoding the peptide-binding groove (exon 2 in class II and

exons 2 and 3 in class I) were the first to be targeted in molecular

genotyping methods. Current methods can determine the entire

sequence of an HLA gene, including exons, introns, and

untranslated sequences, allowing exact identification of the alleles

in a genotype. In addition, high-depth coverage and long read

sequencing allow phase determination and assignment of individual

alleles to haplotypes on each chromosome (11).
2.2 Nomenclature

Nomenclature for HLA has evolved over many years. The

current standard includes the locus name, followed by an asterisk

separator, followed by up to four numeric fields with colon

separators, and, in some cases, by a letter (N, L, S, C, A, or Q)

indicating expression status (12). For most loci, the first field

describes the allele group, generally related to defined serologic

specificity, the second field represents the individual allele within

the group as defined by differences in the encoded amino acids, the

third field reflects silent changes in the codons, and the fourth field

reflects variation in intron and untranslated sequences. The DPB1

locus differs from others in that most alleles have been discovered

since DNA-based genotyping was implemented. For nearly all

DPB1 alleles, the first field simply represents the order in which

the alleles were discovered, rather than a particular, serologically

defined allele group, and the second field is almost exclusively “01.”

A review of the history of HLA nomenclature was recently

published (13).

Given the cumbersome nature of the individual allele

designations, for example, HLA-A*01:01:01:01N, many reports use

abbreviated definitions for particular alleles. For example, the allele

DRB1*03:01:01:01 is sometimes referred to as simply “DR3” but can

be referred to using up to four fields of resolution. In some reports,

the term “DR3”may refer to the individual allele at theDRB1 locus or

may refer to haplotypes that carry the DRB1*03:01:01:01 allele. Thus,
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interpretation of data from association studies must be done with

careful consideration of the genotyping methodology, the resolution,

and the authors’ preferences in reporting nomenclature. Despite

efforts to standardize reporting information for HLA genotyping,

results for individual studies still vary in the nomenclature used (14).

Class I antigens (HLA-A, -B, and -C) are formed by a single

polypeptide chain (combined with b2-microglobulin); their

designations refer to a single locus but can vary from simple

designations that only reflect specificity at the serologic level

(e.g., “A1”) to complete whole gene (four-field) specificity with

expression data (e.g., A*01:01:01:01N). Class II antigens (HLA-DR,

-DQ, and -DP) are heterodimers composed of the products of two

genes (“A” and “B,” encoding the a and b polypeptide chains,

respectively). For genes encoding DR, nearly all the polymorphism

is found in the DRB genes, with the variability in the DRA1 gene so

low that the locus is usually not genotyped. Thus, nomenclature for

DR-encoding loci generally consists simply of a description of the

DRB allele. All HLA regions contain a DRB1 gene; however, other

DRB genes, both the expressed DRB3, DRB4, and DRB5 loci and the

pseudogenes DRB2, DRB6, DRB7, DRB8, and DRB9, are present on
Frontiers in Immunology 03
some, but not all, chromosomes (Figure 1). They are found in

distinct LD patterns with particular DRB1 alleles. Each

chromosome carries a maximum of one secondary, expressed

DRB locus (i.e., DRB3, DRB4, DRB5) (see section 3.7). Thus,

although they are separate loci, DRB3, DRB4, and DRB5 can be

analyzed as if they were alleles of one locus.

In contrast, for genes encoding DQ, both the DQA1 and DQB1

loci are polymorphic, and both must be genotyped to fully describe

the DQ antigen. One way to do this is to write out the full DQA1-

DQB1 haplotype (e.g., DQA1*05:01~DQB1*02:01); however, for

brevity, many reports use abbreviations to represent the haplotype.

In fact, these abbreviations describe the heterodimeric antigen formed

by the combination of polypeptide products of the DQA1 and DQB1

loci. Common DQ abbreviations relevant to T1D risk include DQ2.5

(DQA1*05:01~DQB1*02:01), DQ8 (DQA1*03:01~DQB1*03:02), DQ7

(DQA1*05:01~DQB1*02:01), DQ6.2 (DQA1*01:02~DQB1*06:02),

and DQ9.3 (DQA1*03:02~DQB1*03:03).

For DP, as for DQ, genes encoding both chains of the antigen

are polymorphic. Consistent with other class II antigens, the DPB1

gene is far more polymorphic than is theDPA1 gene, with 2,486 and
FIGURE 1

Schematic representation of chromosomal region encoding HLA-DR antigens; not to scale. Although they are separate loci, DRB3, DRB4, and DRB5
are separate loci but are represented as a single locus for convenience. Expressed loci are represented by solid blocks. Striped blocks represent
pseudogenes. Arrows designate direction of transcription for expressed genes. Chromosome groups are designated by the first-field nomenclature,
for example, DRB1*01, which represents the corresponding serologic group. Alternate, historical name categories for the groups are given
in parentheses.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1457213
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Noble 10.3389/fimmu.2024.1457213
639 reported alleles, respectively (10). Until recently, DPA1 was

rarely genotyped, and DP data, when available, were nearly always

reported in the same way as DR data, simply by using the allele

designation for the DPB1 gene. As genotyping technology evolves,

more reagents are becoming available for genotyping DPA1,

particularly since many assay systems are now multiplexed.

Therefore, the proportion of reported DPA1~DPB1 haplotype

data, compared to DPB1 data alone, is increasing. While some

DPB1 alleles are seen in haplotype with a single DPA1 allele, others,

likeDPB1*02:01, can be seen in ciswith one of multipleDPA1 alleles

(15). Data reports for DP association do not utilize abbreviations

analogous to those used for DQ association. Interpretation of DP

genotyping results requires information about whether the data

presented represent only the DPB1-encoded portion of the antigen

(b chain) or both the DPA1 and DPB1-encoded portions (a and b
chains). Since both the alpha and the beta chains contribute to the

shape of the antigen-binding groove, identification of both chains is

important to fully understand the structure of the resulting DP

antigen. Given the fact that both DPA1 and a DPB1 products

contribute to the peptide binding groove of the DP antigen, and

given the discovery that some DP antigens can serve as ligands for

NK cell proteins and influence innate immunity, identification of

both the DPA1 and DPB1 loci in an individual is becoming

increasingly important (16, 17).
2.3 Resolution

Generation and analysis of data at the highest resolution possible

(four-field) for any study involving HLA genotyping may seem

optimal, but highest resolution is not always the best basis for an

association study. Increased resolution of a genotyping study

generally involves increased cost. The perfect disease association

study would sample every individual in the entire global population

and sequence every genome in its entirety, providing a complete data

set that could be stratified by any genetic criteria desired, for example,

using Ancestry Informative Markers (AIMs), before application of

any association analysis method. Clearly, such a study is neither

practical nor even possible. In the absence of this ideal, each study

design must consider the level of resolution necessary to best address

the hypothesis being tested, taking into account the resources

available for the study. Most studies of HLA and disease

association report data at a resolution of two fields (previously

referred to as “4-digit” resolution), because the first two fields

contain all the information defining the amino acids encoded for

the protein. Changes in the third or fourth field do not affect which

amino acids are included in a given allele. In rare cases, information

found in third or fourth fields might be relevant to gene expression,

through potential mechanisms such as altered codon usage, changes

in splice donor or acceptor sequences, or presence of an enhancer. On

a practical level, however, third and fourth field information adds

little to a disease association study. The primary function of HLA

molecules is to present peptides; thus, two molecules that contain

coding sequence for the same string of amino acid residues are

expected to have the same structure and bind the same repertoire of

peptides. If the coding sequence for those two antigens differs by
Frontiers in Immunology 04
silent changes in codons or untranslated sequences, considering them

as different alleles in an association analysis could effectively decrease

the statistical power of the study and mask association effects. Since

three- or four-field resolution data can be collapsed to two-field

resolution, generating data at the highest level of resolution within the

scope of the study is desirable. However, for cases in which generating

data at four-field resolution is not possible or greatly reduces the

number of samples that can be tested with the resources available for

a project, generating data at the two-field level (coding sequence only)

may be the preferred option. Each disease association project is

unique, and many studies have been, and continue to be, performed

with low- or moderate-resolution output, creating useful data but also

creating challenges for comparing or combining data among studies.

Varying resolution represents a significant problem not only for

disease association studies but also for combining data in any HLA-

related study involving samples that were genotyped at varied levels

of resolution. For example, large transplant registries, such as the

National Marrow Donor Program (NMDP), have data spanning the

evolution of genotyping technology, creating challenges for

optimizing matching of potential donors to recipients. One report

from the NMDP approached this issue by examination of 6.59

million subjects categorized into 21 race categories, with over 1.2

million European Caucasian subjects, using expectation

maximization algorithms to resolve allelic ambiguity and phase

haplotypes (18). A similar strategy may be applicable for combining

data from a large number of disease association studies. For

resolution, decreasing the level is simple. Increasing the level is

more complex and must be done by informatics technology. While

not as accurate as direct genotyping of all samples, imputation of

high-resolution data from low-resolution data can aid in allowing

the generation of large and meaningful datasets without additional,

and perhaps cost-prohibitive, direct genotyping assays. That said,

drawing conclusions from imputed data must always be done with

caution and take into account that all data were not experimentally

determined. For data with direct clinical consequences, such as

matching donor-recipient pairs, imputed data must be confirmed

experimentally before performing clinical procedures.
3 HLA allele, haplotype, and genotype
associations with T1D

3.1 Discovery

Early publications of HLA association with T1D reported

serologic association of class I antigens “HL-A8” and “W15.”

(3, 19, 20) In 1980, Barbosa reported increased frequency of class

II antigens then termed “Dw3” and “Dw4” and decreased frequency

of “Dw2” as well as increased frequency of the Dw3/Dw4

heterozygous genotype (21). These results still stand, having been

replicated and published in thousands of studies. Although the full

extent of the effect of HLA on T1D susceptibility remains to be

determined, the depth and breadth of the field has expanded

enormously over 50 years. T1D risk for HLA has consistently

been demonstrated to be strongest for genes encoding HLA-DR

and -DQ antigens, with risk clearly apparent for each locus in nearly
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every published study. The vast majority of T1D risk studies report

association data in the form of Odds Ratio (OR), which reflects the

frequency of the tested allele, haplotype, or genotype in T1D

patients compared to that in controls, and each OR is given with

a measure of statistical significance in the form of a probability (p)

value. An OR of 1.0 denotes no association between the tested

parameter and disease; OR greater than 1 denotes potential positive

association (predisposition to disease), and OR less than 1 denotes

potential negative association (protection from disease).

Significance is generally accepted as a p-value of 0.05 or lower

after appropriate statistical corrections.
3.2 DR3, DR4, and the DR3/DR4 genotype

The DRB1*03:01~DQA1*05:01~DQB1*02:01 haplotype,

sometimes referred to as “DR3-DQ2.5,” or even simply “DR3,” is

positively associated with T1D in nearly every population reported to

date, although the strength of the association varies among

populations. While the extreme polymorphism of the HLA genes

creates a daunting number of potential antigens, in practice, only a

small subset of named alleles, and, therefore, antigens encoded by

them, is present in any given population. At the two-field level of

resolution, 211 DRB1*03 alleles have been reported (10). However,

only two of those alleles, DRB1*03:01 and DRB1*03:02 (the latter seen

almost exclusively in Black populations) are found at appreciable

frequency (≥0.5%), with the remaining alleles too rare to be of use for

disease association studies (18). The DQ-encoding haplotype

DQA1*05:01~DQB1*02:01 is in very strong LD with DRB1*03:01;

thus, stratification on the DRB1*03:01~DQA1*05:01~DQB1*02:01

haplotype allows evaluation of risk for alleles at other HLA loci (e.g.,

class I, DPB1) and non-HLA loci (e.g., TNFA) in the region without

confounding by heterogeneity of DR- and DQ-encoding loci. Some

HLA haplotypes are highly conserved, including the DR3 haplotype

sometimes referred to as “B8-DR3,” “A1-B8-DR3,” or “8.1,”which was

the secondmost common haplotype observed in a set of over 6 million

samples from the NMDP repository (18). The observation that DR3

haplotypes containing HLA-B*08:01 confers less T1D risk than other

DR3 haplotypes, particularly “B18-DR3,” has been consistently

reported, beginning as early as 1988 (22–26). Other extended “DR3”

haplotypes have been seen in varying populations. For example, A2-

B8-DR3, A2-B50-DR3, A33-B58-DR3, A24-B8-DR3, and A26-B8-

DR3 are all T1D risk haplotypes in the Indian population, while A33-

B17-DR3 was suggested as a risk haplotype in Chinese (27, 28).

Additional class II susceptibility is attributable to “DR4,” which

denotes DRB1*04:xx alleles, or haplotypes carrying them. DR4-

associated T1D risk is more complex than that of DR3, because

DR4 haplotypes are far more varied than DR3. To date, 375 DRB1*04

alleles have been named (10). At least nine of those are reported to be

at a frequency ≥1% in at least one population (18). A hierarchy of risk

exists forDRB1*04:xx alleles, withDRB1*04:05 representing very high

risk, followed by others, including DRB1*04:01, DRB1*04:02, and

progressing to DRB1*04:03, which has no risk, but is actually

protective, for T1D (2). In addition, the DQ-encoding haplotypes

that are found coupled to these DRB1 alleles can vary. In particular,

DQA1*03:01~DQB1*03:02 (DQ8) is well-established to be a T1D
Frontiers in Immunology 05
susceptibility haplotype, while DQA1*03:01~DQB1*03:01 (DQ7) is

generally T1D protective, suggesting that T1D risk is more dependent

on DQ than on DR (29, 30). On the other hand, the haplotype

DRB1*04:01~DQA1*03:01~DQB1*03:02 is an established T1D risk

haplotype, while DRB1*04:03~DQA1*03:01~DQB1*03:02 is T1D

protective, suggesting that the T1D risk is attributable to DR and

not DQ. This conundrum creates a need for large and diverse data

sets to evaluate the effects of individual alleles and haplotypes. In

some populations, such as those of European descent, 90%–95% of

T1D patients carry either DR3 or DR4 on one chromosome. Due to

the increasing availability of large sample sets, studies of the subset of

patients who carry neither have become feasible to help elucidate

predictors for T1D in individuals without the highest risk (31).

In addition to risk provided by individual HLA alleles and

haplotypes, particular HLA genotypes are known to confer risk that

is not explained by the additive effects of the alleles or haplotypes

that are included in the genotype. The most well-known example of

this is the very high risk conferred by the heterozygous “DR3/DR4”

genotype, in which one chromosome carries the DR3 haplotype and

the other carries a high-risk DR4 haplotype (excluding those

containing DRB1*04:03 or DQA1*03:01~DQB1*03:01) .

Augmented risk for the DR3/DR4 genotype was reported as early

as 1980, and the genotype can be seen in up to 45% of patients in

some studies (21, 30). In fact, the risk for the DR3/DR4 genotype is

so strong that many studies stratify by those patients and analyze

them as a separate group from the remaining patients (32–35). For

decades, a comprehensive explanation for the more than additive

risk of the DR3/DR4 genotype has remained elusive; however, a

leading hypothesis involves DQ heterodimeric antigens encoded in

trans (2). Figure 2A depicts the two DR-DQ haplotypes that are

commonly found in a high-T1D risk individual of European

descent and illustrates the four combinations of DQA1 and DQB1

loci whose products could theoretically combine to create a DQ

antigen. The combination of DQA1*03:01 and DQB1*02:01,

depicted here in trans, is frequently seen encoded in cis and has

been reported to be associated with increased T1D risk (36).

Although the combination of DQA1*05:01 and DQB1*03:02 has

not been described encoded in cis, one report provides functional

data to support the genetics-based hypothesis that an antigen

formed from the products of those two alleles may increase T1D

risk (37). Differences were demonstrated in antigenic peptide

repertoire binding profiles for the traditional cis-encoded “DQ8”

(DQA1*03:01~DQB1*03:02 = “DQ8cis”) antigen and for the trans-

encoded antigen, (DQA1*05:01~DQB1*03:02 = “DQ8trans”), that

are consistent with higher T1D risk for DQ8trans than for DQ8cis.

The DR3/DR4 heterozygous genotype seen in Figure 2A allows the

expression of DQA1*05:01 and DQB1*03:02 in the same individual,

creating a unique opportunity for formation of a particularly high-

risk DQ molecule.
3.3 Other DR and DQ T1D risk alleles,
haplotypes, and genotypes

While DR3, DR4, and the DR3/DR4 genotype are the most

commonly recognized HLA risk factors for T1D, many other alleles,
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haplotypes, and genotypes have been reported in 50 years of study.

Thomson et al. used a method termed Relative Predispositional

Effects (RPE) to look for additional T1D risk alleles beyond DR3

and DR4 and found evidence for risk from DR8 and DR1 (38, 39).

Perhaps the most comprehensive study of HLA and T1D risk was

the Type 1 Diabetes Genetics Consortium (T1DGC) (40, 41).

Notably, HLA association with T1D was not originally intended

as a primary outcome for the T1DGC; the purpose of the

international study was to discover all the T1D susceptibility loci

other than the classical HLA loci, including both immune system

and non-immune system genes. However, because of the extremely

strong T1D association with HLA, proper evaluation of all genetics-

based T1D association studies should include HLA context. This is

especially true for loci in the same chromosomal region as the HLA

loci (chromosome 6p), including genes in the class III region. As

part of the T1DGC effort, over 14,000 individuals, from multiple

populations, were genotyped for all classical HLA loci (except

DRB3, DRB4, and DRB5) at two-field level with exon-based

resolution using PCR-Sequence-Specific Oligonucleotide Probe

(PCR-SSOP) technology. Data for DR- and DQ-encoding genes,

DP-encoding genes, and HLA class I-encoding genes were analyzed

and published (15, 29, 42). Table 1 shows the most common

predisposing and protective DRB1~DQA1~DQB1 haplotypes

for T1DGC.

Most studies of HLA and T1D risk have been performed on

individuals of European descent, not only due to the high

prevalence of T1D in that group but also due to the relative ease

of recruiting subjects compared to other races and ethnicities. Lack

of diversity in published studies can create challenges for thorough

understanding of HLA associations with T1D and is described more

fully in section 4.1 below. HLA allele frequencies vary enormously

among populations as do the combinations of those alleles into

haplotypes. Studies of subjects not of European descent are critical

for comprehensive understanding of HLA-associated T1D risk. An

illustrative example can be seen for DR9. The frequency of

DRB1*09:01 is high (up to ~15%) in Asian populations, including

Japanese, Chinese, and Vietnamese but very low (~1%) in European

populations (18). In Europeans, an association of DRB1*09:01 with

T1D would require a very large study to be observed; however,

association with DR9, and particularly with the DR3/DR9 genotype,

was reported many decades ago in Asian populations (27, 43–45).
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Another genotype that is relatively uncommon, DR4/DR8, has been

shown to be a risk factor for T1D, both in individuals of European

descent and in Japanese (46). The increasing admixture among

populations can further confound data interpretation. For example,

the DR3 haplotype that is exceedingly rare in Europeans but

common in Africans (DRB1*03:02~DQA1*04:01~DQB1*04:02)

(see section 3.2) is actually protective, rather than predisposing,

for T1D (36). Similarly, the DR4 haplotype common in Asians

(DRB1*04:03~DQA1*03:01~DQB1*03:02) is protective, rather than

predisposing, for T1D. Finding both of these haplotypes in a single

individual is unlikely in non-admixed populations but could easily

happen in an admixed population, where a child might have one

Asian and one Black parent. In that case, a low-resolution

genotyping could produce a result of a called DR3/DR4 genotype,

leading to an assumption of high T1D risk, in an individual whose

HLA genotype is highly protective. This hypothetical example

(depicted in Figure 2B) highlights the fact that both resolution

and population context are important in evaluating data from HLA

and T1D association studies.
TABLE 1 Highly-significant DR-DQ encoding haplotypes for subjects of
European descent resulting from the Type 1 Diabetes Genetics
Consortium (T1DGC) study (29).

Haplotype DRB1~DQA1~DQB1
Odds
ratio

P-value

predisposing

DR3 03:01~05:01~02:01 3.64 2 × 10−22

DR4 04:05~03:01~03:02 11.37 4 × 10−5

DR4 04:01~03:01~03:02 8.39 6 × 10−36

DR4 04:02~03:01~03:02 3.63 3 × 10−4

protective

DR2 15:01~01:02~06:02 0.03 2 × 10−29

DR6 14:01~01:01~05:03 0.02 1 × 10−6

DR7 07:01~02:01~03:03 0.02 3 × 10−4

DR7 07:01~02:01~02:01 0.32 2 × 10−9

DR4 04:03~03:01~03:02 0.27 0.017
Bold values are statistically significant.
FIGURE 2

Representation of individual haplotypes that can be found in a “DR3/DR4” heterozygous individual. (A) Typical DR3/DR4 genotype for a high-risk
individual of European descent. Potential allele pairs that could produce trans-encoded DQ molecules are circled. (B) Potential DR3/DR4 haplotype
from mixed-population individual with one Asian and one Black parent, composed of two T1D-protective haplotypes.
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3.4 T1D protection from DR and DQ-
encoding alleles

HLA not only confers risk for T1D but also strong protection.

The 1980 publication that implicated class II, rather than class I, HLA

in T1D risk also reported a decrease in the “Dw2” antigen, which is

sometimes termed “DR2” and includes the DRB1*15 and DRB1*16

allele groups (21). In studies of individuals of European descent, the

haplotypeDRB1*15:01~DQA1*01:02~DQB1*06:02 is, by far, the most

frequent DR2-encoding haplotype observed and is consistently

associated with T1D protection (29, 30, 39). The closely related

haplotype DRB1*15:03~DQA1*01:02~DQB1*06:02 (African-

specific) is also highly protective for T1D (36). Importantly,

however, the alleles included in DR2-encoding haplotypes and their

frequencies vary widely among populations and not all DR2-

endocding haplotypes are highly protective (18, 36, 47). DQB1

genes that encode aspartic acid at position 57 are usually protective

for T1D, although not universally (48–50). DR2-based T1D

protection appears dominant, although the mechanism for the

protection is, as yet, unknown. One leading hypothesis is “epitope

stealing,” that is, competition for binding of antigenic peptides

(51, 52). Another is related to the high stability of the DP antigen

encoded by DQA1*01:02~DQB1*06:02 (53–56). DR2 appears to be

protective throughout the course of disease, from reducing risk of

developing autoantibodies to reducing risk of progression to overt

diabetes in individuals with antibody positivity (57).

Other class II haplotypes appear protective for T1D, including

DRB1*14:01~DQA1*01:01~DQB1*05:03 and DRB1*07:01~DQA1*

02:01~DQB1*02:02 (29). DR7-based T1D protection was observed

in early studies of European-descent individuals but not as

frequently in individuals of African descent (30, 58). The African

version of the DR7 haplotype is DRB1*07:01~DQA1*03:01

~DQB1*02:02, differing from the European version only at DQA1.

That difference modifies the risk for the haplotype from protective

(OR = 0.34) to predisposing (OR = 3.96), demonstrating the need

for genotyping a more than a single locus to determine T1D risk

(59). Other alleles and haplotypes can be T1D protective as well, but

with less uniformity of observed risk effects. Alleles in the DRB1*11

and DRB1*13 groups can be found encoded in cis with many

different DQA1-DBB1 haplotypes. T1D risk effects from DR11

and DR13 haplotypes vary widely within and among populations.
3.5 DPB1

HLA-DP is the remaining of the three class II classical HLA

antigens. Like DR and DQ, DP is encoded by polymorphic genes

and presents peptide antigens to T-cell receptors, making it a logical

candidate to convey T1D risk. Association of the DPB1 locus with

T1D has been examined in many studies and in many populations,

although some reports have suggested no association of DP with

T1D (15, 26, 34, 60–65). The association of DPB1 with T1D tends to

be less strong and less consistent than that of the DR- and DQ-

encoding loci (15). Perhaps the most consistently observed T1D

association for DPB1 and T1D is a protective effect for DPB1*04:02,
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particularly notable on DR3 haplotypes; however, a recent study

from Mali showed a very highly predisposing effect for DPB1*04:02

(OR = 12.73) in that population, which, upon closer scrutiny,

appeared to be attributable to the presence of DPB1*04:02 on a

highly T1D-predisposing extended HLA haplotype rather than to

an effect of the allele itself (30, 34, 60, 62, 66). The mechanism(s) for

the influence of DPB1 on T1D remain to be fully elucidated.

Possibilities include direct effects of peptide binding for adaptive

immunity, LD with other risk loci, or a novel mechanism that may

involve the innate immune system (see section 5.2 below).
3.6 HLA class I A, B, and C

Original reports for associations of HLA with T1D were for

class I serotypes; however, those associations were later shown to be

attributable to HLA class II loci in LD with loci encoding those

serotypes (3, 19–21). T1D is characterized by an adaptive immune

response that leads to destruction of pancreatic beta cells. T-cell

killing involves class I HLA molecules; thus, a reasonable

assumption is that HLA class I genes might confer susceptibility

to T1D, particularly affecting beta cell destruction and disease

progression. To be performed properly, HLA class I analyses

must account for LD with class II DR- and DQ-encoding genes.

Many studies have been published examining class I associated T1D

risk (HLA-A, -B, and -C) (26, 33, 42, 67–69). A*24, specifically,

A*24:02, is the most commonly reported T1D risk allele for HLA-A

(33, 42, 69, 70). A*24 has been associated with low residual beta-cell

function, rapidly progressing disease, and poor outcome for islet

allografts (71–75). HLA-B*39:06 is the most commonly and

consistently T1D-associated allele reported for the HLA-B locus

and, like A*24:02, is reported to drive disease progression, including

in a humanized mouse model (42, 67–70, 75, 76).HLA-C is the least

commonly studied of the class I loci for T1D risk, and no allele has

shown consistent associations among studies (42, 67, 77). In fact, in

a recent study of HLA and T1D in Malian populations, The HLA-C

and DPA1 loci were the only classical HLA loci not to reach

statistically significant association at the locus level (66). Observed

associations of particular HLA-C alleles with T1D can frequently be

attributed to LD with class II or with HLA-B alleles. The lack of

HLA-C alleles demonstrating consistent T1D risk effects among

populations leads to the notion that the influence ofHLA-C on T1D

risk may be attributable to a mechanism different from the

traditional presentation of antigen to T cells through the tri-

molecular complex. Other mechanisms could include the role of

the HLA-C antigen as a ligand for Killer cell Immunoglobulin-like

Receptors (KIR, see section 5.2) or a different, as yet unidentified,

mechanism unrelated to traditional antigen presentation.
3.7 DRB3, DRB4, and DRB5

The HLA DRB3, DRB4, and DRB5 genes, like DRB1, encode

DRb polypeptides that can form heterodimers with the product of

the DRA gene to produce functional DR antigens. Unlike DRB1,
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these loci are not found on every copy of chromosome 6 but are

present, in predictable LD patterns, in HLA regions with particular

DRB1 loci. Each chromosome has a maximum of one secondary,

coding DRB locus, shown schematically in Figure 1 (18). The

similarity of these loci to DRB1 can interfere with DRB1

genotyping. In fact, for many years, most genotyping methods

were specifically designed to exclude DRB3, DRB4, and DRB5 loci

to prevent confounding of DRB1 genotyping data. Thus,

historically, very few studies have reported data for these loci. In

addition, the secondary DRB loci are far less polymorphic than

DRB1. Most DRB1 alleles are found in combination with only one

specific secondary allele. DRB1*03:01 represents one exception in

that it can commonly be found in cis with either DRB3*01:01 or

DRB1*02:02 in some populations. The secondary DRB loci have

been examined for T1D susceptibility in a limited number of studies

with varying results (78–81). Currently, many genotyping products

include DRB3, DRB4, and DRB5; thus, future studies should allow

better assessment of their T1D risk.
4 Challenges and requirements for
determining T1D genetic risk

4.1 Diverse population studies

Because of the diversity of HLA alleles and genotype

combinations of alleles among populations, limiting the scope of

HLA association studies by studying only one or a small number

of populations limits the ability to fully understand the full extent of

HLA association with T1D. An allele with a strong risk effect could

be missed if that allele is present at a frequency too low for proper

analysis in the study subjects. Conversely, even modest risk effects

can be revealed when an allele is present at a high frequency. In

addition, strong LD of some haplotypes creates challenges in the

interpretation of data. Effects for one allele in a conserved haplotype

may be masked by effects of another allele in that haplotype.

Disease association studies rely on measuring differences

between affected and unaffected individuals within a group. A

properly designed study must have both case and control groups

representing the same genetic background. Given resources to

generate sufficient genetic information, this can be determined

experimentally, for example, using AIMs; however, in practice,

keeping genetic background consistent between cases and

controls must be incorporated into selection strategies for study

participants. Both consanguinity and population admixture can

confound disease association studies; therefore, the selection of

study participants is critical. Studies from distinct, carefully selected

populations represents a good strategy for understanding HLA-

associated T1D risk.

Many studies are performed on the basis of country of origin;

however, political boundaries do not necessarily separate race or

ethnicity. Conversely, geographic proximity does not necessarily

indicate racial or ethnic similarity. One example can be seen in

DRB1 data from Bangladesh and Pakistan (82, 83). Although these

two countries both border North India, the HLA associations with
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T1D are very different, with mild association primarily due to

DRB1*04:01 for Bangladesh and strong association, primarily due

to DRB1*03:01 for Pakistan. In fact, the pattern of DRB1 association

with T1D for Pakistan mush more closely resembles that for

Somalia than for Bangladesh (84).

Most early HLA association studies as well as most large-scale

studies have been performed on subjects of European descent;

however, the number of diverse populations being examined is

increasing. A PubMed search using the terms “HLA” and “T1D”

returned more than 5,000 publications. Figure 3 depicts a world

map with sources of studies indicated. Although some reports list

ancestry or region as the source of subjects, most are reported by

country. The data on the map are represented by country; any

country from which HLA data have been reported in a T1D study is

highlighted, even if the subjects were restricted to a small

population or small geographic area. Other than for well-studied

areas like the USA, Europe (especially Scandinavia), Japan, China,

and India, many reports are from the past 8 years, and most lack

replication. The map is not intended to provide the location of each

specific population but simply to illustrate the current extent of the

world coverage for HLA and T1D association studies. At a glance,

the coverage seems quite broad. However, the reported studies vary

greatly in the numbers of participants and the geographic area

sampled, as well as which HLA loci were tested, which technology

was used for genotyping, and what resolution level was reported.

Table 2 lists references seen in PubMed for HLA and T1D studies

from 2016 through June of 2024; Table 2 was used to inform

Figure 3. Clearly, more data from Africa, South America, and South

Asia are needed.
4.2 Good clinical characterization
of subjects

An additional confounding factor for T1D studies is the clinical

heterogeneity of the disease itself. Traditionally, diabetes has been

considered a disease with two categories: type 1, previously referred

to as “juvenile” or “insulin-dependent,” and type 2, previously called

“adult-onset” or “non-insulin-dependent.” However, many other

types of diabetes are now recognized (85). A recent addition to the

field is the observation of diabetes as an adverse effect of immune

checkpoint inhibitor therapy for cancer (86). Diseases in the

category “T1D” are not clinically homogeneous. Presentation of

T1D varies among patients from somewhat mild, with minimal

insulin requirements, to fulminant, with rapid beta cell loss.

Different forms of T1D, termed “endotypes,” are currently being

reported, with a recognized need for better global epidemiology

(87–89). Different clinical presentation and manifestation of disease

may have different HLA associations. Combining subjects with

different disease phenotypes could result in inability to recognize

some HLA effects.

Yet another variable for T1D involves the antigen presented by

the HLA molecules. The search for “the diabetes antigen” has been

ongoing for decades. That more than one diabetes antigen exists has

become well established, which helps explain why more than just
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one HLA allele is associated with T1D. Diabetes antigens include

peptides formed from proteins recognized by the autoantibodies

commonly seen in T1D patients, insulin (IAA), glutamic acid

decarboxylase 65 (GAD65) Islet antigen 2 (IA-2), and Zinc

transporter 8 (ZnT8). The specific autoantibodies found in T1D

patients differ among patients both in the timing of their

appearance (IAA tend to appear at earlier age) and the HLA

haplotype(s) of the patients in whom they are found (IAA are

commonly found in patients who carry DR4 haplotypes, while

GADA are more commonly seen in patients with DR3) (90). The

discovery that certain antigenic peptides, such as insulin B:9-23, can

bind HLA in different registers, with different immunologic

consequences, further complicates the immunology of T1D

(91, 92). The recent discovery of hybrid insulin peptides (HIPs)

adds even more complexity to the diabetes antigen repertoire

(93–106). HIPs are created by the fusion of peptide fragments

from more than one protein, for example, insulin and

chromogranin A. Thus, the number of potential peptide antigens

for T1D is much greater than what could be produced from the

individual, recognized T1D associated antigens, further

complicating the immunologic landscape of the disease.
4.3 In-depth analysis of HLA features,
rather than alleles

HLA antigens for any given locus are structurally similar with

small variations due to the amino acids encoded at a given position.
Frontiers in Immunology 09
Perhaps the most well-known T1D risk association attributed to a

specific amino acid residue in an HLA allele is the effect of position

57 in the DQB1 locus identified in the 1980s (section 3.4) (49, 50).

In a much more recent study, effects of individual amino acids on

T1D susceptibility were examined in a large cohort of more than

18,000 subjects using imputation of SNP data from the

Immunochip array to call HLA genotypes (107). In that study,

position 57 of the DQB1 locus had the strongest effect on T1D risk,

with strong associations also seen for DRB1 positions 13 and 71. In

addition, independent T1D associations were observed for amino

acid residues inHLA-A, -B, -DRB1, -DQA1, -DQB1, and -DPB1 loci;

however, no significant associations were observed for either HLA-

C or -DPA1. Consistent with that observation, a recent study of T1D

association with HLA in a Maliian cohort showed overall

T1Dassociation for all classical HLA loci except HLA-C or -DPA1

(66). Looking at T1D association more closely than at the level of

the named allele, for example, at the amino acid level, may provide a

broader perspective and generate hypotheses to test among studies

of diverse populations. An illustrative example can be seen in two

recent studies, one from Kuwait and one from Mali (mentioned

above), that reported not only allele level but also amino-acid level

analysis of T1D patients and controls for the DRB1, DQA1, and

DQB1 loci (66, 108). These studies on two different populations, one

Middle Eastern and one African Black, were of similar size, and

both were performed with high-resolution sequencing and analyzed

with the BIGDAWG software package (109). Figure 4A

schematically describes the data observed for each population at

the allele level (for those alleles with sufficient frequency to analyze,
FIGURE 3

World map depicting countries from which HLA association with T1D have been reported. Any report from a given country, even if from a small
region, results in indication of the country. Countries with reports dating from 2016 to June 2024 are shown in yellow. Citations from those
countries are listed in Table 2 and include Albania, Algeria, Argentina, Armenia, Bahrain, Cameroon, Canary Islands (Spain), Chile, Czech Republic,
Denmark, Estonia, Fiji, France, Georgia, Georgia, Greece, Hungary, Iraq, Israel, Jamaica, Java (Indonesia), South Korea, La Reunion Island, Latvia,
Lebanon, Libya, Lithuania, North Macedonia, Malaysia, Martinique, Morocco, Naura, New Caledonia, Newfoundland (Canada), Nigeria, Philippines,
Poland, Puerto Rico, Russia, Russia, Senegal, Serbia, Slovakia, Slovenia, Turkey, Uruguay, Wallis Islands, Zimbabwe. Countries with earlier reported
data are shown in blue.
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i.e., not in the “binned” category). Alleles that demonstrate

significant T1D association are shown in black. Although they

have some overlap, their distributions in these two populations

appear different. Figure 4B represents the data at the level of

individual amino acid residue encoding positions that appear

T1D associated in the DRB1, DQA1, and DQB1 loci. These data

appear more consistent between the countries, with a large
TABLE 2 HLA and T1D reports from 2016 through June of 2024 taken
from PubMed.

Country/
region/population

Year First author
(citation)

African ancestry 2024 Michalek (166)

Arabian Peninsula 2021 Al Naqbi (167)

Arabs (meta-analysis) 2016 Hamzeh (168)

Azerbaijan 2018 Ahmadov (47)

Bangladesh 2019 Zabeen (82)

Benin 2017 Fagbemi (169)

Brazil 2017 Gomes (170)

Brazil 2023 Gomes (171)

Brazil 2021 Azulay (172)

Brazil 2020 Santos (173)

China 2024 Ding (174)

China 2023 Xia (175)

China 2022 Chen (176)

China 2021 Xia (177)

China 2021 Jiang (178)

China 2020 Ren (179)

China 2017 Yin (180)

China 2016 Sun (151)

Columbia 2019 Gomez-Lopera (181)

Columbia (Antioquia) 2018 Sarrazola (182)

Croatia 2018 Grubik (183)

Cypress 2018 Gerasimou (184)

Egypt 2019 El-Amir (185)

Ethiopia 2020 Balcha (186)

European ancestry 2024 Michalek (166)

Finland 2021 Zhao (187)

Germany, Saxony 2018 Hommel (188)

Hispanic ancestry 2024 Michalek (166)

India 2020 Singh (189)

India 2020 Harrison (117)

India 2019 Kumar (190)

India, North 2024 Kaur (191)

India, North 2021 Chuzho (192)

India, South 2018 Padma-Malini (193)

Iran 2024 Shirizadeh (194)

Italy 2022 Ricci (195)

Japan 2024 Yamada (196)

Japan 2022 Chujo (197)

(Continued)
TABLE 2 Continued

Country/
region/population

Year First author
(citation)

Japan 2021 Katahira (198)

Jordan 2020 Khdair (199)

Kuwait 2023 Dashti (108)

Kuwait 2023 Haider (200)

Kuwait 2019 Jahromi (201)

Kuwait (Arabs) 2018 Haider (202)

Madiera Island, Portugal 2017 Spinola (203)

Mali 2024 Noble (66)

Mexico 2016 Gomez-Diaz (204)

New Zealand 2022 Willis (205)

Norway 2024 Stordal (206)

Oman 2023 Al-Balushi (207)

Pakistan 2019 Fawwad (83)

Portugal 2023 Caramalho (208)

Qatar 2021 Haris (209, 210)

Romania 2024 Arhire (211)

Sardinia 2017 Incani (212)

Sardinia 2024 Schirru (213)

Saudi Arabia 2020
Eltayeb-
Elsheikh (214)

Somalia 2020 Ali (215)

South Africa 2023 Gandini (216)

Spain 2019 Urrutia (217)

Sub-Saharan Africa 2023 Katte (218)

Sudan 2022 Ibaid (219)

Sudan 2021 Ibrahim (220)

Sweden 2021 Alshiekh (78, 221)

Taiwan 2023 Liao (222)

Taiwan 2018 Tung (223)

Tunisia (Arabs) 2019 Hajjej (224)

UAE 2022 Al Yafei (225)

UAE 2021 Tay (226)
Characterization of patients tested is most often reported by country of origin, although some
reports use region or ancestry. Reports have wide variation in cohort sizes and in genotyping
methodology and resolution. Countries listed in the table correlate to those shown in Figure 3.
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proportion of positions showing consistency between the two data

sets. One advantage of looking at this level is that it allows

examination of all data, regardless of assigned allele names,

obviating the need for binning infrequent alleles. Analysis at the

amino acid level is likely to provide additional information about

T1D risk that could be overlooked at the allele level and may

provide a means to pool data from different populations of varying

sizes, thereby increasing statistical power.
4.4 Strategies to mitigate the high cost of
comprehensive HLA genotyping

Given the availability of highly informative DNA-sequencing

technology and the knowledge that HLA genes are the most

significant contributors to T1D risk, why are full, comprehensive

HLA genotyping data available in so few reported studies?
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Genotyping cost is a major contributing factor. While the

evolution of sequencing technology has enabled increasingly

comprehensive and accurate genotyping with which to study T1D

association, the cost of that genotyping is still quite prohibitive. The

probability that full HLA genotyping, or full genome sequencing

including HLA data, will soon become inexpensive enough to be

applied to the general population, for example, in a newborn

screening program, seems quite low. The cost of HLA genotyping

has led to the development of techniques for imputation of HLA

genotypes from single nucleotide polymorphism (SNP) data. An

important consideration for imputed HLA data is that those data,

while often correct, represent highly educated guesses and are not

experimentally determined. Accuracy of those guesses is dependent

on the input data used to train the imputation programs and on the

assumptions made in the algorithms. Imputation results for the

same data can vary depending on the method used for the analysis

(110). However, SNP data are far less costly to obtain than direct
FIGURE 4

Comparison of data from HLA-DRB1, -DQA1, and -DQB1 association with T1D in Kuwait (K) and Mali (M) (108). (A) Allele level data. Gray: allele was
present in the population at sufficiency frequency for association analysis. Black: allele was significantly associated with disease. “Binned” category
contains all alleles that were present but at frequencies too low for individual association analysis. (B) Amino Acid position level data. Gray: positions
with at least one amino acid residue that shows T1D association not seen in data for the other country. Black: positions in which the same amino
acid residues with consistent directions of effect (e.g., predisposing or protective) are seen in both countries. With one exception, each of these
positions represents two amino acids, one predisposing and one protective. *Position 125 of DQB1 has only one T1D-associated amino acid residue
for each country, but the amino acid and effect direction are consistent. Diagonal lines: positions for which one country shows a greater number of
associated amino acids than the other; in all cases, effect direction is consistent for amino acids that appear in both. All but one of these positions
shows more associated amino acids for Mali that Kuwait. Only one position, DRB1 position 71, shows more associated amino acids in Kuwait than in
Mali. Lines are shown in the opposite diagonal direction to indicate this difference. Crosshatch: positions for which the two countries share one
significant amino acid association, but each has an additional, unique association. Notably, no individual amino acid had an effect that differed in
direction between the two countries (i.e., predisposing in one dataset but protective in the other).
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HLA genotypes, and can have relatively good predictive power in

well-characterized populations, particularly when combined with

data for some of the more than ninety other known T1D associated

genes (1). This strategy is the basis of development of the genetic

risk score (GRS), sometimes referred to as polygenic risk score

(PRS) (111–114). A perfect GRS test would allow the prediction of

T1D as well as its differential diagnosis from T2D and other forms

of diabetes. In individuals of European descent, the GRS performs

well to predict T1D in the highest-risk individuals; however, the

GRS is reported to perform less well as a diagnostic tool for other

races and ethnicities (115–118). Ethnic and racial disparities for

GRS or PRS is a general problem and not limited to T1D.

Modifications of original GRS panels have improved performance

across multiple races and ethnicities (119, 120). Recent reports still

vary in conclusions about the utility of current tests, with one report

suggesting that the GRS diagnostics are ready for widespread use in

the United States while another finds the GRS of only modest

predictive power in Australia (121, 122). Undoubtedly, continued

refinement of the GRS will create a more universally applicable

diagnostic test, but refinement is dependent on overcoming a

second hurdle in the quest to fully understand the basis of HLA-

associated T1D risk.

Frequencies of HLA alleles differ among ethnicities, as do the

haplotype combinations of alleles see section 4.1). Achieving the

highest predictive value for a genetic diagnostic test requires

knowledge of HLA risk in all populations. Population-specific tests

are one way to increase predictive power. However, not all individuals

have a single ethnic origin. The United States is sometimes referred to

as a “melting pot” with respect to ethnicity and race; consequently,

many ethnicities and races are represented in the U.S. population, and

many individuals are part of more than one group. Because of the low

cost of SNP testing and the ability to multiplex large numbers of tests,

an alternate means of increasing predictive value would be to add SNPs

for known HLA-associated alleles from all populations into a single

test. These SNPs would need to be determined from and vetted in

unique populations, underscoring the value of continuing to study

classical HLA in even small populations with low T1D prevalence.
5 Future directions in T1D
risk assessment

5.1 HLA expression

Initial studies of HLA association with T1D reported data from

serologic typing. The assays were based on using antibodies with

known specificities, taken from multi-parous women and

standardized among HLA typing laboratories. To see a positive

typing result, a particular HLA was required to be present. The

advent of DNA-based typing technology meant that measurement

of the actual antigen was not required; the presence of a given HLA

was inferred from the presence of the gene(s) encoding it. Since

then, almost every HLA disease association study has been reported

with DNA-based data. As new alleles were discovered, only some

inferences about expression levels could be made. If an allele
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changed an encoded amino acid to a stop codon, it received the

designation “N,” meaning no expression of the allele was expected.

Very few studies have been reported on the actual expression level

of HLA on the cell surface. With six classical HLA antigen types,

multiple cell types on which they might be expressed, and the

extreme number of alleles for each locus, expression studies are

much more cumbersome and expensive to perform than are

genotyping assays. Collecting cells from patients for functional

studies is much more difficult than collecting DNA to genotype.

DNA-based HLA genotyping determines which alleles are

present in an individual sample but, except in rare case (e.g.,

alleles containing a stop codon), provides no information about

differences among alleles at either the transcription or translation

level of expression. A limited number of studies have been

performed to date attempting to unravel the role of cell-surface

expression levels on disease risk. In one such study, a cell surface

expression assay was engineered to determine amounts of cell-

surface expression as a proxy for the stability of the DQ

heterodimeric antigen (54). The authors concluded that T1D

association for DQ antigens is inversely correlated with the level

of cell-surface protein density, including for heterodimeric proteins

encoded in trans, such as that formed by the products of

DQA1*05:01 and DQB1*03:02 alleles present in a typical high-risk

European DR3/DR4 genotype (Figure 2A) (53, 54). Given the extent

of polymorphism of HLA alleles, testing of every observed HLA

antigen is clearly not feasible, but expression testing of select

antigens of interest, particularly those HLA class II antigens

encoded in trans, should be possible.

Now that HLA genotyping technology has improved to the point

that whole genes, and even the entire HLA region, can be sequenced with

relative ease, the possibility of inferring expression from sequence data

has increased. One example of the utility of HLA expression data can be

found in the field of transplantation. A SNP in the 3’ untranslated region

of DPB1, rs9277534, was found to correlate with low versus high

expression levels of DPB1 expression, and high expression of DP is

known to be associated with graft versus host disease (123). More

recently, LD of that SNP with DPB1 exon 2 sequence was shown to be

adequate for prediction of the SNP without direct SNP testing, thereby

aiding in transplant donor selection (124). The field of HLA expression

and its relationship with disease risk is still in early stages; however, a

haplotype of three SNPs in a short region of exon 1 of the DRA gene was

shown to be associated with T1D in individuals homozygous for the

DRB1*03:01~DQA1*05:01~DQB1*02:01 haplotype (125). Based on

eQTL evidence, one proposed mechanism for the effect of this “tri-

SNP” haplotype is that it changes, directly or indirectly, expression levels

of HLA class II loci. Now that sequencing an entire HLA locus, including

untranslated sequences, is becoming routine, non-coding sequences can

lead to hypotheses that can be tested in direct functional analyses.
5.2 HLA in innate immunity

Studies of T1D to date have focused mainly on the classic role of

HLA in presenting peptides to the adaptive immune system.

Clearly, HLA plays a major role in initiating the immune
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response in T1D (class II) and in driving progression of disease via

b cell destruction (class I). However, individual allele association

studies have not explained all of the risk conferred by the HLA

region. The innate immune system also appears to play a role in

T1D pathogenesis. Many reports have implicated viruses,

inflammation, and interferons as predecessors of disease onset

(126–129). Natural killer (NK) cells are key players in the innate

immune system and express many activating and inhibitory

receptors on their surface, including the widely studied killer-cell

inhibitory receptors (KIR) (130, 131). KIR can be either

inflammatory or stimulatory depending upon the receptor

structure. Loci encoding KIR are found in the leukocyte receptor

complex (LRC) at chromosomal position 19q3.4. Like HLA, KIR

genes are polymorphic; unlike HLA, much of the polymorphism is

attributable to the presence or absence of given genes and their

variegated expression, that is, finding a KIR-encoding locus in an

individual does not necessarily indicate that its product will be

expressed on the cell surface. HLA class I molecules act as ligands

for KIR (132). Over the past 20 years, a limited number of studies in

several populations have reported attempts to elucidate an

association for KIR with T1D (133–156). Not surprisingly, results

have been largely inconsistent. A KIR effect would stem from the

interaction of a particular KIR with its cognate ligand, requiring

that both receptor and ligand be expressed in the same individual,

confounding analysis of either molecule alone. Awareness of the

extent of KIR polymorphism is in early stages; KIR genotyping

studies have evolved from simple “presence or absence” genotyping

and copy number variation to genotyping of a growing number of

alleles for each locus. Thus, examination of effects of interaction of

products of multiple highly polymorphic loci is likely to require

extremely large data sets.

LILR genes are also located in the LRC and are largely conserved

among primates (157, 158). They have structural similarity to KIR

and, like KIR, function to maintain immune homeostasis. LILR are

primarily expressed in cells of the myeloid lineage, and their ligands

include class I HLA. LILR are reported to be important in infection,

transplantation, cancer, and autoimmune diseases, including

systemic lupus erythematosus (SLE), ankylosing spondylitis,

Crohn’s disease, rheumatoid arthritis (RA), and multiple sclerosis

(MS) (157, 159–161). T1D is noticeably absent from this list, and a

PubMed search for T1D and LILR returns no results. As sample sets

increase and analysis strategies evolve, LILR will undoubtedly be

examined for T1D association, perhaps focusing on patients who do

not have traditional high-risk HLA alleles.

HLA-C association with T1D is weaker than for HLA-A and

HLA-B and is inconsistent among studies. The lack of consistency

in the results of HLA-C association analyses with T1D may reflect

that the locus is not associated with T1D, and any individual

observations of disease association may be spurious or may be

attributable to LD with other loci that are T1D associated. An

alternate explanation may be that HLA-C influences T1D

susceptibility through a mechanism involving the innate immune

system, where HLA-C antigens serve as ligands for KIR. A recent

study in subjects from Mali demonstrated no locus association with
Frontiers in Immunology 13
T1D for HLA-C at the allele level; however, analysis at the amino

acid level revealed polymorphic amino acid positions that appear to

be associated with T1D. One of these was position 309, which is in

the transmembrane region and might not be expected to affect T1D

risk. However, in a series of transfection-based experiments, the

presence of a cysteine at position 309 of HLA-C was shown to

inhibit the cytotoxicity of NK cells, suggesting a role for HLA-C in

innate immunity (162). The mechanism of such an effect, which

might include influencing folding or stability of the protein or its

motion in the membrane, remains to be determined.

Association of genes encoding the HLA class II DP antigen also

tends to vary widely among studies and among populations (see

section 3.5). Recent reports demonstrate that, in addition to

classical antigen presenting functions, a subset of HLA-DP

molecules can serve as ligands for NKp44, a receptor found on

NK cells that can activate them upon ligand binding (16, 163). The

interaction of DPB1 with NKp44 has been reported as a risk factor

for both primary sclerosing cholangitis, an immune-mediated liver

disease, and ulcerative colitis, a form of inflammatory bowel disease

(164, 165). Given its apparent role in other immune-mediated

diseases, binding of NKp44 to DPB represents a reasonable

hypothesis to test for T1D association as well.
6 Discussion

More than 50 years have elapsed since the first reports of HLA

association with T1D. Those original positive associations of A8

and B15 (now recognized as representing LD with class II DR3 and

DR4 haplotypes), negative association of Dw2 (now recognized as

DRB1*15 haplotypes), and particularly strong positive association

for the Dw3/Dw4 heterozygous genotype, remain valid. They

represent, in many cases, the primary contribution of HLA to

T1D risk. Does that mean that 50 years of research and more

than 5,000 studies were wasted? Not really. Many lessons have been

learned from those studies, including (1) HLA-associated alleles

should not be considered in isolation but should be analyzed in

haplotypic and genotypic context as well; (2) genotyping should be

performed minimally at two field resolution, since alleles within a

serogroup can have opposite effects on T1D risk; (3) T1D protection

is dominant, suggesting that the mechanisms for susceptibility and

protection are different; (4) T1D-associated HLA risk can be quite

different in different populations, even when they are geographically

proximal, due to differences in population allele frequencies and

haplotypic combinations. Analysis at the allele level has not yet been

sufficient to fully understand how HLA-associated T1D risk works.

Full elucidation may require different and more detailed analyses,

for example, of gene features and individual amino acid positions,

may require very large sample sets, and may require sophisticated

techniques to combine old and new data as well as account for

population stratification. Still, those original associations with DR3,

DR4, DR2 (protection), and the DR3/DR4 genotype remain.

The availability of highly sophisticated genotyping techniques

has increased the ability to see exactly what is in the genome of an
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individual but decreased the ability to determine whether or not the

encoded antigens are actually expressed on the surface of the cell.

What drives the expression of an allele, on which cells it is

expressed, and at what level is it expressed are questions that are

just beginning to be addressed. The full extent of the peptide

repertoire, both native and hybrid, is currently under

investigation and should provide additional clues to the many

possible pathways to autoimmunity in patients, perhaps leading

to more individualized interventions. Continued refinement of

predictive tools, like the GRS, should help identify future patients

before overt disease to aid in the efficacy of current (teplizumab)

and future intervention strategies.

Adaptive immunity provided by the classical HLA is

undoubtedly the major basis for HLA-associated T1D

susceptibility; however, the interaction of HLA with the innate

immune system represents an intriguing and exciting path to study

going forward. Given the solid base of understanding to date and

the tools available for continuing study, a thorough and complete

understanding of the complexity of HLA-associated T1D risk is

unlikely to take another 50 years.
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