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Background: Disulfidptosis is a newly discovered form of cell death associated

with tumorigenesis, particularly under oxidative stress and metabolic disorder

conditions. Currently, the biological mechanisms of disulfidptosis-related genes

(DRGs) in head and neck squamous cell carcinoma (HNSCC) remain unclear.

Methods: The study includes sections on methodologies, data sources, clinical

data collection, subtype establishment, identification and analysis of differentially

expressed genes, genetic variation, and the construction and validation of a DRG

prognostic model. Various analyses are conducted, including the relationship

between the risk scores model and clinicopathological features, immune status,

immune checkpoints, tumor mutational burden (TMB), microsatellite instability

(MSI), ESTIMATE, mRNAsi, and drug sensitivity. The study also covers single-cell

analysis and DNA methylation analysis of DRGs, and the prediction of potential

microRNA and long non-coding RNA target genes. Prognostic DRGs expression

in HNSCC is validated through RT-qPCR and immunohistochemistry. The

model’s predictive capability is confirmed using external validation cohorts

from GEO datasets and clinical tissue samples. The role of DSTN in HNSCC is

further validated through gene knockout experiments.

Results: We identified four valuable genes (SLC3A2, NUBPL, ACTB, DSTN) and

constructed a prognostic model, along with identifying two DRG-related

subtypes. Analysis of the DRG risk score revealed that the low-risk group had a

better prognosis compared to the high-risk group. Significant correlations were

found between the DRG risk score and clinical features, immunotherapy

response, drug sensitivity, and genes related to RNA epigenetic modifications.

Low-risk HNSCC patients were identified as potential beneficiaries of immune
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checkpoint inhibitor (ICI) therapy. A regulatory axis involving DSTN, hsa-miR-

181c-5p, LUCAT1, and IGFL2-AS1 was constructed for HNSCC. RT-qPCR and IHC

data further validated the upregulation of prognostic DRGs in HNSCC. The

prognostic model demonstrated excellent predictive performance for the

prognosis of HNSCC patients. Additionally, DSTN was significantly

overexpressed in tumor cells; its knockdown inhibited tumor cell proliferation,

migration, and invasion.

Conclusion: The prognostic model effectively predicts HNSCC outcomes, with

better prognosis in the low-risk group. DSTN upregulation promotes tumor

growth, and its knockout inhibits proliferation, migration, and invasion.
KEYWORDS

disulfidptosis, head and neck squamous cell carcinoma, prognostic signatures,
bioinformatics analysis, immunotherapy response
1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth

most common cancer globally, encompassing malignant tumors in

the oral cavity, nasal cavity, pharynx, larynx, neck, and upper

esophagus. Over 90% of cases are squamous cell carcinomas,

making HNSCC one of the predominant pathological types of

cancer originating in the head and neck region (1). The clinical

prognosis of HNSCC patients is influenced by various factors,

including tumor size, location, the patient’s overall health, and

the tumor’s biological characteristics (2). Most HNSCC patients are

diagnosed at an advanced stage, with high rates of local recurrence

and lymph node metastasis, resulting in a low overall survival rate

(3, 4). Despite advancements in treatment methods in recent years,

the long-term survival rate of HNSCC patients has seen limited

improvement. Consequently, identifying new biomarkers to better

understand tumor behavior and predict treatment responses has

become a research focus.

Disulfidptosis, a recently discovered form of cell death

characterized by abnormally elevated levels of intracellular

sulfides, is particularly prevalent in cancer cells due to their

aberrant metabolic pathways and stress response mechanisms (5,

6). In solid tumors such as HNSCC, disulfidptosis may be related to

tumorigenesis, progression, and response to treatment (7). Recent

studies have suggested that disulfidptosis is associated with immune

modulation within the tumor microenvironment, potentially

influencing tumor response to therapies, including immune

checkpoint inhibitors (8). Notably, recent bioinformatics analyses

have shed light on the roles of disulfidptosis-related genes (DRGs)

in head and neck squamous cell carcinoma (HNSCC), suggesting

their potential as predictive biomarkers for prognosis and treatment

response. For instance, several studies have demonstrated that

DRGs can influence immune cell infiltration and the tumor

immune landscape, both of which are pivotal in determining the
02
efficacy of immunotherapies in HNSCC patients (9). Similarly,

other researchers have examined the relationship between DRGs

and tumor progression in HNSCC using large-scale genomic data,

providing valuable insights into how these genes contribute to

immune evasion and therapeutic resistance (10). Furthermore,

additional studies have elucidated the molecular mechanisms

through which DRGs regulate tumor progression, highlighting

their roles in modulating cell death pathways and immune cell

functions within the tumor microenvironment (11).

The background of this study is based on a comprehensive

genomic analysis of HNSCC patient cohorts, aiming to develop a set

of predictive DRG prognostic signatures. These signatures can

forecast not only clinical outcomes but also patient responses to

immune checkpoint inhibitors. We performed an in-depth analysis

of HNSCC patient samples using various public databases,

including The Cancer Genome Atlas (TCGA) and the Gene

Expression Omnibus (GEO). By comparing patient groups with

varying survival times, we identified a series of DRGs associated

with differential prognoses. Further mechanistic studies revealed

how these genes regulate tumor cell death and affect the function of

immune cells within the tumor microenvironment. Additionally,

we evaluated the effectiveness of these genes in predicting patient

responses to immune checkpoint inhibitors. Our preliminary

results indicate that these DRGs are associated with overall

survival rates, immune-related gene expression, the abundance of

tumor-infiltrating lymphocytes, and responses to immune

checkpoint inhibitors. These findings provide insights into

developing new therapeutic strategies, particularly for patients

who do not respond to existing immunotherapies.

In summary, this paper highlights the significance of

disulfidptosis in HNSCC treatment, especially in assessing clinical

prognosis and immunotherapy response. Although this field is still

in its early stages, its potential in personalized medicine and

precision treatment cannot be overlooked. As future research
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progresses, disulfidptosis is expected to become a key factor in

improving treatment outcomes for HNSCC patients.
2 Materials and methods

2.1 Data sources and preprocessing

This study utilized RNAseq data and corresponding clinical

information for HNSCC from The Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/) (12). The dataset included 504

HNSCC patients and 44 normal tissue samples. All data were

standardized per million transcripts (Transcripts Per Million,

TPM) and normalized to approximate a normal distribution

using the R software package “ggplot2” (v4.0.3). Gene expression

data were extracted to construct a data matrix and analyzed using

the Wilcoxon test.
2.2 Clinical data and tissue
sample collection

Clinical data and tissue samples were collected from Chaohu

Hospital of Anhui Medical University and Peking University

Shenzhen Hospital. The study included 76 HNSCC patients

admitted between September 2016 and September 2018. Paraffin-

embedded pathological sections of HNSCC tissues and adjacent

normal tissues (0.5 cm) were collected, along with complete clinical

case data and follow-up information. Among the patients, 56 were

male and 20 were female, aged between 35 and 87 years (mean age

62.737 ± 10.836 years), with a median age of 66.0 years. Overall

survival (OS) was defined as the period from the date of surgery to the

date of death or last follow-up. Follow-up was conducted monthly for

the first 3 months, every 3 months for 2 years, every 6 months for the

next 3 years, and annually thereafter, ending in September 2023.

Survival times ranged from 1.22 to 60months, with a median survival

time of 51.51 months (interquartile range: 19.427 to 60.0 months). All

patients were confirmed by pathological examination, and tumor

TNM staging was evaluated using the 8th edition of the American

Joint Committee on Cancer (AJCC) staging system. The use of

HNSCC samples was approved by the Ethics Committee of

Chaohu Hospital of Anhui Medical University (approval No.

KYXM202310004) and the Ethics Committee of Peking University

Shenzhen Hospital (approval No. 2022-117). The study was

conducted in accordance with the Declaration of Helsinki (as

revised in 2013). All patients provided written informed consent.
2.3 Establishment of subtypes

Based on previous literature, we identified 24 potential

disulfidptosis-related genes (DRGs) (6) (Supplementary Table 1).

Using the consistent clustering of these 24 genes, we performed

consistency analysis with the R package “ConsensusClusterPlus”

(v1.54.0) (13). The maximum number of clusters was set to 6 (k=6),

and 80% of the total sample was drawn 100 times, with clusterAlg =
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“hc” and innerLinkage=‘ward.D2’. The number of clusters varied from

2 to 6 (k=2-6), and the consistency matrix and the consistency

cumulative distribution function (CDF) were evaluated to determine

the best classification. Clustering heat maps were generated using the R

package “pheatmap” (v1.0.12). Gene expression heat maps retained

motifs with a variance above 0.1. Based on the expression profiles of

DRGs, TCGA cases were divided into Cluster1 (C1) and Cluster2 (C2).
2.4 Identification and enrichment analysis
of differentially expressed genes

Differentially expressed genes (DEGs) between C1 and C2 subtypes

were identified using the Limma package (v3.40.2) (14) in R software.

The adjusted P value was analyzed in the TCGA database to correct for

false positives. “Adjusted P < 0.05 and log2 (Fold change) > 1.5 or log2

(Fold change) < -1.5” was defined as the standard for screening

differential expression of mRNA. Heat maps were generated using

the R software heatmap package. The Gene Ontology (GO) function of

DEGs and their enrichment in the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway were analyzed using the R package

“clusterProfiler” (v3.18.0) (15). Additionally, gene set enrichment

analysis (GSEA) (http://software.broadinstitute.org/gsea/index.jsp)

(16) was employed to identify potential biological pathways.

DEGs from TCGA data were categorized into up-regulated and

down-regulated groups. In each analysis, 10,000 gene combinations

were tested to identify pathways with significant changes. Genes

were considered enriched in meaningful pathways when p.adjust <

0.05 and FDR (false discovery rate) < 0.25.
2.5 Genetic variation

Gene Set Cancer Analysis (GSCA) (http://bioinfo.life.hust.edu.cn/

GSCA/#/) (17) integrated expression, mutation, drug sensitivity,

and clinical data from four public data sources for 33 cancer

types. Somatic mutations of HNSCC patients were downloaded

and visualized using the maftools package in R software,

encompassing seven types of mutations: Missense_Mutation,

Sp l i c e_S i t e , Nonsens e_Muta t i on , F rame_Sh i f t _De l ,

Frame_Shift_Ins, In_Frame_Del, Multi_Hit. This study also

analyzed the Spearman correlation between the expression of

DRGs mRNA and Copy Number Variation (CNV), and

methylation. We investigated the correlation between

methylation, CNV, and survival outcomes in HNSCC patients,

including Disease-Free Interval (DFI), Disease-Specific Survival

(DSS), Overall Survival (OS), and Progression-Free Survival (PFS).
2.6 Construction and validation of DRG
prognostic model

Based on the levels of the aforementioned DRGs associated with

HNSCC prognosis, LASSO-Cox regression analysis was performed to

construct the prognostic model. According to the results of multivariate

Cox regression analysis, the prognostic DRGs risk score was calculated
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as follows: Riskscore = ∑i Coefficient (mRNAi) × Expression (mRNAi).

The entire TCGA-HNSCC dataset was used as the training cohort, and

patients were divided into low-risk and high-risk subtypes based on the

average risk score. The overall survival rates of the two subtypes were

compared using Kaplan–Meier analysis, and time ROC analysis was

conducted to predict the model’s accuracy. The optimal truncated

expression value was determined using the “surve_cutpoint” function

of the “survminer” R package. The validation cohort was then used to

verify the accuracy of the DRGs signature with the GSE41613,

GSE65858, GSE85446 datasets and clinical HNSCC tissue samples

(n=76) serving as the external validation cohort, further corroborating

the results.
2.7 Relationship between DRGs and
clinicopathological features and prognosis
in HNSCC

Using the log-rank test and univariate Cox regression analysis,

Kaplan–Meier curves, P values, and hazard ratios (HRs) with 95%

confidence intervals (CIs) were obtained. Subsequently, key prognostic

DRGs (SLC3A2, UNBPL, ACTB, and DSTN) in HNSCC patients were

identified and analyzed in detail. The relationship between prognosis-

related DRGs and the overall survival rate of HNSCC patients was

examined, and the area under the receiver operating characteristic

(ROC) curve was calculated. The expression and diagnostic efficacy of

DRGs in HNSCC were validated using datasets obtained from NCBI-

GEO (https://www.ncbi.nlm.nih.gov/gds) (18), including 184 HNSCC

tissues and 45 para-cancerous tissues from GSE30784 and 18

HNSCC tissues and 18 para-cancerous tissues from GSE53819.

Additionally, we analyzed the prognostic outcomes between high

and low-risk groups across different clinical subgroups.

Clinicopathological data of HNSCC patients, including age, sex,

race, T, N, M, stage, grade, smoking, radiation, and neoadjuvant

therapy, were obtained from TCGA.
2.8 Building and validation of a
predictive nomogram

The “rms” package was utilized to construct a nomogrammodel

for predicting 1-, 3-, and 5-year OS, PFS, and DSS based on the

results of multivariate Cox proportional hazards analysis. The

calibration curve and decision curve analysis (DCA) were used to

validate the model’s predictive performance. External validation

was performed using the GSE65858 dataset and clinical HNSCC

tissue samples to evaluate the prediction model’s accuracy.
2.9 Analysis of gene expression related to
immune infiltration and
immune checkpoints

For immune scoring, the R software immunedeconv package (19)

and six advanced algorithms, including TIMER (20), xCell (21),

MCP-counter (22), CIBERSORT (23), EPIC (24), and quantTIseq
Frontiers in Immunology 04
(25), were used to compare the degree of immune cell infiltration

between C1and C2 subtypes via the Wilcoxon test. Additionally,

single-sample gene set enrichment analysis (ssGSEA) in the R

package “GSVA” (26) was used to quantify the infiltration levels of

various immune cell types. The infiltration and accumulation of 23

common immune cells, including dendritic cells (DC), immature DC

(iDC), activated DC (aDC), plasmacytoid DC (pDC), T helper (Th)

cells, type 1 Th cells (Th1), type 2 Th cells (Th2), type 17 Th cells

(Th17), regulatory T cells (Treg), T gamma delta (Tgd), T central

memory (Tcm), T effector memory (Tem), T follicular helper (Tfh),

CD8+ T cells, B cells, neutrophils, macrophages, cytotoxic cells, mast

cells, eosinophils, natural killer (NK) cells, NK56- cells, and NK56+

cells, were analyzed. The Wilcoxon rank-sum test was performed to

compare differences in immune cell infiltration levels of the four

prognosis-related DRGs between high and low expression groups and

between high-risk and low-risk groups. The correlation between

immune cell infiltration and prognosis of HNSCC patients was also

investigated. Spearman correlation was used to explore the

relationship between the four prognosis-related DRGs and immune

cell infiltration. TIMER (https://cistrome.shinyapps.io/timer/) was

used to analyze the abundance of immune cells infiltrated by the

four prognostic DRGs in tumors. The detected immune cells

included tumor purity, B cells, CD4+ T cells, CD8+ T cells,

neutrophils, macrophages and dendritic cells. Immune cell

abundance (immune score), stromal cell infiltration level (stromal

score), and tumor purity (ESTIMATE score) were estimated using

the ESTIMATE algorithm. The expression levels of several immune

checkpoint-related genes (CD274, CTLA4, HAVCR2, LAG3,

PDCD1, PDCD1LG2, TIGIT, and SIGLEC15) were analyzed

between C1 (N=461) and C2 (N=43) subtypes and between high-

risk and low-risk groups. Spearman correlation was used to explore

the association between risk scores and immune checkpoint-related

genes. The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm was used to predict potential immune checkpoint

blocking responses. The results were visualized using the R

packages “ggplot2” and “pheatmap” (v4.0.3) (27).
2.10 TMB, MSI, mRNAsi, and drug
sensitivity analysis

The correlation of the risk score in HNSCC with tumor mutation

burden (TMB), microsatellite instability (MSI), and mRNA stemness

index (mRNAsi) was analyzed using Spearman correlation. The

sensitivity of these drugs was also studied. Drug sensitivity and gene

expression profile data from cancer cell lines were integrated from the

Drug Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/)

(28) and the Cancer Therapeutics Response Portal (CTRP) (https://

portals.broadinstitute.org/ctrp/) databases. The 50% inhibiting

concentration (IC50) of chemotherapeutic drugs was predicted

using the R package pRRophetic (29), with the IC50 value of the

sample estimated by ridge regression. All parameters were set to

default values, the batch effect was adjusted using combat, and the

tissue type was considered. Duplicate gene expression was

summarized as the mean value.
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2.11 Single cell analysis

The expression of DRGs in the tumor microenvironment

(TME) was studied using the Tumor Immune Single Cell Center

(TISCH) (http://tisch.comp-genomics.org/) (30) to understand

their relationship with HNSCC prognosis. In this dataset, three

main cell types were included: immune cells, stromal cells, and

malignant cells. The t-distributed stochastic neighborhood

embedding (t-SNE) map of HNSCC_GSE103322 and the heat

map of HNSCC_GSE103322 were displayed through the TISCH

database to show the impact of DRGs on the TME in HNSCC.

Additionally, scatter plots showing the correlation between DRG

immune infiltration levels and cancer-associated fibroblasts (CAFs)

and macrophages were generated using TIMER2.0 (http://

timer.cistrome.org/) (31).
2.12 DNA methylation analysis of DRGs
in HNSCC

The GSCA database was used to evaluate the relationship

between the expression of four prognostic DRGs and DNA

methylation levels. NUBPL methylation levels were measured in

HNSCC patients grouped by different clinicopathologic features,

including age, gender, race, smoking status, nodal metastasis status,

tumor grade, individual cancer stage, and TP53 mutation, using the

UALCAN database (http://ualcan.path.uab.edu/index.html) (32).

The MethSurv database (https://biit.cs.ut.ee/methsurv/) (33) was

then used to analyze the DNAmethylation of four prognostic DRGs

at CpG sites and the prognostic value of these CpG methylation

sites in HNSCC.
2.13 Relationship between DRG expression
level and RNA modification
regulatory factors

Using the Wilcoxon test and the “ggplot2” package in R software

(v4.0.3), differences in gene expression between high and low-risk

groups for m6A, m5C, m1A, and m7G genes in HNSCC samples were

analyzed. The correlation between the risk score in HNSCC samples

and the expression of m6A, m5C, m1A, and m7G genes was also

examined. The expression matrix for m6A genes includes RBM15B,

VIRMA, IGF2BP2, HNRNPA2B1, IGF2BP1, YTHDF3, IGF2BP3,

HNRNPC, RBM15, RBMX, METTL14, YTHDC2, METTL3,

ZC3H13, WTAP, YTHDF1, YTHDC1, FTO, and YTHDF2. m5C

genes include DNMT1, DNMT3A, DNMT3B, MBD1, MBD2, MBD3,

MBD4, MECP2, NEIL1, SMUG1, TDG, UHRF1, UHRF2, UNG,

ZBTB33, ZBTB38, ZBTB4, TET1, TET2, and TET3. m1A genes

include TRMT10C, TRMT61B, TRMT6, TRMT61A, ALKBH3,

ALKBH1, YTHDC1, YTHDF1, YTHDF2, and YTHDF3. m7G genes

include AGO2, CYFIP1, DCP2, DCPS, EIF3D, EIF4A1, EIF4E,

EIF4E2, EIF4E3, EIF4G3, GEMIN5, IFIT5, LARP1, LSM1, METTL1,

NCBP1, NCBP2, NCBP2L, NCBP3, NSUN2, NUDT10, NUDT11,

NUDT16, NUDT3, NUDT4, SNUPN, and WDR4.
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2.14 Prediction of potential MicroRNA and
long non-coding RNA target genes

ENCORI (http://starbase.sysu.edu.cn/) (34), miRTarBase (https://

mirtarbase.cuhk.edu.cn/) (35), RNA22 (https://cm.jefferson.edu/

rna22/interactive) (36), RNAInter (http://www.rnasociety.org/

rnainter/) (37), and miRWalk (http://miRWalk.umm.uni-

heidelberg.de/) (38) databases were used to screen candidate

microRNAs (miRNAs) and predict miRNA targets. These selected

miRNAs are referred to as potential miRNAs of target genes. The

potential combinations of long non-coding RNAs (lncRNAs) and

miRNAs were predicted using the miRNet database (http://

www.mirnet.ca/) (39). Subsequently, the mRNA-miRNA and

miRNA-lncRNA regulatory networks were established using

Cytoscape (version 3.7.1; http://www.cytoscape.org/) (40). The

correlation and prognostic value of these candidate miRNAs and

lncRNAs in HNSCC were further verified using the ENCORI and

Kaplan–Meier plotter databases.
2.15 Cell culture and transfection

Three HNSCC cell lines (HN6, HSC3, and SCC9) and a human

normal squamous cell line (NOK) were used in this study. NOK,

HN6, HSC3, and SCC9 cell lines were purchased from the

American Type Culture Collection (ATCC; Manassas, VA, USA).

HN6 and HSC3 cells were cultured in DMEM (Sigma, USA,

D5546), supplemented with 10% FBS (Gibco, 10099-141C) and

1% penicillin-streptomycin solution (Gibco, Massachusetts, USA,

15070063). SCC9 cells were supplemented with 10% FBS (Gibco,

10099-141C), 1% penicillin-streptomycin solution (Gibco,

15070063), and hydrocortisone (1 ng/mL; MCE, HY-N0583).

NOK cells were grown in defined keratinocyte-SFM (Gibco,

10744019) supplemented with Defined Keratinocyte-SFM Growth

Supplement (Gibco, 10744019) and 1% penicillin-streptomycin

solution. All cultures were maintained in a humidified incubator

with 5% CO2 at 37°C. After passaging cells and culturing them in a

six-well plate for 24 hours, transfection was performed when the cell

density reached 60–70%. Transfection of shRNA-DSTN

(GeneRulor, Zhuhai) was carried out using Lipofectamine 3000

transfection reagent (Invitrogen, USA). Cells were collected 48

hours post-transfection to extract RNA for assessing transfection

efficiency, with all experiments performed in triplicate.
2.16 Proliferation and colony
formation assay

For the proliferation assay, 2000 cells were seeded in a 96-well

plate after the indicated treatment. On the next day, cell viability

was detected using the Cell Counting Kit-8 (CCK-8) assay

(Dojindo, Japan) according to the manufacturer’s instructions.

Each experiment was conducted in triplicate, and cell viability

was measured continuously for 5 days. For the colony formation

assay, 1000 cells were seeded in a six-well plate with complete
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medium and grown for approximately 2 weeks. Visible colonies

were then fixed with 4% paraformaldehyde, stained with 1% crystal

violet, and counted.
2.17 Wound healing assays

Cells were seeded in 6-well plates and cultured to 90%

confluence. A scratch was made across the plates using a pipette

tip, and isolated cells were removed with PBS. Images of the wound

were captured after 24 hours of incubation. The wound area was

measured using Image J.
2.18 Transwell assays

24-well transwell chambers, coated with or without Matrigel

(Corning, NY, USA, 354480, 3422), were used to analyze cell

migration and invasion. Cells suspended in serum-free culture

medium were planted into the upper chamber, while medium

containing 10% FBS was added to the bottom chamber as an

attractant. After 24 hours of incubation, cells remaining in the

upper chamber were wiped off with cotton swabs. Cells that had

penetrated the transwell chambers were fixed with methanol and

stained with crystal violet. The number of cells in five random fields

of view (×100 magnification) was counted under a microscope.
2.19 RNA isolation and RT-qPCR

Total RNA was isolated from cells using the Quick-RNAMiniPrep

kit (Zymo Research, Irvine, CA, USA, R1054). Reverse transcription

was performed using the Takara PrimeScript RT reagent kit (Takara,

Kusatsu, Japan, RR037A). A miScript SYBR Green PCR kit (Qiagen,

Germany) was used to detect the expression of target genes on a

Lightcycler 480 Real-Time PCR System (Roche Diagnostics GmbH,

Mannheim, Germany). The relative standard curvemethod (2−△△CT)

was employed to determine the relative mRNA expression, with the

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene as the

reference. Supplementary Table 2 lists the polymerase chain reaction

primers used in this study.
2.20 Validation of protein expression levels
of DRGs by immunohistochemistry

Immunohistochemistry (IHC) staining was used to detect the

protein expression of DRGs in HNSCC tissues. Paraffin-embedded

tissue specimens were cut into 4 mm-thick sections, deparaffinized,

rehydrated with gradient ethanol, and incubated in EDTA.

Endogenous peroxidase was blocked using 3% hydrogen peroxide.

10% normal goat serum was used to reduce non-specific binding.

Rabbit monoclonal antibodies to DRGs (ab307587, ab235924,

ab8226, ab186754; 1:1000, Abcam, UK) were used as the primary

antibodies, and samples were incubated for 1 hour at room

temperature. After washing with PBS, biotin-labeled secondary
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antibodies and streptavidin-horseradish peroxidase were added

and incubated at room temperature for 10 minutes each. Samples

were then stained with DAB, dehydrated, and fixed with resin.
2.21 Statistical analysis

The Wilcoxon rank-sum test was used to assess the expression

differences of DRGs between HNSCC and adjacent tissues. Kaplan-

Meier curves were analyzed using the R packages “survival” and

“survminer.” Univariate and multivariate Cox regression analyses

were performed using the “survival” R package. The time-dependent

AUC value was calculated using the R “timeROC” package, and ROC

curves were plotted using the R “survivalROC” package. Statistical

significance was indicated by asterisks. A p-value < 0.05 was considered

statistically significant (* p < 0.05, ** p < 0.01, *** p < 0.001). All

statistical analyses were conducted using the R package.
3 Results

3.1 Identification and analysis of DRG
clusters in HNSCC

The flowchart of the study is illustrated in Figure 1. The

expression levels of 24 DRGs were compared between HNSCC

tissues (n = 504) and normal tissues (n = 44) in the TCGA-

HNSCC dataset. The results showed that the expression levels of

SLC7A11, SLC3A2, RPN1, NUBPL, NDUFA11, NCKAP1, LRPPRC,

GYS1, ACTB, CAPZB, CD2AP, DSTN, FLNA, FLNB, INF2,MYH10,

MYH9, MYL6, PDLIM1, and TLN1 were upregulated in cancer

tissues compared with normal tissues, whereas the expression levels

of NDUFS1 were downregulated (Figure 2A). Additionally, most of

the 24 DRGs in HNSCC samples were positively correlated

(Figure 2B). Based on the expression levels of the 24 DRGs in

HNSCC, consensus clustering was performed to classify the 504

HNSCC samples in the TCGA database. All tumor samples were

divided into k (k = 2 - 6) different clusters. The cluster number was

selected as two, indicating that HNSCC patients were accurately

divided into two clusters (C1 and C2) (Figures 2C–F). The Kaplan-

Meier survival curve showed that the overall survival (OS) of C2

patients was significantly worse than that of C1 patients (Figure 2G).
3.2 DEGs and functional
enrichment analysis

The DEGs identified between C1 and C2 subtypes included 6530

upregulated genes and 717 downregulated genes. A volcano map

(Figure 3A) and heat map (Figure 3B) were constructed for these

DEGs. GO and KEGG enrichment analysis identified the upregulated

and downregulated DEGs. GO analysis showed that the DEGs were

mainly enriched in extracellular matrix organization, response to

transforming growth factor-beta, cell-substrate adhesion, focal

adhesion, collagen-containing extracellular matrix, extracellular

matrix binding, collagen binding, and GTPase binding (Figure 3C).
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KEGG enrichment analysis indicated that DEGs were enriched in

processes such as ECM-receptor interaction, focal adhesion, cell cycle,

cGMP-PKG signaling pathway, TGF-beta signaling pathway, PI3K-

Akt signaling pathway, MAPK signaling pathway, and ERBB signaling

pathway (Figure 3D). GSEA pathway enrichment analysis showed that

the expression of DRGs was closely associated with pathways including

Head and Neck Squamous Cell Carcinoma, PI3K-Akt signaling

pathway, focal adhesion, EGFEGFR signaling pathway, B cell

receptor signaling pathway, TGF-beta signaling pathway, ERBB
Frontiers in Immunology 07
signaling pathway, VEGFR1 pathway, and Wnt signaling pathway

(Figure 3E; Supplementary Table 3). Activation of these pathways

increases the risk of tumor development and progression.
3.3 Correlation analysis of genetic changes

Using the GSCA database, we analyzed the percentage map of

SNVs on the chart. FLNA mutation frequency was high. The
FIGURE 1

Flowchart of the present study.
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oncoplot provided the SNVs of the top 10 genes among DRGs, with

FLNA (18%) and MYH9 (18%) having the highest mutation

frequencies, followed by MYH10 (15%), TLN1 (15%), IQGAP1

(9%), FLNB (8%), NCKAP1 (6%), LRPPRC (6%), ACTN4 (6%),

and ACTB (3%) (Supplementary Figure 1A). Mutations were

categorized, with missense mutations accounting for the largest

proportion (Supplementary Figure 1B). Single nucleotide

polymorphisms (SNPs) were more frequent than deletions

(Supplementary Figure 1C), and C > T was the most common

type of SNV (Supplementary Figure 1D). By calculating the number

of base changes per patient, we found that the median and

maximum number of mutations were 1 and 5, respectively
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(Supplementary Figure 1E). The box plot shows the number of

occurrences for each variant classification (Supplementary

Figure 1F). By considering the total number of mutations and

calculating multiple hits separately, we recalculated the top 10

mutated genes (Supplementary Figure 1G). CNV and methylation

levels are important factors that affect gene expression levels and

prognosis. We analyzed the correlation between DRG CNV,

methylation status, and mRNA. The results showed a significant

positive correlation between DRG CNV and mRNA expression,

while gene methylation levels had a negative correlation with

mRNA expression (Supplementary Figure 1H). Supplementary

Figure 1I shows that for some DRGs, CNV and methylation
FIGURE 2

Common clusters were identified based on the expression of DRGs. (A) The expression levels of 24 DRGs in HNSCC and paracancerous tissues, and the
quartile ranges of the upper and lower representative values of the box; the line in the box represents the median value. (B) Pearson’s correlation analysis
for the expression of 24 DRGs in HNSCC. (C) Cumulative distribution function (CDF) (k = 2 - 6). (D) Relative change of area under CDF curve (CDF Delta
area) (k = 2 - 6). (E) Consensus clustering matrix (k = 2). (F) The heat map of DRG expression in different subtypes, wherein red color represents high
expression and blue color represents low expression. (G) Kaplan-Meier survival analysis based on two clusters. *p<0.05, **p<0.01, ***p<0.001.
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levels are significantly associated with poor prognosis in HNSCC

patients. Subsequently, we analyzed the CNV landscapes of the 24

DRGs in HNSCC (Supplementary Figure 1J). Supplementary

Figure 1K shows high heterozygosity deletion/amplification rates.

CNV analysis revealed that DRGs had heterozygous amplification

and extensive heterozygosity loss, while TLN1, RPN1, and FLNA

showed high-level homozygosity amplification, and NDUFS1 and

FLNB showed high-level homozygosity loss.
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3.4 Establishing a prognostic risk model

We identified eight genes with prognostic value (SLC3A2, RPN1,

NUBPL, ACTB, DSTN, FLNA, INF2, MYH9) using univariate Cox

analysis and visualized them using a forest plot, including OS, PFS, and

DSS (Figure 4A). As shown in Figure 4B, the OS rate of HNSCC

patients with high expression levels of SLC3A2 (HR = 1.411, p = 0.012),

RPN1 (HR = 1.322, p = 0.0414), NUBPL (HR = 1.365, p = 0.0229),
FIGURE 3

Screening of DEGs between DRG subtypes and functional enrichment analysis of DEGs. (A) The volcano plot of DEGs between C1 and C2 subtypes.
(B) DEG heat map between C1 and C2 subtypes. (C, D) Enrichment analysis results of GO and KEGG for DEGs. (E) Enrichment map from GSEA.
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ACTB (HR = 1.57, p = 0.00111), DSTN (HR = 1.365, p = 0.0234),

FLNA (HR = 1.38, p = 0.0196), INF2 (HR = 1.366, p = 0.0232), and

MYH9 (HR = 1.316, p = 0.0474) was lower. Therefore, high expression

of these genes is a prognostic factor in HNSCC patients. Based on the

expression profiles of these potential prognostic biomarkers, LASSO

Cox regression analysis was performed to construct an OS prognosis

model based on the eight prognostic DRGs (Figures 5A, B). The risk

score for OS in patients with HNSCC was determined as follows: Risk

score = (0.0807) * SLC3A2 + (0.2193) * NUBPL + (0.2167) * ACTB +

(0.0082) * DSTN. According to the risk score, TCGA-HNSCC

(training cohort) patients were divided into two groups. The risk

score distribution, survival status, and expression levels of the four

DRGs are shown in Figures 5C, D. With an increase in the risk score,

the risk of death increased and survival time decreased (Figure 5C). The

Kaplan–Meier curve showed that HNSCC patients with high risk

scores had lower OS rates compared with patients with low risk scores

[median time = 2.7 and 4.9 years, log-rank p = 7.47e-05, HR = 1.736

(1.321, 2.281)] (Figure 5D). The AUCs for the 1-, 3-, and 5-year ROC

curves were 0.715, 0.678, and 0.669, respectively (Figure 5E). The same
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analysis was conducted for PFS and DSS. The higher the risk score, the

shorter the PFS [median time = 3 and 15 years, log-rank p = 0.000205,

HR = 1.733 (1.296, 2.317)]. The AUCs for PFS predicted by 1-, 3-, and

5-year ROC curves were 0.614, 0.607, and 0.519, respectively

(Supplementary Figures 2A–C). The DSS of patients with high

expression of HNSCC was lower than that of patients with low

expression [median time = 6.7 and 15 years, log-rank p = 0.000433,

HR = 1.91 (1.332, 2.738)]. The AUCs for the 1-, 3-, and 5-year ROC

curves were 0.613, 0.639, and 0.526, respectively (Supplementary

Figures 2D–F). Thus, the results of the DRG-related risk scoring

model showed a significant correlation with the survival rate of

HNSCC patients.
3.5 External validation of the DRGs
prognostic signature

We further validated the expression levels and diagnostic efficacy of

prognostic DRGs using the GEO database. Compared with the low
FIGURE 4

Prognostic value analysis of 24 DRGs expressions. (A) Univariate Cox regression analysis plots. (B) Prognostic value of the eight prognostic DRGs in
high and low expression groups among HNSCC patients.
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expression group, the expression levels of prognostic DRGs in the high

expression group were significantly upregulated in the GSE30784 and

GSE53819 datasets. In dataset GSE30784, the AUC values of SLC3A2,

NUBPL, ACTB, and DSTN were 0.882, 0.631, 0.678, and 0.645,

respectively (Figure 6A). In dataset GSE53819, the AUC values of

SLC3A2, NUBPL, ACTB, and DSTN were 0.880, 0.750, 0.830, and

0.713, respectively (Figure 6B). The four prognostic DRGs (SLC3A2,

NUBPL, ACTB, and DSTN) consistently showed good sensitivity and

specificity in diagnosing HNSCC. To verify the predictive value of the

four-gene signature, the GSE41613, GSE65858, and GSE85446 datasets

were used as external validation cohorts. We calculated the risk scores

for each patient using the same formula, consistent with the results of

the TCGA cohort. The distribution of risk scores, survival time, and

DRG expression in each HNSCC patient is shown in Figure 6C. In the

validation set, OS was significantly worse in patients with the high-risk

group compared to those with the low-risk group (p = 0.003, p = 0.021,

p < 0.001) (Figure 6D). The AUCs for 1-year, 3-year, and 5-year OS
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were 0.681, 0.662, and 0.676 in the GSE41613 dataset, respectively. The

AUCs for 1-year, 3-year, and 5-year OS were 0.604, 0.626, and 0.632 in

the GSE85446 dataset, respectively. The AUCs for 1-year, 3-year, and

5-year OS were 0.619, 0.673, and 0.603 in the GSE65858 dataset,

respectively (Figure 6E). To sum up, these results confirm the

effectiveness of our risk scoring model. The four-gene signature can

predict survival rates in HNSCC. Taken together, these results confirm

the validity of our risk score model, and that the DRGs prognostic

signature can predict OS in HNSCC.
3.6 Clinical correlation analysis

Based on the above-mentioned prognostic signature, we explored

the survival analysis of clinical pathological features between high-risk

and low-risk groups (Supplementary Table 4). Subgroup survival

analysis showed that the high-risk group significantly affected the
FIGURE 5

Construction of a prognostic model with the help of DRGs in HNSCC tissue. (A) LASSO coefficient curve of four DRGs. (B) Plots of the ten-fold
cross-validation error rates. (C) Distribution of risk score, survival status, and expression of prognostic DRGs in HNSCC patients. (D) Overall survival
curve of HNSCC patients in high/low-risk groups. (E) Time-dependent ROC curve for 1-, 3-, and 5-year OS for DRGs.
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overall survival time of patients who were Age > 60 (p < 0.001, HR =

2.17 (1.50 − 3.14)), Female (p < 0.001, HR = 2.58 (1.52 − 4.37)), Male (p

= 0.013, HR = 1.51 (1.09 − 2.10)), White (p < 0.001, HR = 1.74 (1.30 −

2.34)), Grade 1-2 (p = 0.008, HR = 1.55 (1.12 − 2.14)), Grade 3-4 (p =

0.010, HR = 2.10 (1.20 − 3.67)), Stage III-IV (p < 0.001, HR = 1.80 (1.33

− 2.43)), M0 Status (p < 0.001, HR = 1.78 (1.34 − 2.35)), N0 Status (p =
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0.020, HR = 1.61 (1.08 − 2.40)), N1-3 Status (p < 0.001, HR = 2.07 (1.40

− 3.04)), T3-4 Status (p < 0.001, HR = 1.87 (1.32 − 2.63)), Neoadjuvant

N0 (p < 0.001, HR = 1.69 (1.28 − 2.23)), Smoking Yes (p < 0.001, HR =

1.87 (1.32 − 2.63)) (Supplementary Figures 3A–M). However, factors

such as Age <= 60 (p = 0.107, HR = 1.41 (0.93 − 2.14)), Asian + Black

(p = 0.484, HR = 0.75 (0.33 − 1.69)), Stage I-II (p = 0.246, HR = 1.50
FIGURE 6

Prognostic value of DRGs signature in HNSCC patients. (A, B) The mRNA expression of prognostic DRGs and ROC curves to evaluate the ability of the
prognostic DRGs expression to diagnose HNSCC in GSE12452 (A), GSE53819 (B) dataset. (C) Distribution of risk score, survival status, and expression of
prognostic DRGs for patients in low- and high-risk groups in GSE41613, GSE65858, GSE85446 dataset. (D) Risk score and survival probabilities in
GSE41613, GSE65858, GSE85446 dataset. (E) Time-dependent ROC curve analyses of risk score in GSE41613, GSE65858, GSE85446 dataset. *p<0.05,
**p<0.01, ***p<0.001.
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(0.76 − 2.95)), Neoadjuvant Yes (p = 0.152, HR = 4.81 (0.56 − 41.07)),

Radiation N0 (p = 0.870, HR = 0.93 (0.39 − 2.20)), Radiation Yes (p =

0.061, HR = 1.77 (0.97 − 3.23)), Smoking N0 (p = 0.184, HR = 1.51

(0.82 − 2.75)), and T1-2 Status (p = 0.104, HR = 1.48 (0.92 − 2.39))

were not significantly associated with the overall survival time of

HNSCC patients (Supplementary Figures 4A–H). This suggests that

these factors play an important role in determining the survival

outcomes of patients with HNSCC and should be considered when

developing treatment strategies.
3.7 Establishment and validation of a
predictive nomogram

We first performed univariate and multivariate Cox analyses to

establish a predictive nomogram that integrates the DRGs risk score
Frontiers in Immunology 13
with other prognosis-related clinical factors. In univariate Cox

regression analysis, M status (HR = 4.819, 95% CI = 1.775 -

13.083, p = 0.002), Stage (HR = 0.568, 95% CI = 0.394 - 0.821, p

= 0.003), and risk score (HR = 0.576, 95% CI = 0.438 - 0.757, p <

0.001) were associated with OS in HNSCC patients. In multivariate

Cox regression analysis, M status (HR = 3.919, 95% CI = 1.414 -

10.861, p = 0.009), Stage (HR = 0.560, 95% CI = 0.373 - 0.841, p =

0.005), and risk score (HR = 0.534, 95% CI = 0.403 - 0.709, p <

0.001) were shown to be independent predictors of OS in HNSCC

patients (Supplementary Table 5). The risk score, M status, and

Stage were then integrated to construct a nomogram for predicting

1-, 3-, and 5-year OS in HNSCC patients. The results of the

predictive nomogram showed that 1-, 3-, and 5-year OS [C-index:

0.613 (0.594-0.633)] (Figure 7A), PFS [C-index: 0.603 (0.583-

0.623)] (Supplementary Figures 5A–E), and DSS [C-index: 0.645

(0.622-0.669)] (Supplementary Figures 6A–E). The AUC values for
FIGURE 7

Construction of a predictive nomogram. (A) Nomogram for predicting 1-, 3-, and 5-year OS of HNSCC patients. (B, C) ROC curves for predicting 1-,
3-, and 5-year OS in the TCGA and GEO datasets. (D, E) Calibration curve of OS nomogram model in the discovery group in the TCGA and GEO
datasets. (F, G) Time-dependent AUC curve shows the nomogram to predict OS performance in the TCGA and GEO datasets. (The diagonal dotted
line represents the ideal nomogram). (H, I) DCA curves for the nomogram in the TCGA and GEO datasets.
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1-, 3-, and 5-year ROC curves were 0.630, 0.638, and 0.599,

respectively (Figure 7B). Calibration curves showed good

consistency between predicted and observed values, especially for

3-year OS (Figure 7D) and time-dependent AUC curves

(Figure 7F). Finally, we performed DCA curves to assess the

clinical utility of the nomogram, indicating its value in predicting

survival rates (Figure 7H). In the GEO validation cohort, the AUC

values for 1-, 3-, and 5-year OS were 0.625, 0.620, and 0.608,

respectively (Figure 7C). Calibration curves and the time-dependent

AUC for the nomogram model also maintained good performance

in predicting patient OS (Figures 7E, G). DCA showed that the

nomogram also provided clinical net benefits (Figure 7I). Thus, in

both the TCGA cohort and GEO external validation cohort, the

nomogram incorporating DRG risk score and clinical

characteristics (M status and Stage) appears to accurately predict

short-term and long-term OS in HNSCC patients. Overall, these

results indicate that the constructed nomogram has predictive

accuracy for the prognosis of HNSCC patients and may bring

significant clinical benefits.
3.8 Association of tumor immune cell
infiltration with the disulfidptosis-related
prognostic signature in HNSCC

We used six algorithms to observe the differences in immune

cells between C1 and C2 subtypes of HNSCC samples. The

QUANTISEQ algorithm showed significant differences in

Macrophage M2 (P = 0.004), Monocyte (P = 3.14E-07),

Macrophage M1 (P = 0.004), B cell (P = 0.0457), T cell regulatory

(Tregs) (P = 5.15E-07), Neutrophil (P = 2.77E-07), and

uncharacterized cell (P = 0.0004) between the two subtypes

(Figures 8A, B). Further analysis using the QUANTISEQ

algorithm found significant associations between risk scores and

various immune cell populations. Risk scores were negatively

correlated with B cells (P = 4.44E-11, Cor = -0.2880), Monocytes

(P = 7.49E-08, Cor = -0.2368), T cells CD8+ (P = 2.63E-09, Cor =

-0.2612), uncharacterized cells (P = 0.0155, Cor = -0.1079), and

Myeloid dendritic cells (P = 0.0011, Cor = -0.1455), and positively

correlated with Macrophage M1 (P = 8.39E-10, Cor = 0.2700), NK

cells (P = 0.0048, Cor = 0.1253), and T cells CD4+ (non-regulatory)

(P = 0.0003, Cor = 0.1616) (Figure 8C). Similarly, significant

differences in the distribution of immunologic infiltration scores

between C1 and C2 subtypes were also observed using the TIMER,

xCell, MCP-counter, CIBERSORT, and EPIC algorithms

(Supplementary Figures 7A–E). There was also a correlation

between risk scores and various immune cell populations

(Supplementary Figures 8A–E). It has been reported that immune

infiltration may affect patient prognosis. Therefore, we conducted a

survival analysis of the different types of immune cells mentioned

above and found that high infiltration levels of B cells, NK cells,

Macrophage M2, T cells CD8+, and Tregs were associated with

good prognosis, while high infiltration levels of Macrophage M1,

Neutrophils, and T cells CD4+ (non-regulatory) were associated

with lower OS rates (Figure 8D). Considering the differences in

immune cell infiltration, we further analyzed the correlation
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between the risk score model and three ESTIMATE scores. The

analysis showed a significant negative correlation between the risk

score and ImmuneScore (P < 0.001, Cor = -0.236), and a positive

correlation with StromalScore (P = 0.015, Cor = 0.109), but no

significant correlation with ESTIMATE scores (P = 0.068, Cor =

-0.081) (Figure 8E).

Using the ssGSEA method, immune cell infiltration between

high and low expression groups of SLC3A2, NUBPL, ACTB, and

DSTN was analyzed (Supplementary Figure 9A). In addition, in the

low-risk score group, the expression levels of aDC, B cells, CD8 T

cells, Cytotoxic cells, DC, Mast cells, NK CD56dim cells, pDC, T

cells, TFH, and Th17 cells were higher than those in the high-risk

score group. However, Eosinophils, Macrophages, Neutrophils, NK

cells, Tcm, Tgd, Th1 cells, and Th2 cells were expressed at higher

levels in the high-risk score group, with statistical differences

(Supplementary Figure 9B). Correlation analysis showed that

SLC3A2 expression was positively correlated with Tgd and

negatively correlated with Cytotoxic cells, T cells, B cells, and

CD8 T cells; NUBPL expression was positively correlated with T

helper cells, NK cells, Tcm, and Th2 cells, and negatively correlated

with Cytotoxic cells, PDC, NK CD56dim cells, and T cells; ACTB

expression was positively correlated with Macrophages, Tgd, Th1

cells, Neutrophils, and Th2 cells, and negatively correlated with B

cells, NK CD56bright cells, PDC, and CD8 T cells; DSTN

expression was positively correlated with Tgd and negatively

correlated with Cytotoxic cells, T cells, B cells, and NK CD56dim

cells (Supplementary Figure 9C). In addtion, TIMER database

analysis showed that SLC3A2 was positively correlated with B

cells, CD4+ T cells, neutrophils, macrophages and dendritic cells.

NUBPL was positively correlated with tumor purity, neutrophils.

ACTB was positively correlated with tumor purity, B cells, CD4+ T

cells, CD8+ T cells, neutrophils, macrophages and dendritic cells.

DSTN was also positively correlated with B cells, CD4+ T cells, CD8

+ T cells, neutrophils, macrophages and dendritic cells in HNSCC

(Supplementary Figure 9D). These results showed a significant

correlation between DRGs and tumor immune infiltration,

indicating potential targets for immunotherapy.
3.9 Immunotherapy response analysis

We analyzed the differences in expression between the two

subtypes based on eight immune checkpoint-related genes. The

results showed significant differences in the expression levels of

CD274 (P < 0.01), LAG3 (p < 0.01), PDCD1LG2 (p < 0.001), and

SIGLEC15 (p < 0.01) between the two subtypes. In group C1, the

expression levels of CD274, PDCD1LG2, and SIGLEC15 were

higher than those in group C2, with statistical significance

(Figure 9A). We then explored the expression distribution of

immune checkpoint-related genes in high and low risk score

groups. The results showed significant differences in LAG3,

PDCD1, PDCD1LG2, TIGIT, and SIGLEC15 between the high

and low risk score groups (Figure 9B). Further analysis of the

relationship between the expression of prognostic DRGs and

immune checkpoint members in the TCGA database showed that

the risk score was positively correlated with PDCD1LG2 (P =
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7.6256E-08, Cor = 0.2369), SIGLEC15 (P = 0.0140, Cor = 0.1095),

and CTLA4 (P = 0.0152, Cor = -0.1081). It was negatively correlated

with LAG3 (P = 0.0002, Cor = -0.1659), PDCD1 (P = 1.1598E-06,

Cor = -0.2148), and TIGIT (P = 0.0001, Cor = -0.1699) (Figure 9C).
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Survival analysis of immune checkpoint members showed that high

levels of CTLA4 (p < 0.001, HR = 0.58 (0.44 - 0.76)), PDCD1 (p =

0.009, HR = 0.70 (0.53 - 0.91)), TIGIT (p = 0.001, HR = 0.64 (0.49 -

0.84)), and LAG3 (p = 0.046, HR = 0.76 (0.58 - 0.99)) were
FIGURE 8

Relationship between the expression level of DRGs and immune infiltration in the tumor microenvironment. (A, B) Comparison of immune scores
between C1 and C2 subtypes in TCGA (QUANTISEQ); the abscissa represents the type of immune cell infiltration, and the ordinate represents the
distribution of the immune infiltration score in different groups. (C) The correlation analysis between Riskscore and immunoscore (QUANTISEQ).
(D) The relationship between the level of immune cell infiltration and survival rate, including B cells, NK cells, macrophages M2, T cell CD8+, T cell
regulatory (Tregs), Macrophage M1, Neutrophil, T cell CD4+ (non-regulatory). (E) Correlation between Riskscore and three ESTIMATE, and
Differences in ESTIMATE between the high and low expression groups of the four prognostic DRGs in HNSCC. *p<0.05, **p<0.01, ***p<0.001.
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FIGURE 9

The correlation between the expression of the prognostic DRGs and immunogenicity. (A) The expression distributions of eight immune checkpoint-
related genes in HNSCC subtypes. (B) Differences in immune checkpoint-related genes between high and low riskscore group. (C) Correlation
between the prognostic DRGs in HNSCC and immune checkpoint-related genes. (D) The survival analysis of immune checkpoint-related genes.
(E) The prediction of response rates of immunotherapies in patients with DRGs high and low riskscore. (F) Different reactions of DRGs high and low
riskscore groups to immune checkpoint blocking in TIDE score. (G) Differences of DRGs high and low riskscore groups in TIDE Dysfunction score.
(H) Differences of DRGs high and low riskscore groups in TIDE Exclusion score. (I–L) Prediction of immune response and ROC analysis of DRGs
riskscore for prediction of ICI responsiveness in GSE91061, GSE135222, GSE78220, IMvigor210 dataset. (M) Four prognostic DRGs expression
differences between patients with NR and R in clinical tissue cohort, respectively; ROC analysis of four prognostic DRGs for prediction of ICI
responsiveness in clinical tissue cohort, respectively; (N) Riskscore differences between patients with NR and R in clinical tissue cohort; ROC analysis
of riskscore for prediction of ICI responsiveness in clinical tissue cohort. (NR: not responding to immunotherapy. R: respond to immunotherapy).
n.s. no significance (p > 0.05), *p<0.05, **p<0.01, ***p<0.001.
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associated with good prognosis, while CD274 (p = 0.049, HR = 1.31

(1.00 - 1.72)) was associated with lower OS rates (Figure 9D).

Additionally, we used the TIDE database and GSE91061,

GSE135222, GSE78220, IMvigor210 datasets to predict the

response of DRGs to immunotherapy. The results showed that

the prediction of response rates to immunotherapies in patients

with low risk scores was higher than that in the high risk group (p <

0.05) (Figure 9E). The low risk score group responded better to

immune checkpoint blocking than the high risk score group

(Figure 9F). TIDE Dysfunction scores were elevated in the low

group (Figure 9G), and TIDE Exclusion scores were lower in the

low group (Figure 9H). In the GSE91061, GSE135222, GSE78220,

and IMvigor210 datasets, the AUC results further confirmed the

accuracy of DRG expression in predicting immune response, with

AUC values of 0.737, 0.849, 0.774, and 0.612, respectively

(Figures 9I–L). To confirm the predictive role of DRGs risk score

in immune therapy response in clinical tissue samples of HNSCC,

36 advanced HNSCC patients receiving anti-PD-1/PD-L1 therapy

were analyzed. The results indicated that the expression of the four

prognostic DRGs was lower in patients who achieved complete or

partial remission (CR/PR). The AUC values of SLC3A2, NUBPL,

ACTB, and DSTN were 0.727, 0.610, 0.769, and 0.788, respectively

(Figure 9M). The low-risk group based on the prognostic model had

a higher proportion of patients in the CR/PR group, with an AUC

value of 0.723 for the risk score (Figure 9N). Therefore, DRGs risk

score has significant potential in predicting immune therapy

response, suggesting that patients with a low DRGs risk score

may be more sensitive to ICI treatment. Overall, these results

imply that DRGs low-risk score groups are more likely to have an

immune response and respond to immunotherapy.
3.10 TMB, MSI, mRNAsi, and drug
sensitivity analysis

To investigate the role of DRGs in immune mechanisms and

responses within the TME, we assessed the correlation between the

risk score model and TMB, MSI, and mRNAsi. The results showed

that SLC3A2 (P = 0.018, Cor = 0.106) was positively correlated with

TMB, while DSTN (P = 0.023, Cor = -0.102) was negatively

correlated with TMB (Figure 10A). SLC3A2 (P < 0.001, Cor =

0.152) was positively correlated with MSI, while ACTB (P < 0.001,

Cor = -0.613) was negatively correlated with MSI (Figure 10B). The

expression levels of ACTB (P < 0.001, Cor = -0.274) and DSTN (P <

0.001, Cor = -0.149) were negatively correlated with mRNAsi

(Figure 10C). Next, we analyzed the distribution of TMB, MSI,

and mRNAsi in the high-risk and low-risk groups of HNSCC

patients. The results revealed that the proportion of patients with

high TMB was higher in the high-risk group compared to the low-

risk group, while MSI and mRNAsi were more prevalent in the low-

risk group (Figure 10D). We further performed survival analysis

combining risk scores with TMB, MSI, and mRNAsi, dividing

patients into four subgroups for survival assessment. The overall

survival (OS) was better in the low TMB + low-risk score group

compared to the high TMB + high-risk score group (P < 0.001).
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Similarly, patients in the high MSI + high-risk group had a worse

prognosis compared to those in the low MSI + low-risk group (P <

0.001), and the OS of patients in the low mRNAsi + low-risk group

was better than that of those in the high mRNAsi + high-risk group

(P < 0.001) (Figure 10E).

Finally, to fully explore the potential value of new therapeutic

targets for SLC3A2, NUBPL, ACTB, and DSTN, we selected some

drugs from the GDSC and CTRP databases that showed a

significant correlation between the risk score model and drug

sensitivity (Figure 11A). In high-risk HNSCC, the sensitivity of

belinostat, SB52334, and CAL-101 was significantly higher than in

the low-risk group, while Dasatinib, Pazopanib, and Docetaxel

showed higher sensitivity in low-risk HNSCC (Figure 11B). The

results of Spearman correlation analysis showed that the expression

levels of the risk score were positively correlated with belinostat,

SB52334, and CAL-101, but negatively correlated with Dasatinib,

Pazopanib, and Docetaxel (Figure 11C). Therefore, the drugs

mentioned above may be potential therapeutic options for HNSCC.
3.11 Single cell RNA data analysis

In the TISCH database, HNSCC_GSE103322 was divided into

121 cell clusters and 11 cell types, allowing visualization of the

distribution and number of various TME-related cells (Figures 12A,

B). Figure 12C shows the percentage of each cell subtype in different

patients. The pie chart indicates that macrophages (Mono/Macro)

are the most abundant cell type in HNSCC_GSE103322

(Figure 12D). We used the HNSCC single cell GSE dataset

(HNSCC_GSE103322) to evaluate the expression levels of

SLC3A2, NUBPL, ACTB, and DSTN at a single cell level

(Figure 12E), including Conventional CD4 T cells, CD8 T cells,

Exhausted CD8 cells, plasma cells, monocytes or macrophages,

mast cells, endothelial cells, fibroblasts, myofibroblasts, malignant

cells, and myocytes. It was found that SLC3A2, NUBPL, ACTB, and

DSTN were strongly expressed in fibroblasts, Mono/Macro, and

malignant cells (Figure 12F). Immune infiltration analysis showed a

correlation between SLC3A2, NUBPL, ACTB, and DSTN

expression and CAF and macrophage infiltration (Figures 12G).

Combining the above biological function enrichment and immune

cell infiltration analysis results, we further explored the association

between DRGs and cancer-associated fibroblasts (CAFs), tumor-

associated macrophages (TAMs), and related biomarkers. The

results showed extensive correlations between CAFs (PDGFRA,

PDGFRB, S100A4, FAP, VIM, COL11A1, MFAP5, PDPN, ITGA11,

POSTN, TAGLN, PDGFB, WNT2, COL3A1, FGF10, FN1, ABL1,

AQP1, ACTA2) and TAMs (CD14, CSF1R, CD86, CCL2, CD68,

IL10, NOS2, IRF5, PTGS2, IL6, FCGR1A, CD163, VSIG4,

MS4A4A, MMP2, MMP9, MMP3, TJP1) biomarkers. We also

analyzed the impact of prognostic DRG expression on EMT and

their correlation with EMT-related biomarkers (SNAI1, SNAI2,

ZEB1, ZEB2, TWIST1, CDH1, CDH2, VIM, MMP2, MMP9,

MMP3), finding significant associations (Figure 12H). These

results suggest that EMT mediated by prognostic DRGs may be

related to fibroblast activation.
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3.11 Pan-RNA epigenetic modification-
related gene expression

In this study, we investigated whether DRG expression is related

to pan-RNA epigenetic modification by analyzing the differential

expression of pan-RNA epigenetic modification-related genes
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between high and low risk groups. The results showed significant

differences in m6A, m5C, m1A, and m7Gmodification genes between

the two groups (P < 0.01), with high expression in the high-risk group

(Supplementary Figure 10A). The correlation between these

prognostic DRGs and pan-RNA epigenetic modification-related

gene expression was analyzed using the TCGA dataset. The results
FIGURE 10

TMB, MSI, mRNAsi, and ESTIMATE analysis. (A) Correlation between the expression of four prognostic DRGs and TMB in HNSCC. (B) Correlation
between the expression of four prognostic DRGs and MSI in HNSCC. (C) Correlation between the expression of four prognostic DRGs and mRNAsi
in HNSCC. (D) Distribution of TMB, MSI, and mRNAsi in high-risk and low-risk groups. (E) Kaplan-Meier curves of four groups classified by risk score
and TMB, MSI, mRNAsi in HNSCC.
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showed significant correlations between the four prognostic DRGs

and m6A, m5C, m1A, and m7G modification genes (Supplementary

Figure 10B). We found that all four prognostic DRGs were positively

correlated with highly expressed EIF4E, IGF2BP3, FTO, IFIT5,
Frontiers in Immunology 19
IGF2BP1, LARP1, NCBP2L, NUDT10, and NUDT11

(Supplementary Figure 10C), which were significantly correlated

with HNSCC prognosis. These results suggest that DRG expression

is closely related to RNA methylation modification in HNSCC.
FIGURE 11

Drug sensitivity analysis. (A) Predictive antitumor drugs based on the three prognostic DRGs expression in HNSCC from the GDSC and CTRP
datasets. (B) The distribution of IC50 scores in the high and low risk groups. (C) Spearson correlation analysis of IC50 score and
riskscore. ***p<0.001.
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3.12 DNA methylation analysis

Using the GSCA tool, we found that SLC3A2, NUBPL, ACTB,

and DSTN expression were significantly negatively correlated with

their methylation levels in HNSCC (Supplementary Figure 11A).

Additionally, in patients classified by age, gender, race, smoking
Frontiers in Immunology 20
status, nodal metastasis status, tumor grade, individual cancer stage,

and TP53 mutation, NUBPL DNA methylation levels were further

reduced (Supplementary Figure 11B). Thus, decreased DNA

methylation levels of DRGs may be potential indicators reflecting

the clinical and pathological characteristics of HNSCC patients. We

obtained methylation maps of SLC3A2, NUBPL, ACTB, and DSTN
FIGURE 12

The expression of three prognostic DRGs in different immune cell types in HNSCC. (A) Cluster diagram of cell types in scRNA seq data. (B) Annotation of
different immune cell lineages (HNSCC_GSE103322) in HNSCC tissues. (C) The percentage of each cell subtype in different patients. (D) The pie chart
shows the percentage of each cell. (E) Characteristic maps of four prognostic DRGs obtained from scRNA-seq data. (F) Heat maps of three prognostic
DRGs obtained from scRNA-seq data. (G) Correlation between the expression of three prognostic DRGs and macrophages, CAF infiltration as analyzed
by TIMER2.0. (H) Correlation between the expression of three prognostic DRGs and TAMs, CAF, EMT-related markers. *p<0.05.
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from the MethSurv database, presented in a heatmap

(Supplementary Figure 11C), identifying 60 CpG sites with

multiple CpG sites of DRGs showing low methylation in HNSCC

patient samples. We further evaluated the prognostic value of each

CpG site’s methylation and found 11 CpG sites significantly

associated with prognosis (Supplementary Figures 11D, E),

including cg10922289, cg13402055, cg13109558, cg23551132,

cg02356111, cg07476653, cg09041756, cg13677897, cg27056436,

cg10573932, and cg19765886. These results indicate that DNA

methylation of DRGs is closely related to the development and

prognosis of HNSCC.
3.13 Prediction and verification of
upstream key miRNA

First, we obtained 13 pairs of SLC3A2-miRNA, 8 pairs of

NUBPL-miRNA, 13 pairs of ACTB-miRNA, and 42 pairs of

DSTN-miRNA by intersecting the ENCORI, miRTarBase,

RNA22, RNAInter, and miRWalk databases (Supplementary

Figure 12A). The potential miRNA gene network was constructed

using Cytoscape software (Supplementary Figure 12B). We

hypothesized that a negative correlation should be observed

between the predicted mRNA-miRNA interactions based on the

classical role of miRNA in the negative regulation of gene

expression. Using the Pan-cancer subproject of the ENCORI

database, we screened these candidate miRNA expression

correlations in HNSCC. The results showed significant negative

correlations between 4 pairs of ACTB-miRNA and 6 pairs of

DSTN-miRNA (Supplementary Figure 13). Theoretically,

miRNAs that strongly bind to ACTB and DSTN should be down-

regulated in HNSCC and show poor prognosis. The prognostic

effect and expression levels of these potential miRNAs in HNSCC

were further verified by Kaplan–Meier plotter and the TCGA

database. The results showed that low expression levels of hsa-let-

7c-5p, hsa-miR-23b-5p, and hsa-miR-181c-5p were significantly

associated with poor prognosis (Supplementary Figure 12C), and

their expression levels in HNSCC tissues were also significantly

lower than in normal tissues (Supplementary Figure 12D).

Combining the results of negative correlation, survival rate, and

expression level analysis, hsa-let-7c-5p, hsa-miR-181c-5p, and hsa-

miR-23b-5p were finally confirmed as potential prognostic miRNAs

in HNSCC. These results suggest that the ACTB-hsa-let-7c-5p,

DSTN-hsa-miR-181c-5p, and DSTN-hsa-miR-23b-5p pathways are

key mediators in the occurrence and development of HNSCC and

are related to patient prognosis.
3.14 Prediction and validation of key
miRNAs and potential LncRNAs

We predicted the upstream lncRNA targets of miRNAs to

construct the miRNA-lncRNA axis. The MiRNet database was

used to predict lncRNAs, including 53 lncRNAs targeting hsa-let-

7c-5p, 62 lncRNAs targeting hsa-miR-181c-5p, and 56 lncRNAs

targeting hsa-miR-23b-5p. For better visualization, the miRNA-
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lncRNA regulation network was established using Cytoscape

software (Figure 13A). According to the ceRNA hypothesis,

lncRNAs can increase mRNA expression by competitively

binding to miRNAs. Therefore, lncRNAs were negatively

correlated with miRNAs or positively correlated with mRNAs.

The correlation between lncRNAs and hsa-let-7c-5p, hsa-miR-

181c-5p, and hsa-miR-23b-5p expression was detected using the

ENCORI database. It was found that two lncRNAs (IER3-AS1 and

MIRLET7BHG) were significantly correlated with hsa-let-7c-5p

and ACTB, while two lncRNAs (LUCAT1 and IGFL2-AS1) were

significantly correlated with hsa-miR-181c-5p and DSTN

(Figure 13B). Subsequently, the prognostic value and expression

level of these lncRNAs in HNSCC were detected using the TCGA-

HNSCC dataset. The results of survival analysis and expression

analysis showed that LUCAT1 and IGFL2-AS1 were significantly

upregulated in HNSCC, and their upregulation was related to a

poor prognosis for HNSCC patients (Figure 13C). Finally, we

established a key mRNA-miRNA-lncRNA triple regulatory

network, which included two mRNAs (ACTB and DSTN), three

miRNAs (hsa-let-7c-5p, hsa-miR-181c-5p, and hsa-miR-23b-5p),

and four lncRNAs (IER3-AS1, MIRLET7BHG, LUCAT1, and

IGFL2-AS1) (Figure 13D).
3.15 Validation of prognostic analysis with
clinical tissue samples

To verify the mRNA-level analysis results from the TCGA, we

used RT-qPCR to validate the expression patterns of the four

prognostic DRGs in 76 HNSCC clinical specimens, comparing

HNSCC tissues with adjacent non-tumor tissues. We found that

SLC3A2, NUBPL, ACTB, and DSTN were significantly upregulated

in HNSCC tissues compared to adjacent tissues (Figure 14A). Based

on qPCR validation results, we performed immunohistochemical

staining on HNSCC tissues and adjacent normal tissues to verify the

protein expression of the four prognostic DRGs in clinical

specimens. The results showed that SLC3A2, NUBPL, ACTB, and

DSTN proteins were significantly elevated in HNSCC tissues

compared to adjacent tissues (Figure 14B). To fully understand

the clinical significance of the DRG risk score, we analyzed multiple

subgroups, including Age, Gender, distant metastasis, Smoking,

Alcohol, N stage, Clinical stage, tumor site, histological grade, and

Treatment. The results showed that the risk score was significantly

associated with Clinical stage and histological grade in HNSCC

patients (P < 0.05, Supplementary Table 6). To assess the

independent predictive value of the prognostic model for our

HNSCC clinical samples, we conducted univariate and

multivariate Cox regression analyses on risk scores and other

clinical features. We found that N stage (P = 0.031, HR = 0.113

(0.015 - 0.820)), Clinical stage (P = 0.001, HR = 0.140 (0.043 -

0.454)), histological grade (P = 0.026, HR = 2.146 (1.097 - 4.198)),

and Risk score (P = 0.004, HR = 2.523 (1.349 - 4.719)) showed good

prognostic value in univariate Cox regression analysis (P < 0.05). In

multivariate analysis, Age (P = 0.010, HR = 2.530 (1.243 - 5.148)),

Clinical stage (P = 0.004, HR = 0.151 (0.041 - 0.551)), histological

grade (P = 0.022, HR = 2.269 (1.124 - 4.581)), and Risk score (P =
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0.023, HR = 2.232 (1.115 - 4.471)) were identified as independent

prognostic indicators for HNSCC patients (Supplementary

Table 7). Based on the above multivariate Cox analysis, we

combined these independent prognostic factors to construct a

nomogram for predicting short-term and long-term survival rates

in HNSCC patients. The nomogram was externally validated using

the clinical HNSCC tissue sample cohort. The C-index of the

nomogram was 0.766 (0.730-0.802) (Figure 14C). Calibration
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curves showed satisfactory consistency between predicted and

observed results (Figure 14D). The 1-, 3-, and 5-year AUCs of the

ROC curves were 0.783, 0.837, and 0.845, respectively (Figure 14E).

Time-dependent AUC curves demonstrated the nomogram’s

performance in predicting OS in the clinical sample validation

cohort (Figure 14F). DCA confirmed the clinical utility of the

nomogram in predicting survival rates (Figure 14G). All these

results were consistent, indicating that the DRG prognostic model
FIGURE 13

Screening of the LncRNA-miRNA-DRGs regulating axis in HNSCC. (A) Prediction of the potential miRNA-lncRNA network through miRNet database.
(B) Correlation of the potential LncRNAs with hsa-let-7c-5p, hsa-miR-181c-5p, and ACTB, DSTN in HNSCC. (C) The expression level and prognostic
value of the potential LncRNA (LUCAT1, IGFL2-AS1) in HNSCC. (D) The triple regulatory network of mRNA-miRNA-lncRNA. ***p<0.001.
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performs well in predicting the prognosis of HNSCC patients. Based

on the predictive efficiency of the prognostic model constructed

from the TCGA-HNSCC dataset, we validated the model’s

efficiency using HNSCC clinical tissue samples from our hospital.
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Using the same formula to calculate the risk scores, HNSCC

patients in the clinical cohort were divided into high-risk and

low-risk groups based on the median value. Survival analysis

showed that patients with higher risk scores had shorter OS than
FIGURE 14

Validation of the prognostic DRGs expression. (A) Relative expression of the four prognostic DRGs in adjacent normal tissues and HNSCC tissues.
(B) Immunohistochemistry analysis of the protein expression levels of four genes in HNSCC and adjacent tissues. (C) Nomogram for predicting 1-, 3-
, and 5-year OS of clinical HNSCC tissue samples. (D) Calibration curve of the nomogram in the external validation group. (E) ROC curves for
predicting 1-, 3-, and 5-year OS in the external validation group. (F) Time-dependent AUC curve shows the nomogram to predict OS performance in
the external validation group. (G) DCA curves for the nomogram in the external validation group. (H) Overall survival curve of HNSCC patients in
high/low-risk groups. (I) Time-dependent ROC curve for 1-, 3-, and 5-year OS for DRGs. (J) Differential expression of four prognostic DRGs in NOK,
HN6, SCC9, and HSC3 cell lines. ***p < 0.001.
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those with lower risk scores (Figure 14H, p = 0.018, HR = 2.15 (1.14

- 4.06)), consistent with the results from the TCGA and GEO

cohorts. The 1-, 3-, and 5-year AUCs of the ROC curves were 0.841,

0.836, and 0.840, respectively (Figure 14I). Additionally, we

explored the mRNA expression of SLC3A2, NUBPL, ACTB, and

DSTN in HNSCC cell lines. Consistent with tissue expression levels,

the mRNA expression of these genes was significantly upregulated

in HNSCC cell lines (NH6, HSC3, and SCC9) compared to normal

human epithelial cells (NOK) (Figure 14J). Therefore, all these

results consistently confirmed the predictive efficiency of the

constructed prognostic model, indicating its reliability and

validity in predicting the prognosis of HNSCC patients.
3.16 In vitro cell experiment of DSTN
in HNSCC

To further investigate the role and functional significance of

DRGs in HNSCC, we conducted DSTN gene knockout experiments

in HSC3 and SCC9 cells (Figure 15A). Following DSTN gene

knockout, CCK-8 assays showed that the proliferation rate of

HSC3 and SCC9 cells was significantly reduced (Figures 15B, C).

Wound healing assays and migration invasion experiments

indicated that the migration (Figures 15D, E) and invasion

abilities (Figures 15F–H) of HSC3 and SCC9 cells were

significantly decreased. Colony formation assays showed that

DSTN gene knockout significantly inhibited the proliferation of

HSC3 and SCC9 cells (Figures 15I, J). In summary, the inhibition of

cell proliferation following DSTN gene knockout suggests that

DSTN plays a critical role in the development of HNSCC.
4 Discussion

Head and neck squamous cell carcinoma (HNSCC) is a highly

aggressive cancer characterized by significant heterogeneity and

immunosuppression. The prognosis and treatment strategies are

closely related to the diagnosis and therapeutic options. In recent

years, disulfidptosis, a specific form of cell death, has attracted attention

for its potential role in cancer development. Understanding the role of

disulfidptosis in HNSCC is crucial for elucidating the biological

mechanisms of the tumor, improving patient prognosis, and

developing new therapeutic strategies. This type of research may

uncover new biomarkers that support personalized treatment,

especially in the field of immunotherapy. The study employed a

variety of methods, including gene expression analysis, proteomics

research, and statistical analysis of clinical data. Researchers collected

numerous HNSCC patient samples from multiple databases, utilized

advanced bioinformatics tools for in-depth analysis, and performed

external validation using clinical tissue samples.

In our study, we investigated 24 existing DRGs and identified two

disulfidptosis-related subtypes. Through DEGs between the two

subtypes, we found that DRGs are involved in multiple signaling

pathways. Literature has reported that these pathways are closely

related to tumor invasion and metastasis. These pathways include

ECM-receptor interaction (41), Focal adhesion (42), cGMP-PKG
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signaling pathway (43), TGF-beta signaling pathway (44), PI3K-Akt

signaling pathway (45), MAPK signaling pathway (46), ERBB signaling

pathway (47), EGFR Signaling Pathway (48), B Cell Receptor Signaling

Pathway (49), VEGFR1 Pathway, and Wnt Signaling Pathway (50).

Based on the expression patterns and prognostic analysis of

disulfidptosis-related genes, a predictive model was constructed

using LASSO Cox regression, identifying four prognostic

disulfidptosis-related genes (SLC3A2, NUBPL, ACTB, DSTN).

The K-M curve indicated that patients with high-risk scores in

this model had poorer prognosis compared to the low-risk group.

ROC curves for 1-year, 3-year, and 5-year survival probabilities

revealed good specificity and sensitivity of the prognostic model.

The TCGA internal and GEO external validation cohorts confirmed

the model’s effectiveness and stability in predicting the prognosis of

HNSCC patients. Univariate and multivariate Cox analyses

identified the model as an independent prognostic factor for

HNSCC. We further constructed a prediction nomogram based

on the signature to predict clinical outcomes for HNSCC patients.

High expression of disulfidptosis-related markers was closely

related to poor clinical prognosis.

The construction of prognostic signatures plays a critical role in

providing more refined and accurate assessments of prognosis.

Several recent studies have developed prognostic models based on

the expression of disulfidptosis-related genes (DRGs) in HNSCC.

For example, a risk model designed to predict prognosis and

immune features in sarcoma patients identified DRGs as

independent prognostic factors (9). In a similar vein, a prognostic

gene signature based on cuproptosis-related genes demonstrated

high predictive accuracy for prognosis in hepatocellular carcinoma,

highlighting the applicability of such models across various cancer

types (10). These studies emphasize the growing recognition of

disulfidptosis and its related genes as valuable prognostic

biomarkers in malignancies. In the present study, we validated

the expression levels and prognostic significance of DRGs using

tissue samples from HNSCC patients treated at our hospital.

Compared to adjacent tissues, SLC3A2, NUBPL, ACTB, and

DSTN were significantly upregulated in HNSCC tissues,

demonstrating high sensitivity and specificity for HNSCC

diagnosis. The constructed DRG prognostic signature showed

strong performance in predicting patient outcomes. Analysis of

clinical data and DRG expression in HNSCC patients suggests that

disulfidptosis may serve as a reliable biomarker for assessing

prognosis, offering more accurate predictions of disease

progression and treatment response. This is consistent with

previous findings where similar DRGs were shown to have

prognostic value in hepatocellular carcinoma, further supporting

their utility as prognostic markers across different cancer types (11).

Additionally, the role of these genes in immune regulation has been

confirmed, suggesting their potential to predict the efficacy of

immunotherapy in cancers such as HNSCC (9).

Four prognostic disulfidptosis-related genes (SLC3A2, NUBPL,

ACTB, DSTN) were identified as prognostic markers in this study.

Research indicates that these marker genes are closely related to

tumors. Specifically, Solute Carrier Family 3 Member A2 (SLC3A2)

is an important member of the solute carrier family, involved in the

regulation of amino acid transport proteins and mediating this
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exchange process. Studies have shown that high expression of

SLC3A2 is closely related to the growth, invasion, and metastasis

of various malignancies, such as lung adenocarcinoma and

colorectal cancer (51). Nucleotide Binding Protein - Like

(NUBPL) is an assembly factor of human mitochondrial complex
Frontiers in Immunology 25
I and the largest member of the mitochondrial respiratory chain.

Data suggest that NUBPL promotes the migration and invasion of

colorectal cancer cells by inducing EMT and activating ERK (52). b-
Actin (ACTB) is a highly conserved cytoskeletal structural protein

considered a common housekeeping gene and widely used as a
FIGURE 15

In vitro cell experiment of DSTN in HNSCC. (A) RT-qPCR analysis showing the knockout efficiency of DSTN in HSC3 and SCC9 cells. (B, C) CCK-8
assays were performed in stable HSC3 and SCC9 cells with DSTN knockdown. (D, E) Wound-healing assays in stable HSC3 and SCC9 cells with
DSTN knockdown. (F-H) Transwell migration and invasion assays in stable HSC3 and SCC9 cells with DSTN knockdown. (I, J) Clone formation
experiment following DSTN knockdown in HSC3 and SCC9 cells. ***p < 0.001.
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control for measuring the expression of various diseases. However,

ACTB is abnormally expressed in various cancers, altering the

cytoskeleton and affecting tumor invasiveness and metastasis (53).

DSTN, a key actin-binding protein, plays a significant role in actin

dynamics and cell migration. DSTN’s expression is modulated by

factors in the tumor microenvironment, impacting tumor

progression and invasion (54, 55).

In head and neck squamous cell carcinoma (HNSCC), genetic

variations can modulate the immune system’s response to cancer

cells, while disulfidptosis-related processes may influence the

activity and distribution of immune cells within the tumor

microenvironment. Recent studies have emphasized the impact of

immune-related processes on prognosis, supporting our findings of

a significant correlation between disulfidptosis-related genes

(DRGs) and immune cell infiltration (10). The growing body of

research on the copy number variation (CNV) of DRGs and its

effect on the immune microenvironment has provided valuable

insights into how epigenetic modifications can shape tumor

immunity, underscoring the potential of DRGs as therapeutic

targets for immune modulation (11). Although current research

has advanced our understanding of the role of disulfidptosis in

HNSCC, many critical questions remain unresolved. Future studies,

as suggested by recent reports (9), should focus on validating the

predictive accuracy of disulfidptosis-related prognostic models in

larger clinical cohorts. Additionally, it will be important to explore

how genetic variations and DNA methylation contribute to tumor

progression and treatment response. Addressing these challenges

will be crucial for translating current findings into clinical practice,

particularly for diverse patient populations and different

cancer subtypes.

We utilized multiple bioinformatics tools and algorithms to

analyze and interpret complex genomic data. Additionally, we

explored the correlation between DRG expression and patient

immune phenotypes, validating DRG expression using clinical

samples through PCR, immunohistochemistry, and cell line

experiments. These efforts provide new insights into tumor

immune escape mechanisms and contribute to the development

of novel immunoregulatory strategies. Our research revealed a

significant correlation between prognostic DRGs and the

abundance of certain immune cells, such as B cells, T regulatory

cells (Tregs), M2 macrophages, and neutrophils. This immune cell

infiltration was associated with improved clinical prognosis in

HNSCC patients. Moreover, using the TIMER database, we found

that the expression of NUBPL and ACTB was closely related to

tumor purity, while the correlation of SLC3A2 and DSTN with

tumor purity was less pronounced. ACTB (b-actin) is a cytoskeletal
protein commonly used as a marker for cell expression, and its

expression may more strongly reflect the quantity and activity of

tumor cells. NUBPL, on the other hand, may be associated with the

metabolic state, proliferation, or survival of tumor cells. In contrast,

DSTN, an actin-related protein involved in cytoskeletal remodeling

and cell migration, may be influenced by multiple factors in the

tumor microenvironment, not just by the proportion of tumor cells.

Therefore, DSTN expression might not entirely depend on changes

in tumor purity, especially in tumor samples with multiple cell

populations. The presence of immune cells, fibroblasts, and other
Frontiers in Immunology 26
non-tumor components may modulate DSTN expression.

Consequently, DSTN could play a crucial role in tumor cell

migration, invasion, and interactions with other cell types, with

its expression pattern potentially having a weaker relationship with

tumor purity due to dynamic regulation by the tumor

microenvironment. Most current research focuses primarily on T

cell immunity, with increasing evidence supporting the beneficial

role of B cell infiltration in the survival of HNSCC patients (56, 57).

In contrast, increased neutrophil infiltration and a higher

neutrophil-to-lymphocyte ratio are associated with poor

prognosis in HNSCC patients (58, 59). M2 macrophages are

known to promote tumor growth, invasion, and metastasis within

the tumor microenvironment (60). Recent studies have confirmed

that high levels of macrophage infiltration in the TME are

significantly correlated with poor prognosis in HNSCC patients

(61). Therefore, research into treatment strategies targeting these

immune cells holds significant clinical value.

In the tumor microenvironment (TME) of HNSCC, the

relationship between disulfide cell death and other modes of cell

death (such as apoptosis, necrosis, pyroptosis, ferroptosis, and

autophagy) is complex (62). Since different modes of cell death

share many key molecules, the epigenetic modifications of these

molecules can influence various types of cell death (63). Reactive

oxygen species (ROS) play a pivotal role in regulating different

forms of cell death. Excessive ROS can induce disulfide cell death

and may also promote ferroptosis (64), autophagy (65), pyroptosis

(66), copper death (67), and apoptosis (68) through mitochondrial

damage and DNA damage. Additionally, tumor-associated immune

cells (such as tumor-associated macrophages [TAMs] and myeloid-

derived suppressor cells [MDSCs]) influence the activation of

different cell death pathways by secreting inflammatory factors

and modulating the redox environment (69). Metabolic

abnormalities in HNSCC cells, such as lactate accumulation, may

alter the intracellular redox balance (70), determining the

preferential activation of disulfide cell death or other forms of cell

death. Therefore, regulating oxidative stress and metabolic state in

the HNSCC microenvironment can affect tumor cell sensitivity

to treatments (such as radiotherapy, chemotherapy, and

immunotherapy). DRGs may serve as novel therapeutic targets,

and their combination with other cell death pathways could

enhance treatment efficacy.

Recent studies have shown that immunosuppressive cells in the

tumor microenvironment may hinder anti-tumor immunotherapy,

leading to failure in cancer immunotherapy (71). TAMs are

important immune cells in the tumor microenvironment, playing

a significant role in the progression of many tumors, with M2-like

macrophages being the predominant phenotype (72). Chaudhari

et al. (73) found that the CD163 TAM score in oral squamous cell

carcinoma was significantly positively correlated with higher tumor

stage, lymph node metastasis, and tumor progression. Additionally,

TAMs can induce EMT in tumor cells, promoting HNSCC invasion

and metastasis and being associated with poor prognosis (74). CAFs

are the most abundant stromal cells in tumors, playing a crucial role

in tumorigenesis, development, metastasis, and drug resistance.

CAFs can secrete various signaling molecules, such as TGF-b,
Wnt, and Notch, which can activate the EMT process and
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promote tumor cell invasion and metastasis (75). This study used

scRNA-seq and bioinformatics techniques to reveal the close

correlation between prognostic DRGs and TAMs, and CAFs,

EMT-related markers. However, in this study, we found that high

infiltration levels of Macrophages.M2 cells in HNSCC were

associated with good prognosis. Therefore, the mechanisms by

which DRGs and immune cell phenotypes affect the prognosis of

HNSCC patients may require more evidence and discussion.

Currently, immunotherapy, particularly the use of immune

checkpoint inhibitors, has brought new hope to HNSCC

treatment, but not all patients benefit from it. In this study, we

explored the correlation between DRG expression and immune

checkpoint genes and found that CD274, PDCD1LG2, and

SIGLEC15 were highly expressed in the C1 group, and

PDCD1LG2, SIGLEC15 were higher in the high-risk group. We

also found that the high-risk group had higher TIDE scores,

suggesting that patients with lower risk scores might benefit from

ICI therapy. We collected four external independent immune

therapy cohorts (anti-PD-1/PD-L1/CTLA-4) and a clinical cohort

of advanced HNSCC patients receiving immune therapy to evaluate

the performance of DRGs in predicting immune therapy response.

The results indicated that DRGs have good predictive ability for

immune response in patients, with the low-risk group being more

suitable for immune therapy. We also found that high TMB, MSI,

and mRNAsi groups had poor prognosis for HNSCC patients and

were more prone to progression. Additionally, prognostic DRGs

were posit ively or negatively correlated with various

chemotherapeutic and targeted drugs, but further experiments are

needed to verify this. Therefore, these results provide new potential

therapeutic targets for HNSCC treatment.

In our study, DSTN was found to be significantly associated

with tumor progression and showed higher expression levels in

head and neck squamous cell carcinoma (HNSCC). As a protein

involved in cytoskeletal remodeling, DSTN has been confirmed in

several studies to play a critical role in tumor cell migration,

proliferation, and invasion, particularly during tumor metastasis.

Its key role in our computational model makes DSTN a candidate

gene for validation. Further survival analysis revealed that DSTN

was significantly correlated with overall survival (OS), progression-

free survival (PFS), and disease-specific survival (DSS), with P-

values of 0.02, 0.015, and 0.02, respectively, further supporting its

close association with tumor prognosis. Immune infiltration

analysis and transcriptomic data also indicated that DSTN is

closely related to immune cell infiltration in the tumor

microenvironment and tumor progression, reinforcing its

reliability as a potential oncogene. Cellular experiments showed

that DSTN was highly expressed in multiple cell lines, and clinical

tissue samples revealed significantly higher DSTN expression in

tumor tissues compared to normal tissues and other candidate

genes. We also found that DSTN exhibited stronger associations

with pathways such as hsa-miR-181c-5p/LUCAT1, IGFL2-AS1,

and hsa-miR-23b-5p, suggesting its significant role in tumor

regulation. Based on this evidence, we selected DSTN as the key

gene for validation.

In further experiments, we validated the effect of DSTN gene

knockout on two HNSCC cell lines. The results showed that DSTN
Frontiers in Immunology 27
knockout significantly reduced cell proliferation, migration, and

invasion, providing further evidence for its potential as a prognostic

marker in HNSCC. High DSTN expression is closely associated

with tumor cell proliferation. Studies have shown that DSTN

regulates cell cycle-related proteins to promote cell cycle

progression and drive tumor cell proliferation (76). Additionally,

DSTN enhances tumor cell proliferation by modulating the b-
catenin pathway. Zhang HJ et al. (77) found that DSTN promotes

the nuclear translocation of b-catenin and induces epithelial-

mesenchymal transition (EMT), increasing the malignancy of

lung cancer. DSTN is closely linked to EMT, a key process

through which tumor cells acquire the ability to migrate and

invade. DSTN interacts with the cytoskeleton to promote the

EMT process in tumor cells, enhancing their migratory capacity,

and drives this process by regulating markers such as N-cadherin

and Vimentin (78, 79). Furthermore, DSTN influences tumor

microenvironment remodeling by interacting with cancer-

associated fibroblasts (CAFs), further promoting tumor invasion

and metastasis (80–82). DSTN not only plays a role in actin

remodeling but may also regulate tumor cell migration and

invasion by activating key signaling pathways such as the Rho

family GTPases (83). Research by Wen R et al. (84) suggests that

DSTN knockdown enhances colorectal cancer cell sensitivity to

radiation therapy, while DSTN overexpression confers resistance to

radiation and enhances the malignant characteristics of tumor cells

through activation of the Wnt/b-catenin signaling pathway.

Additionally, we explored the regulatory axis of DSTN/hsa-miR-

181c-5p/LUCAT1 and IGFL2-AS1 in HNSCC, which may be

involved in tumor invasion and metastasis. Increasing evidence

suggests that the dysregulation of long non-coding RNAs

(lncRNAs) plays a crucial role in the pathogenesis of various

cancers, particularly in cell proliferation and apoptosis. Lung

cancer-associated transcript 1 (LUCAT1) was first identified as

being related to smoking-associated lung cancer, and studies have

shown that LUCAT1 promotes the development of laryngeal cancer

by targeting and inhibiting miR-493 (85). Abnormal expression of

LUCAT1 affects glioma cell biology by regulating ABCB1 and

promoting the activation of the RAS pathway (86). Moreover,

IGFL2-AS1 is highly expressed in several cancers, promoting tumor

progression by influencing cell proliferation, migration, and EMT

(87). Abnormal expression of IGFL2-AS1 enhances the proliferation,

migration, and invasion of colorectal cancer cells and is associated

with poor patient prognosis (88). Additionally, it is closely related to

radioresistance in colorectal cancer (89). While current research

provides significant insights into the role of disulfidptosis in

HNSCC, several questions remain. First, the disulfidptosis-related

prognostic model was constructed using the TCGA database and

validated through internal TCGA cohorts, external GEO cohorts, and

clinical sample data from our hospital, demonstrating consistent

predictive performance for HNSCC prognosis. However, larger

clinical cohorts are needed to validate the predictive accuracy of

the disulfidptosis-related prognostic model. Second, the precise

mechanisms by which disulfidptosis influences HNSCC

development require further investigation. Lastly, translating these

findings into clinical practice, especially in different populations and

cancer subtypes, necessitates additional research and clinical trials.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1456649
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qin et al. 10.3389/fimmu.2024.1456649
Despite the potential role of disulfidptosis-related genes in

HNSCC revealed through bioinformatics analysis and

experimental validation, there are still limitations, including

insufficient sample size, unclear functional mechanisms, and a

lack of clinical application validation. Future studies should

increase clinical sample sizes to further confirm the accuracy of

DRGs as prognostic markers and explore the mechanisms

underlying DRGs in HNSCC, particularly their impact on the

tumor microenvironment. Moreover, translating these findings

into clinical practice, especially regarding their effectiveness in

different populations and cancer subtypes, requires more research

and clinical trials.
5 Conclusion

This study is the first to elucidate the important role of

disulfidptosis in the development, clinical prognosis, and

immunotherapy response of HNSCC. Based on four

disulfidptosis-related genes, a prognostic model for predicting the

survival of HNSCC patients and a potential mRNA-miRNA-

lncRNA regulatory network were constructed, providing a new

perspective for HNSCC prognosis research. Additionally, the

disulfidptosis gene DSTN has been experimentally proven to be a

key gene in promoting HNSCC progression by enhancing tumor

cell proliferation, migration, and invasion. Its potential DSTN/hsa-

miR-181c-5p/LUCAT1, IGFL2-AS1 regulatory network may serve

as a novel therapeutic target.
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