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The dependence of tumor cells on glycolysis provides essential energy and raw

materials for their survival and growth. Recent research findings have indicated

that long chain non-coding RNAs (LncRNAs) have a key regulatory function in the

tumor glycolytic pathway and offer new opportunities for cancer therapy.

LncRNAs are analogous to a regulatory key during glycolysis. In this paper, we

review the mechanisms of LncRNA in the tumor glycolytic pathway and their

potential therapeutic strategies, including current alterations in cancer-related

energy metabolism with lncRNA mediating the expression of key enzymes,

lactate production and transport, and the mechanism of interaction with

transcription factors, miRNAs, and other molecules. Studies targeting LncRNA-

regulated tumor glycolytic pathways also offer the possibility of developing new

therapeutic strategies. By regulating LncRNA expression, the metabolic pathways

of tumor cells can be interfered with to inhibit tumor growth andmetastasis, thus

affecting the immune and drug resistance mechanisms of tumor cells. In

addition, lncRNAs have the capacity to function as molecular markers and

target therapies, thereby contributing novel strategies and approaches to the

field of personalized cancer therapy and prognosis evaluation. In conclusion,

LncRNA, as keymolecules regulating the tumor glycolysis pathway, reveals a new

mechanism of abnormal metabolism in cancer cells. Future research will more

thoroughly investigate the specific mechanisms of LncRNA glycolysis regulation

and develop corresponding therapeutic strategies, thereby fostering new

optimism for the realization of precision medicine.
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Introduction

Cancer is the most prevalent form of malignant tumor, resulting

from genetic mutations that induce uncontrolled cell growth and

division (1–3). Metabolic reprogramming is the distinctive

biochemical signature shown by cancer cells, one of the “cancer

hallmarks” (4, 5), which allows cancer cells to adapt to the

microenvironment through plasticity and high flexibility in

nutrient acquisition and utilization, particularly metabolic

changes associated with key steps in cancer progression, such as

proliferation, the initiation of metastasis, circulation, and

colonization (6). This metabolic phenotype is typified by a

preference for using glycolysis as a source of non-aerobic energy

(7). This peculiar metabolic occurrence is frequently called the

“Warburg effect” (8, 9). LncRNAs actively regulate the cancer

epigenome and are significant participants in the regulation of the

Warburg effect (10). The observation that a significant

proportion of lncRNAs are specifically expressed in tumors and

can regulate a diverse array of tumor biological processes has led to

lncRNAs showing great promise in tumor therapy, especially

lncRNA-mediated glucose metabolism signaling pathways and

transcription factors, highlighting important recent insights into

the mechanisms regulating cancer metabolism (11–13).

Notwithstanding these recent advancements, there exists an

insufficient comprehension of cancer cell metabolism, with a

particular dearth of research in the domain of LncRNA-mediated

regulation of cancer-associated metabolic reprogramming

pertaining to glycolysis.

Long non-coding RNAs (lncRNAs) comprise a class of RNA

molecules distinguished by their length in excess of 200 nucleotides

and lack the ability to encode proteins. They may participate in a

vast array of physiopathological processes associated with tumors.

Their mechanisms of action include: i) lncRNAs control cellular

processes by competitively adsorbing, as well as down-regulating

miRNAs via base complementation. ii) lncRNAs attach to

epigenetically associated proteins and modify their post-

transcriptional translation. iii)lncRNAs can influence target gene

expression through chromatin modifiers and transcription factors,

among other regulatory proteins. iv) lncRNAs are capable of

interacting with and modulating the activity of proteases. V)

lncRNAs are capable of regulating cellular processes. VI) Triplets

of lncRNAs can influence the transcription of certain genes when

they bind to genomic DNA (14–17).

Recently, a genome-wide analysis of the human cancer

transcriptome revealed that lncRNA expression is among the most

prevalent transcriptional changes observed in cancer (18, 19).

Consolidating data also suggest that chemoresistance is largely

determined by the amount of ATP inside cells, and that lncRNAs

can function as efficacious therapeutic targets for an array of

malignancies (20). In this paper, we review the mechanisms of

LncRNA in the tumor glycolytic pathway and their potential

therapeutic strategies, including current alterations in cancer-

related energy metabolism with lncRNA mediating the expression

of key enzymes, lactate production and transport, and the mechanism

of interaction with transcription factors, miRNAs, and other
Frontiers in Immunology 02
molecules. By regulating LncRNA expression, the metabolic

pathways of tumor cells can be interfered with to inhibit tumor

growth andmetastasis, thus affecting the immune and drug resistance

mechanisms of tumor cells. Furthermore, we discuss the clinical

importance of these lncRNAs, including potential application

scenarios as therapeutic biomarkers (21) (Figure 1).
Mechanisms governing the function of
glycolysis-associated lncRNAs in
cancer cells

Glucose metabolism, which includes processes such as oxidative

phosphorylation, glucose uptake, and lactate production, serves as a

crucial energy supply for cancer cells. Cancer cells alter glucose

metabolism to encourage the development, survival, and

medication resistance of tumor cells. LncRNAs exhibit aberrant

expression across a broad spectrum of cancer cell types and are

essential for a number of cancer’s hallmark characteristics (22, 23).

LncRNAs play regulatory roles by means of interaction with

proteins, mRNAs, ncRNAs, and DNA, serving as numerous

functional molecules in numerous cellular processes, linked to

cancer, such as signals, decoys, scaffolds, and guides (24). Here,

we summarize how lncRNAs regulate glucose metabolism by

modulating relevant signaling pathways, as well as mediating the

activities of metabolism-associated transcription factors and

enzymes, with an emphasis on understanding the mechanisms

that govern the metabolism of malignancy.
Glycolysis-associated lncRNAs regulate
cancer energy metabolism involved in
signaling pathways

Alterations in metabolism-related proteins are correlated with

modifications in metabolic pathways, which ultimately become

carcinogenic signaling pathways or are triggered by oncogenes

lncRNAs that can indirectly regulate metabolic pathways through

post-translational modifications. Among the results noted,

functional modifications in the adenosine monophosphate-

activated protein kinase (AMPK) pathway, the metastasis-

associated lung adenocarcinoma (LA) transcript 1 (MALAT1)

pathway, and the Hippo/YAP pathway are particularly noticeable.

AMPK
As a significant energy sensor, AMPK is indispensable for

regulating biological energy metabolism. AMPK activation can

enhance glucose metabolism and antioxidant synthesis to control

metabolic reprogramming and redox balance in response to

metabolic stress. Recent research indicates that numerous

signaling mechanisms regulate AMPK phosphorylation

epigenetical ly , including LA-associated MACC1-AS1,

mesenchymal stem cell-induced lncRNA HCP5, and UNC5B

antisense lncRNA 1 (UNC5B-AS1). A widely known oncogene,

MACC1, is the transcriptional regulator from which MACC1-AS1
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is an antisense lncRNA transcript. Another study found that

MACC1-AS1 overexpression promoted hexokinase 2 (HK2) and

lactate dehydrogenase A (LDHA) activities, decreased reactive

oxygen species (ROS) levels, and a nicotinamide adenine

dinucleotide/nicotinamide adenine dinucleotide phosphate

(NADP+/NAPDH) ratio, the upregulation of MACC1-AS1 was

observed to enhance the expression of MACC1 in glioma cells

through the activation of the AMPK pathway, hence exerting

influence on glucose metabolism and redox balance, exerting a

tumor-promoting effect (25). Furthermore, MSC-induced lncRNA

HCP5 stimulates fatty acid oxidation through the miR-3619-5p/

AMPK/PGC1a/CEBPB axis , promoting stemness and

chemoresistance in gastric cancer (26). Suppressing UNC5B-AS1

can reduce the development and spread of colon cancer by

upregulating the expression of miR-622 and blocking the AMPK

and PI3K/AKT pathways (27). AMPK is a crucial regulator of

glucose metabolism in tumor cells; it can reduce the energy supply

of tumor cells by inhibiting the glycolytic pathway and transporter

protein expression, while decreasing antioxidant capacity, thereby

diminishing metabolic plasticity.

MALAT1
The lncRNA known as MALAT1 has been well recognized as a

pivotal contributor to the progression of cancer. The lncRNA

MALAT1 also engages in competitive interactions using natural

microRNAs to adjust the downstream gene expression levels (28).

Knockdown of MALAT1 inhibited MYBL2 expression and reduced

the level of mammalian target of rapamycin (mTOR) pathway

phosphorylation. The inhibition of MALAT1 and MYBL2 or the
Frontiers in Immunology 03
administration of rapamycin, a mTOR pathway inhibitor, resulted

in a substantial suppression of prostate cancer (PCa) cell growth

and a notable decrease in the Warburg effect. In addition, up-

frameshift protein 1(UPF1) may regulate MALAT1, and the UPF1/

MALAT1 pathways might potentially serve as a promising area of

therapeutic exploration for the treatment of gastric cancer. The

levels of UPF1 expression in healthy lung tissues were higher than

in human LA tissues, suggesting that a reduction in nonsense-

mediated decay (NMD) contributes to LA formation. UPF1 has

additionally been documented as a tumor suppressor (29, 30).

Another study found that, in combination with the translation

process of lncRNA MALAT1 as well as its manifestation in cancer

cells, the association between lncRNA-MALAT1 polymorphisms

and carcinogenesis should be revealed. Nevertheless, it is imperative

to validate this idea at subsequent stages by specific experiments. As

an illustration, by studying the lncRNA-MALAT1’s inhibitory effect

on metabolites and assessing the outcomes by measuring the spread

or proliferation of cancer cells, the study of MALAT1 is important

in inhibiting the proliferation of tumor cells.

Hippo/YAP
The Hippo/YAP pathway plays a pivotal role in various metabolic

processes within the context of cancer, encompassing cell viability,

proliferation, angiogenesis, and energy metabolism. Some lncRNAs,

such as LINC00857, GHET1, and TNRC6C-AS1, are closely connected

to the regulation of energy metabolism and yes-associated protein

(YAP) phosphorylation in cancer. It has been shown that LncRNA

GHET1 promotes hypoxia-induced triple-negative breast cancer

(TNBC) proliferation, invasion, and glycolysis via the Hippo/YAP
FIGURE 1

Mechanism, function, and clinical significance of glycolysis-associated lncRNAs.
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signaling pathway (31). Mechanistically, YAP was retained in the

cytoplasm when lncRNA GHET1 was inhibited, leading to a rise in

LATS1 and YAP phosphorylation levels. Conversely, hypoxia or

overexpression of the lncRNA GHET1 promoted the growth of

TNBC and the nuclear translocation of YAP. However, Lin et al.

(32) demonstrated that ovarian cancer glycolysis and progression were

controlled by LINC00857 by Spiking miR-486-5p, which up-regulated

YAP1 and hence regulated the Hippo signaling pathway, which may

potentially offer novel insights for therapeutic approaches targeting

ovarian cancer. More information and mechanisms by which

glycolysis-associated lncRNAs regulate cancer through signaling

pathways are shown in Table 1.

In conclusion, Hippo-YAP signaling both regulates and is

regulated by metabolism, thereby making a significant contribution

to cellular metabolism. Consequently, the Hippo/YAP signaling

network is utilized in a variety of environments and can influence

the development of pancreatic b-cells involved in glucose

metabolism, lipid metabolism, and autophagy. There are numerous

putative LncRNA-mediated pathways associated with glycolysis, such

as H19, NF-KB, and PTEN, the mechanisms of which remain

unknown. We have only provided summaries of three

representative signaling pathways. The correlation between intricate

and adaptable signaling pathways and the energy metabolism of

tumors must be substantiated through additional experiments.
Glycolysis-associated lncRNAs regulate
cancer energy metabolism of
transcription factors.

Considering that lncRNAs influence the regulation of targets by

transcription factors, they also regulate the reprogramming of

energy metabolism via glycolysis-associated transcription factors.

LncRNAs exert regulatory control over the activity of these proteins

via processes such as hydroxylation, phosphorylation, and

ubiquitination, which enhances the manifestation of enzymes

associated with metabolic processes. Additionally, lncRNAs
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facilitate the malignant evolution of neoplastic growths.

Henceforth, we shall proceed to deliberate upon the recently

documented mechanism of regulating representative factors (33).

HIF-1a
In rapidly growing tumor tissues, hypoxia-inducible factor-1a (HIF-

1a) performs an essential function in the metabolic reprogramming of

tumor cells through the stimulation of gene transcription that encodes

glycolytic enzymes and glucose transporters. For example, HIF-1a
stimulates the transcription of lncRNA RAET1K via miR-100-5p to

control the glycolysis induced by hypoxia in hepatocellular carcinoma

cells (34). Furthermore, by creating a positive feedback loop involving

AKT/HIF-1a signaling, the overexpression of lncRNA CASC9 under

hypoxic settings enhances glycolysis and the epithelial-mesenchymal

transition in pancreatic cancer (35, 36).

Interestingly, tumor-associated macrophages (Tam) deliver bone

marrow-specific lncRNA through extracellular vesicles. HIF-1a-
stabilizing long-stranded lncRNA HISLA increases resistance to

apoptosis and aerobic glycolysis in breast cancer cells.

Mechanistically, HISLA prevents PHD2 from interacting with HIF-

1a and hinders HIF-1a’s hydroxylation and degradation. In turn,

HISLA in macrophages is upregulated by lactate produced from

glycolytic tumor cells, creating a feed-forward loop between tumor

cells and tam. And restricting the release of HISLA from extracellular

vesicles in breast cancer in vivo reduces glycolysis and chemoresistance

(37). Meanwhile, Chen et al. demonstrated that the HIF-1a/glycolysis
axis plays a role in FAM83A-AS1-mediated LA proliferation and

metastasis, and the inhibition of tumor development and suppression

of HIF-1a expression and glycolysis-related gene expression are seen in

vivowith knockdown of FAM83A-AS1, making it a possible biomarker

and treatment target for people with LA (38). However, given HIF-1a’s
substantial influence on the expression of genes linked to the

development of cancer and the inadequate effectiveness of

chemotherapy, the future direction will be to create pharmaceuticals

that target HIF-1 with more specificity by elucidating the molecular

architecture of the structural domains that mediate HIF-1a’s
critical activities.
TABLE 1 Glycolysis-associated lncRNAs regulate cancer through signaling pathways.

LncRNA Level Cancer type Mechanisms Glycolysis Biological function Ref.

MACC1- AS1 ↑ Glioma AMPK Activates Proliferation, apoptosis, metabolic plasticity (25)

HCP5 ↑ Gastric cancer miR-3619-5p/AMPK/
PGC1a/CEBPB

Activates Promote stemness, chemo-resistance (26)

UNC5B-AS1 ↑ Colorectal cancer miR-622/AMPK/PI3K/AKT Activates Tumor growth, metastasis (27)

MALAT1 ↓ Prostate Cancer MALAT1/MYBL2/mTOR Suppresses intracellular acidification, apoptosis (29)

MALAT1 ↑ NSCLC miR-613 Activates Proliferation, colony formation, apoptosis (115)

GHET1 ↑ Triple-Negative
Breast Cancer

Hippo/YAP Activates Proliferation, invasion (31)

LINC00857 ↑ Ovarian cancer Hippo Activates Proliferation, migration, invasion,
suppresses apoptosis

(32)
frontier
The arrows denote upregulation or downregulation in cancer.
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c-MYC
Being a “master regulator” of cellular metabolism and cancer

progression, c-MYC is among the most significant transcription

factors in numerous types of cancer cells that are associated with

reprogramming, proliferation, and resistance to chemotherapy. C-

MYC exhibits both genetic and epigenetic changes in a wide variety

of malignancies (39). There are reports indicating that lncRNAs

influence the regulation of cancer energy metabolism via c-MYC

post-translational modifications. Numerous lncRNAs exhibit

substantial upregulation and serve as oncogenes within the

colorectal or renal cancers, including the prostate cancer

glycolysis-associated LncRNA SNHG7, the long intergenic

noncoding RNA generated by energy stress FNCC1, mediated by

the FoxO transcription factor, FILNC1, long intergenic noncoding

RNA for IGF2BP2 stability (lncRNA LINRIS), and LINC00261. On

a mechanical level, in prostate cancer PC-3 and DU-145 cells,

SNHG7 stimulated glycolysis via the SRSF1/c-MYC axis; N6-

methyladenosine (m6A) modification by methyltransferase-like 3

(METTL3) boosted SNHG7 stability (40).

Meanwhile, FILNC1 and LINRIS also regulate tumor cell

proliferation. In renal tumors, knockdown of FILNC1 under

circumstances of glucose deprivation only increases c-MYC

protein levels and suggests that energy stress promotes the

formation of tumors by regulating the FILNC1-auf1-c-MYC

signaling axis through a minimum of two methods (41). In

contrast, Wang et al. showed in vivo experiments that blocking

LINRIS reduced the growth of tumors in both in situ and patient-

derived xenograft (PDX) models. Mechanistically, LINRIS prevents

IGF2BP2 from being stabilized by blocking its ubiquitination at the

K139 site, a procedure that stops the autophagy-lysosomal pathway

(alkaline phosphatase) from degrading IGF2BP2. Therefore, down-

regulation of LINRIS mediated by MYC attenuates the downstream

effects of IGF2BP2 and thus inhibits colorectal cancer (CRC) cell

glycolysis (42). Furthermore, LINC00261 exerts its biological

function by binding to miR-222-3p and triggering the HIPK2/

ERK/c-MYC pathway. LINC00261 also inhibits the expression of c-

MYC by sequestering IGF2BP1. It has been discovered that

LINC00261 has unique epigenetic and post-transcriptional

regulation mechanisms that act as tumor suppressors in

pancreatic cancer, which could be beneficial for pancreatic cancer

targeted treatment (43). In the moment, even though there are

currently no c-MYC targeting medicines with any kind of clinical

approval, more and more research is focused on addressing c-MYC

targeting studies to develop viable approaches for treating

tumors (44).

TGF-b1
Transforming growth factor-b1 (TGF-b1) exerts a wide range

of activities during the process of developing an embryo, including

differentiating cells and tissues, angiogenesis, wound healing,

immunological response, and carcinogenesis. Several recent

experiments have directly regulated tumor cell metabolism by

mediating TGF-b1 through the glycolytic pathway. For example,

TGF-b1 amplification stimulates the generation of ATP, lactate, and

glucose absorption in primary hepatocellular carcinoma (HCC)
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cells. TGF-b1 serves as an upstream positive regulator of urothelial

carcinoma-associated 1 (UCA1), which in turn is an upstream

positive regulator of hexokinase-2 (HK2), and tumor-promoting

lncRNA TGF-b1 tends to be up-regulated in tissues (45).

Interestingly, quantitative reverse transcription polymerase chain

reaction (qRT-PCR) results demonstrated that overexpression of

exogenous lncRNA UCA1 upregulated HK2 and LDHA mRNA

expression, whereas inhibition of lncRNA-UCA1 attenuated the

glycolytic pathway, inhibiting prolactin (PRL) production and the

proliferation of pituitary cancer cells (46). Meanwhile, the study has

shown that LINC00973 has direct binding affinity towards LDHA,

hence augmenting its enzymatic activity and facilitating glycolysis,

ultimately leading to the proliferation of cancer cells (47, 48).

Recent research indicates that LncDACH1 overexpression inhibits

aberrant activation and collagen deposition induced by TGF-1,

thereby preventing pulmonary fibrosis. Further, interestingly, the

authors established that TGF-b1 facilitates the activation of cardiac

fibroblasts, promotes the enhancement of glycolysis, and inhibits

the expression of Linc00092. TGF-b1 is intimately associated with

glycolysis and has the ability to modulate both lncRNA and related

enzyme activity, making its regulation a very versatile and extensive

study subject (49, 50). More information and mechanisms by

which glycolysis-associated lncRNAs regulate cancer through

transcription factors are shown in Table 2.

In summary, we found that the impact of glycolysis-associated

transcription factors on tumors has received widespread attention.

Transcription factors can regulate a variety of genes, even including

some key enzymes, have important roles in metabolic shifts and the

development of tumor cells, and can provide targets for the

development of new tumor therapeutic strategies. Nevertheless,

numerous challenges remain to be addressed when dealing with

the intricate regulatory network. The interplay between various

factors and the multifunctionality of transcription factors

necessitate careful consideration. Additionally, the limitations

imposed by detection technology pose a significant obstacle to the

translation of these findings to clinical applications.
Glycolysis-associated lncRNAs regulate
cancer energy metabolism of
metabolic enzymes

During cancer development, lncRNAs can also regulate many

glycolysis-related enzymes (51). Key regulators of glycolytic

enzymes by lncRNAs include 6-phosphofructokinase1, glucose-6-

phosphate dehydrogenase, pyruvate kinase 2 (PKM2), LDHA, HK,

and glucose transporter protein 1 (GLUT1). Thus, aberrant

regulation and expression of glycolytic pathway enzymes are

essential for tumorigenesis. For example, the lncRNA TMEM105,

which is related to glycolysis, exhibits upregulation of LDHA and

facilitates the liver metastasis of breast cancer by acting as a miR-

1208 sponge (52). The manifestation of G6PD is enhanced by

ELFN1-AS1 via the promotion of TP53 degradation, leading to the

activation of the pentose phosphate pathway (PPP). Zhang et al.

identified that cellular migration, invasion, and proliferation of
frontiersin.org
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esophageal cancer tumor cells were inhibited when ELFN1-AS1 was

suppressed. This was achieved by inhibiting miR-183-3p, which

upregulated glutamine-fructose-6-phosphate transaminase 1

(GFPT1) (53).

PKM2 is an essential metabolic enzyme that converts

phosphoenolpyruvate to pyruvate, playing a vital role in cellular

metabolism and tumor proliferation. In recent studies, in order to

increase aerobic glycolysis, SNHG6 and hnRNPA1 are lncRNAs

that interact to promote the growth of colorectal cancer by

regulating alternative splicing of PKM. Meanwhile, LncRNA

HULC modulates the enzymatic activities of LDHA and PKM2

by increasing their phosphorylation levels and enhancing their

interaction with the intracellular structural domain of the

upstream kinase FGFR1 (54, 55). Meanwhile, glycolysis-associated

enzymes represented by PKM2 are diverse and mechanistically

complex, and they are closely linked to transcription factors and

profoundly influence material metabolism, functioning in

interaction with multiple lncRNAs.

Lactic acid, a major metabolite of glycolysis, has garnered

considerable interest in recent years due to its role as a regulator

that connects tumor progression and immunity. Zhao (56) et al.

found that lncRNA HITT inhibited lactate production by

suppressing the oligomerization of PKM2, thereby reducing

tumor growth and macrophage polarization. Interestingly,

hypoxic conditions have been found to drive the glycolytic

activity of tumor-associated fibroblasts (CAF) through capillary

dilatation ataxia mutated (ATM) oxidation, glucose transporter

protein 1 phosphorylation, and PKM2 overexpression, and that

lactic acid produced by CAF is ultimately used to drive breast cancer

cell invasion through activation of the TGF1/p38 MAPK/MMP2/9

signaling axis and promotion of mitochondrial oxidative

phosphorylation (57, 58). The Meanwhile, there exists a

correlation between the spatial distribution of lactate

concentration and the occurrence of lactation. Identifying several

crucial lactation sites within the microenvironment of the tumor
Frontiers in Immunology 06
can aid in the recruitment of immune cells, induce modifications to

the microenvironment, and collaborate with additional epigenetic

modifications to stimulate tumorigenesis, progression, and direct

modulation of gene expression associated with critical tumor

pathways (59, 60). However, relevant studies are not focused

enough and lack clinical validation, and further experimental data

are urgently needed to prove their mechanisms. Additional research

is warranted to explore the various functions and specific

mechanisms underlying lactonization, as well as the regulatory

enzymes involved in this process. Understanding the role of

lactonization in exercise, lipolysis, neuroprotection, and

angiogenesis is crucial, as it may offer important understandings

for the creation of new medical diagnostics and treatment

approaches for chronic diseases, including atherosclerosis and

Alzheimer’s disease (61, 62). In a similar vein, it has been shown

that lncRNAs such as UPF1, TUG1, and MALAT1 increase the

activity of kinases connected to glycolysis, which has a facilitative

effect on the glycolytic process (63). Meanwhile, from precancerous

polyps to distant metastases, lncRNAs are frequently engaged in

various phases of cancer and can be considered effective diagnostic

biomarkers. More information and mechanisms by which

glycolysis-associated lncRNAs regulate cancer through metabolic

enzymes are shown in Table 3, Figure 2.

In conclusion, experimental investigations are increasingly

focused on the post-transcriptional regulation of lncRNAs and

the competitive binding of miRNAs to affect the activity and

expression of enzymes, with a particular emphasis on the role of

lactate in metabolism. While initial studies may have identified a

correlation between a particular LncRNA and a glycolysis-related

enzyme, elucidating its precise significance within the context of the

entire biological process remains a formidable task. In the past

couple of years, a growing multitude of investigations have

furnished empirical evidence supporting the involvement of

lncRNA in the pathogenesis of cancer (64). In a word, the

interaction between lncRNAs and metabolic enzymes is extensive
TABLE 2 Glycolysis-associated lncRNAs regulate cancer through transcription factors.

LncRNA Level Cancer type Mechanisms Glycolysis Biological function Ref.

CASC9 ↑ Pancreatic cancer AKT/HIF-1a Activates Proliferation, migration (116)

FAM83A-
AS1

↑ Lung adenocarcinoma FAM83A-AS1/HIF-1a/glycolysis axis Activates Migration, invasion (38)

RAET1K ↓ HCC HIF1A/lncRNA RAET1K/miR-100-5p Suppresses Proliferation, invasion (34)

SNHG7 ↑ Prostate cancer SRSF1/c-Myc Activates Proliferation (40)

LINRIS ↑ Colorectal cancer LINRIS-IGF2BP2-MYC Activates Proliferation (42)

FILNC1 ↓ Renal tumor FILNC1–AUF1-c-Myc Activates Tumor growth, apoptosis (41)

LINC00261 ↓ Pancreatic cancer a miR-222-3p/HIPK2/ERK/c-myc Activates Proliferation,
migration, invasion

(43)

LINC00629
SLC2A1-DT

↓
↑

Ovarian cancer
HCC

HOXB4/LINC00629/c-Myc
METTL3/SLC2A1-DT/b-catenin/

c-Myc

Activates
Activates

Proliferation, metastasis
Proliferation, metastasis

(117)
(118)

UCA1 ↑
Hepatocellular
Carcinoma

TGF-b1 Activates
Proliferation (45)
The arrows denote upregulation or downregulation in cancer.
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and complex, necessitating further investigation and scholarly

inquiry to fully comprehend the specific mechanisms and

interconnections involved.
Multiple mediation of glycolysis-
associated lncRNAs in tumor
immune microenvironment

In the microenvironment of the tumor, the existence of

immunological cells and immunological-related mediators plays

an essential and pivotal role in facilitating tumor development (65,

66). Numerous research investigations have proven that glycolysis-

associated lncRNAs are essential regulatory molecules that directly

block the cancer immunity cycle, in addition to activating negative

regulatory pathways to restrict tumor immunity. LncRNAs reshape
Frontiers in Immunology 07
the tumor microenvironment via the recruitment and activation of

innate and adaptive lymphoid cells (67, 68). Subsequently, we

concentrate on the correlation between glycolysis-associated

lncRNAs, dendritic cells, T cells, B cells, and natural killer cells.
Dendritic cells

The glycolytic pathway plays a crucial role in the activation and

function of DC cells. Recent studies have found that DC cells enhance

glycolytic activity when stimulated by signals in the cancer immune

microenvironment. The function of lncRNAs in regulation produced

from macrophages in the modulation of glycolysis in tumor cells has

been shown, and host lncRNA MIR4435-2HG in primary myeloid

dendritic cells (mDCs) from elite controllers (ECs) responded to

TLR3-stimulated increases in oxidative phosphorylation and

glycolytic activity by mTOR signaling pathway participants through
TABLE 3 Glycolysis-associated lncRNAs regulate cancer through metabolic enzymes.

LncRNA Level Cancer type Mechanisms Glycolysis Biological function Ref.

HULC ↑ Aerobic glycolysis LDHA/PKM7 Activates Proliferation (55)

SNHG6 ↑ Colorectal cancer SNHG6/hnRNPA1/PKM↑ Activates Proliferation, invasion and migration (54)

CCAT1 ↑ Gastric cancer PTBP1/PKM2/glycolysis Activates Proliferation, migration, invasion (119)

FEZF1-AS1 ↑ Colorectal cancer FEZF1-AS1/PKM2/ STAT3 Activates Proliferation, metastasis (120)

ZNF674-AS1 ↓ Hepatic Carcinoma
HK2、PFKL、
PKM2, GLUT1

Activates
Proliferation, invasion (121)

495810 ↑ Colorectal cancer
Ferulic Acid and P-Coumaric

Acid/
lncRNA 495810/PKM2

Suppresses
Tumor growth (122)

WFDC21P ↑ Hepatocellular carcinoma
Nur77-WFDC21P-

PFKP/PKM2
Suppresses

Proliferation, tumor growth, metastasis (123)

HITT ↓ Tumor HITT-PKM2 Suppresses
Reduce tumor growth and
macrophage polarization

(56)

LINC01852 ↓ CRC LINC01852/TRIM72/
SRSF5/PKM2

Suppresses Proliferation, chemoresistance (124)

SNHG3 ↑ castration-resistant
prostate cancer

SNHG3 / miR-139-5p
/ PKM2

Activates Proliferation, enzalutamide resistance (125)

PWRN1 ↓ HCC PKM2 Suppresses Proliferation (126)

TMPO-AS1 ↓ CRC miR-1270/PKM2 Suppresses Proliferation, migration, invasion (127)

ELFN1-AS1 ↑ Colorectal cancer
YY1 / ELFN1-AS1 / TP53

/ G6PD
Activates

Proliferation, migration, invasion and
suppresses apoptosis

(53)

SLC9A3-AS1 ↑ Liver cancer miR-449b-5p/LDHA Activates Proliferation, migration, invasion (98)

LINC00973 ↑ Cancer LDHA/Warburg Activates Proliferation (47)

KCNQ1OT1 ↑ Osteosarcoma
kcnq10t1 /miR-34c-

5p/ALDOA
Activates

Proliferation and suppressed apoptosis (99)

SLCC1 ↑ Colorectal cancer
SNP rs6695584/
lncSLCC1/HK2

Activates
Tumor growth, progression. (128)

RNCR2 ↑ Melanoma miR-495-3p/HK2 Activates Proliferation, EMT (129)

MIR17HG ↑ Colorectal cancer miR-138-5p/HK1 Activates Migration, invasion (130)

MBNL1-AS1 ↓ Liver cancer miR-708-5p/ HK2/ HK1 Suppresses Migration, invasion (97)
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the enhancement of immunometabolism activity of primary myeloid

dendritic cells in EC by using specific epigenetic alterations on

constituents of the mTOR signaling pathway (69). In contrast, it

has been found that DC cells migration is inhibited by lnc-DPF3

produced by the CCR7 chemokine receptor through the inhibition of

glycolysis mediated by HIF-1a. Furthermore, the critical role of lnc-

DPF3 in impeding the late phase of dendritic cell migration and

preventing inflammatory pathogenesis while preserving immune

homeostasis is its delayed and induced function (70). As the

understanding of the importance of lncRNAs and glycolysis in DC

cell function increases, researchers are exploring the possibility of

applying this knowledge to cancer immunotherapy. By targeting

specific lncRNAs or modulating glycolytic pathways, it is possible

to enhance the anti-tumor capacity of DC cells, thereby improving

the outcome of cancer patients.
T cells

Metabolic reprogramming is required for T cells to activate and

perform their effector functions, and enhanced glycolysis can

support T cells in high energy-demanding anti-tumor immune

responses. Studies have shown that the cancer immunogenic

lncRNA LIMIT, by targeting the LIMIT-GBP-HSF1 signaling

axis, may restore MHC-I expression and function by cancer

immunotherapy, which may also strengthen the T-cell-mediated

immune response against cancers. As a result, lncRNA LIMIT may

be considered an immunogenic target (71). Similarly, the

researchers Zhao et al. made the observation that ovarian cancer

cells exhibit elevated amounts of the microRNAs miR-101 and miR-

26a. These microRNAs were shown to suppress the production of

the methyltransferase EZH2. Consequently, EZH2 downregulation

leads to glycolytic limitation in T cells and subsequent impairment

of their functions (72). Meanwhile, numerous experiments have
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demonstrated that patients with grade II-III gliomas exhibit

enhanced T lymphocyte infiltration, while Guo et al. used

bioinformatics analysis and RT-qPCR to show that knockdown of

lncRNA significantly reduces SHG-44 cell viability and proliferation

and inhibits glycolysis, demonstrating the potential regulatory role

of CRNDE in glucose metabolism in grade II-III gliomas. potential

regulatory role of CRNDE in glucose metabolism in grade II-III

gliomas (73–75). Furthermore, LncRNA NEAT1 plays a key role in

the suppression of immune surveillance by T cells. NEAT1 is

upregulated and positively modulates the expression of LDHA in

prostate cancer. The anti-tumor effects are enhanced by the

secretion of CD8+ T lymphocyte factors TNF-a, IFN-g, and
granzyme B, which is promoted by the knockdown of NEAT

(76). The current study is still in its preliminary stages, but there

is great potential for glycolysis-associated lncRNAs to be used in the

cancer immune microenvironment. Future studies may further

explore how these lncRNAs can be exploited clinically to enhance

T cell-mediated anti-tumor immune responses, especially when

used in combination with other immunotherapeutic approaches.
B cells

Although there have been fewer studies on the direct regulation

of B-cell glycolysis by lncRNAs, a number of studies have begun to

reveal potential mechanisms in this area. For example, Xie et al.

demonstrated that PDL1+ B cells were induced by the exosome

lncRNA HOTAIR in order to inhibit antitumor immunity in

colorectal cancer. Mechanistically, PDL1 expression on B cells was

increased by exosome HOTAIR, which prevented ubiquitination

degradation of the PKM2 protein and caused PKM2 to stimulate

STAT3 transcription (77). Notably, extracellular miR-122 from

hepatocytes can be delivered to hepatic stellate cells (HSCs) to

regulate their proliferation and gene expression, and ectopic miR-
FIGURE 2

Mechanisms of glycolysis-associated LncRNA-mediated signaling pathways and enzymes of meditation in cancer.
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122 expression inhibits BCL2 expression in human HSC (LX-2) cells

(78). Meanwhile, Zhao et al. demonstrated that the MYC-regulated

lncRNA NEAT1 promotes B-ce l l p ro l i f e ra t i on and

lymphangiogenesis through the miR-34b-5p-GLI1 pathway in

diffuse large B-cell lymphoma (79). These lncRNAs may indirectly

affect the glycolytic process of B cells by regulating key enzymes of

glycolysis or metabolic signaling pathways, thereby altering the

behavior of B cells in the cancer immune microenvironment.
Natural killer cells

The cytotoxic activity of NK cells can also be regulated by

lncRNAs. NK cells are also one of the key immune components in

the surveillance and eradication of neuroblastoma (NB). Within

the neuroblastoma framework, data have demonstrated

that the exosomal lncRNA EPB41L4A-AS1 translocates from

CD56brightNK to CD56dimNK and inhibits glycolysis of target NKs.

By means of exosomal transfer of the metabolism inhibitory lncRNA

EPB41L4A-AS1, cross-talk between heterogeneous NK subpopulations

was accomplished (80). Therefore, Exosomal lncRNA NEAT1 is up-

regulated in multiple myeloma, and NEAT1 represses PBX1 by

recruiting EZH2. Knockdown of PBX1 attenuates the effect of

NEAT1-silenced exosomes on NK cells and multiple myeloma cells.

Additionally, it enhances the expression of NKG2D, TNFa, and IFNg
in tumor tissues, hence promoting immune evasion by multiple

myeloma cells (81). More information and mechanisms of glycolysis-

associated lncRNAs regulating in tumor immune microenvironment

are shown in Figure 3.

Notably, further research is warranted to determine whether

lncRNAs regulate immune cell function synergistically, and future

investigations may focus on identifying additional lncRNAs with

potential combinatorial functions in immune cell behavior regulation.
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Risk models of glycolysis-associated
lncRNAs in tumor
immune microenvironment

An increasing number of lncRNA risk models for

immunization have been developed in recent years to improve

disease progression and provide clinical decision-making for cancer

patients. Representative models, including those related to

glycolysis, are a signature consisting of seven lncRNAs developed

by Feng’s team, BC-associated LRLPS, and a multistep model of

lncRNA-lncRNA cooperation that synergistically regulates

functional modules. For example, a prognostic signature

comprising seven immune-associated lncRNAs, namely

AL391832.3, LINC00892, LINC02207, LINC02416, and PSMB8,

demonstrated significant predictive capabilities for the survival

outcomes of individuals diagnosed with ovarian cancer. These

findings hold potential for offering valuable indicators for the

implementation of clinical stratified management and

personalized treatment selection for this specific patient

population (82). Meanwhile, Li et al. constructed a lactate-

associated lncRNA prognostic signature (LRLPS) for breast

cancer patients and created a unique LRLPS that targets BC and

has the ability to forecast treatment response, immunological state,

and prognosis (83). By combining multi-omics data, Shao et al.

developed a multi-step model of lncRNA-lncRNA collaboration

based on synergistic regulation of functional modules and

systematically constructed and analyzed a cooperative network of

lncRNA-lncRNAs (IC-LncRNAs) spanning a wide range of tumors,

which helped to clarify the similarities and distinctions among

tumor mechanisms. The IC-LncRNAs synergistic regulation of

T cell activation may bring novel approaches to immunotherapy

for tumors (84, 85).
FIGURE 3

Mechanisms of glycolysis-associated lncRNAs regulating in tumor immune microenvironment.
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To summarize, glycolysis-associated LncRNAs have a

significant impact on the immunological microenvironment of

tumors and can be used to develop prognostic models based on

their specificity. Recent results indicate that glycolysis is

significantly engaged in tumor cells’ immunological evasion since

it enhances immunosuppression and resistance to tumor drugs.

This finding highlights the potential use of targeting glycolysis as a

unique strategy in immunotherapy. The findings offer valuable

theoretical evidence for further elucidating the connection

between immunity and metabolism (86, 87).
Implications of glycolysis-associated
lncRNAs on tumor drug resistance

Chemotherapy is among the most critical therapeutic

approaches in cancer treatment, and the glycolytic pathway of

LncRNA transcription has been found to counteract tumor drug

resistance (88, 89). For example, LncRNA GLTC promotes

radioiodine resistance and the advancement of thyroid-like

carcinoma via targeting increased succinylation and enzymatic

activity of LDHA (90). The GLTC targets the enzymatic activity

and succinylation of LDHA to facilitate the progression of thyroid

cancer and promote resistance to radioiodine treatment.

According to recent studies, epigenetic regulation of different

signaling molecules can reduce the sensitivity of cancer cells to

cisplatin. LncRNA XIST, LncRNA-DANCR, and LncRNA-SARCC

associated with LA promote chemoresistance through the glycolytic

pathway. For example, it was demonstrated that suppressing the

lncRNA XIST significantly decreased the expression of glycolysis-

critical enzymes while increasing the expression of miR-101-3p,

which reduced the rate of extracellular acidification, glucose uptake,

and lactic acid products and increased lung cancer’s resistance to

cisplatin. In contrast, the upregulation of the PKM2/PKM1 ratio via

the LncRNA XIST/miR-137 axis was found to increase glycolysis

and chemotherapy tolerance in colorectal cancer (91, 92). In the

meantime, Shi et al. illustrated how LncRNA-DANCR disrupted the

miR-125b-5p/HK2 axis, thereby inducing anaerobic glycolysis and

desensitizing colorectal cancer cells to cisplatin (93). Interestingly,

Wen et al. illustrated how LncRNA-SARCC could increase

osteosarcoma sensitivity to cisplatin by targeting HK2 via mir-143

to inhibit glycolysis (94). Furthermore, there is an increasing body

of data showing that elevated glycolysis rates are positively

correlated with chemotherapy resistance, and the glycolysis of

tumors has been identified as a prospective target for the creation

of anticancer medications.

Several studies have shown evidence for the substantial

participation of lncRNAs in the control of glucose metabolism via

influencing the HIF signaling pathway, which can promote drug

sensitivity. Chen et al. established that suppressing HISLA via

interference-mediated targeting of Tam-specific lncRNA could

potentially stabilize HIF-1a and offer a more practical method for

inhibiting glycolysis and apoptosis resistance in tumor cells. This

finding underscores the appeal of lncRNA as a target in the field of

tumor therapy (37). Meanwhile, LncRNA HIF1a - AS1 facilitates
Frontiers in Immunology 10
the interaction between y-box binding protein 1 (YB1) and serine/

threonine kinase (AKT) by regulating the AKT/YB1/HIF1a

pathway, which promotes the phosphorylation of YB1 (pYB1)

and enhances glycolysis, thereby contributing to gemcitabine

resistance in pancreatic cancer (95, 96).

The resistance mechanism of cancer cells is not only related to

chemotherapy but also inextricably linked to the targeted therapy of

traditional Chinese medicine. Recent studies have shown that

tretinoin lactone (TP) is implicated in the development of

hepatocellular carcinoma. Nevertheless, the precise biochemical

network that is controlled by TP remains unknown. LncRNAs

MBNL1-AS1 and SLC9A3 play roles in various pathological

progressions. In contrast to MBNL1-AS1, which is down-regulated

in HCC tissues and increases the sensitivity of hepatocellular

carcinoma to tretinoin via regulation of glycolysis mediated by miR-

708-5p, the lncRNA SLC9A3-AS1 exhibits up-regulation in both

hepatocellular carcinoma tissue samples and cells. Mechanistically,

the inhibition of SLC9A3-AS1 resulted in a considerable reduction in

the glycolysis rate mediated by the miR-449b-5p/LDHA axis, causing

Huh7 cells’ susceptibility to TP to decline (97, 98).

Consequently, the function of glycolysis-associated lncRNA in

the tumor immune microenvironment and the mechanisms of drug

resistance in cancer cells are combined. The efficacy of targeting

glycolysis has been shown by the regulation of tumor development

and the augmentation of anti-cancer treatment. Finally, other non-

coding RNAs associated with glycolysis, including lncRNAs and

circRNAs, should additionally be investigated, as this would enable

the enrichment of molecular networks that elucidate the etiology of

malignancies (99). More information and mechanisms by which

glycolysis-associated lncRNAs regulate cancer through other

pathways are shown in Table 4.
Other regulatory functions and clinical
significance of glycolysis-
associated lncRNAs

Application of glycolysis-associated
lncRNAs as biomarkers

Biomarkers contribute significantly to various fields such as

personalized medicine, drug development, clinical care, and

molecular breeding, which can expedite the process of medication

development, serve as a preliminary marker of enhanced clinical

responsiveness, and improve the level of patient safety. LncRNAs are

an important direction of research at the molecular level (100, 101).

Glycolysis-associated lncRNAs are more stable compared to proteins

in cancer research and demonstrate a high degree of cell-tissue

specificity and targeted therapeutic potential, constantly revealing

new molecular regulatory networks. In contrast, in the treatment of

cancer, protein molecules are susceptible to denaturation or

inactivation by environmental conditions; some exogenous proteins

or protein drugs may trigger an immune response, which can lead to

adverse reactions or reduced efficacy; and protein molecules are

structurally complex with limited targeting (102, 103).
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Numerous lncRNAs are prospective biomarkers in the

investigation of tumor cell suppression and glycolysis. LncRNA

AFAP1-AS1 was also considerably expressed in patients with colon

cancer. Patients exhibiting elevated levels of AFAP1-AS1

demonstrated a worse duration of survival and exhibited a strong

association with tumor volume, local lymph node metastasis,

disease stage, and overall survival. Accordingly, it is probable that
Frontiers in Immunology 11
LncRNA AFAP1-AS1 could function as a therapeutic target and

diagnostic marker for colon cancer (104). In their study, Yang et al.

observed a simultaneous upregulation of LncRNA H19 in both oral

cancer cell lines and cancer associated fibroblasts (CAFs). The

lncRNA H19/miR-675-5p/PFKFB3 axis promoted glycolysis in

oral CAFs; lncRNA H19 inhibition in oral CAFs impeded glucose

metabolism, cell proliferation, and migration. Furthermore,
TABLE 4 Glycolysis-associated lncRNAs regulate cancer through other pathways.

LncRNA Level Cancer type Mechanisms Glycolysis Biological function Ref.

SNHG5 ↑ Breast cancer miR-299/BACH1 Activates Proliferation, invasion and migration (131)

MIR31HG ↑ Colorectal cancer MIR31HG-miR-361-3p -YY1 Activates Proliferation, angiogenesis (132)

SNHG5 ↑ Breast cancer SNHG5-miR-154-5p-PCNA Activates Proliferation, apoptosis (133)

AP000695.2 ↑ NSCLC miR-335-3p/TEAD1 Activates Proliferation, migration, EMT (134)

UCA1 ↑ Pituitary tumor
lncRNAUCA1-glycolysis-serum

PRL axis
Activates

Inhibited growth and prolactin
(PRL) secretion

(46)

NEAT1 ↑ Prostate cancer- NEAT1 / miR-98-5p / HMGA2 Activates Proliferation (76)

FGD5-AS1 ↑ Breast cancer hsa-miR-195-5p/NUAK2 Activates Proliferation, migration, invasion (135)

DLX6-AS1 ↑ Neuroblastoma miR-506-3p/STAT2 Activates Proliferation (136)

TUG1 ↑ Liver cancer miR - 524 - 5p/ SIX1 Activates Migration, invasion (137)

MCF2L-AS1 ↑ Colorectal cancer miR-874-3p/FOXM1 Activates Proliferation, invasion (138)

LncRNA-
XIST/

microRNA-
126

↑ Glioma IRS1/PI3K/Akt Activates

Migration, invasion, resistance
to apoptosis

(139)

DDX11-AS1 ↑ HCC miR-195-5p/MACC1 Activates
Proliferation, migration,

invasion, apoptosis
(140)

HOXB-AS3 ↑ Epithelial ovarian cancer miR-378a-3p/Wnt/b-catenin Activates Tumor growth, migration (141)

Mir100hg ↑ Lung adenocarcinoma Mir100hg/miR-15a-5p/31-5p/glycolytic Activates Metastasis (142)

PTPRG-AS1 ↑
Esophageal squamous

cell carcinoma
miR-599 / PDK1 Activates

Proliferation, migration (143)

UPF1 ↓ Endometrial Cancer PVT1/UPF1 Activates Tumor growth, migration (144)

DICER1-AS1 ↓ Pancreatic cancer
YTHDF3/DICER1−AS1/DICER1/miR

−5586−5p
Activates

Tumor growth, metastasis (145)

EPB41L4A-
AS1

↓ Cancer HDAC2 Activates
Glutaminolysis (146)

ZNF674-AS1 ↑ Hepatocellular Carcinoma miR-212-5p/FZD5/Wnt/b- Suppresses Proliferation, invasion (121)

LET ↑
Esophageal Squamous Cell

Carcinoma
miR-93-5p/miR-106b-5p/SOCS4 Suppresses

Proliferation,
glutamine decomposition

(147)

HOTAIRM1 ↓ NSCLC miR-498/ABCE1 Suppresses Proliferation, metastasis, apoptosis (114)

H19 ↓ Oral cancer H19/miR-675-5p/PFKFB3 Suppresses Proliferation (105)

DBH-AS1 ↓ Melanoma miR-223-3p/EGFR/AKT Suppresses Proliferation, metastasis (148)

SH3BP5-AS1 ↑ HCC miR-6838-5p/PTPN4 Activates Proliferation, migration, invasion (149)

NEAT1 ↑ cervical cancer WNT/b-catenin Activates Proliferation, migration, invasion (13)

Linc01056 ↓ HCC PPARa Suppresses Sorafenib resistance (150)

SNHG6 ↑ Wilms' Tumor miR-429/FRS2 Activates Proliferation (151)

LINC00665 ↑ lung adenocarcinoma let-7c-5p/HMMR Activates Proliferation (12)
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scientific investigations have revealed that lncRNA H19 influences

tumor cell proliferation, metastasis, and apoptosis inhibition and

that up-regulation of lncRNA H19 stimulates cancer cell resistance

to chemotherapy and radiotherapy; thus, H19 not only provides

new biomarkers for molecular diagnostics, but also serves as a new

target for anti-tumor therapy (105–107). Furthermore, the lncRNA

EGOT is frequently used to predict the prognosis of multiple or

gastrointestinal tumors, and it potentially participates in numerous

biological processes, such as autophagy and glycolysis (11, 108).

Thus, despite the increasing convenience it provides, biomarker

research remains far from complete and serves as a compass for

future investigations into cancer treatments.
Construction of prognostic models by
glycolysis-associated lncRNAs

Since the diagnostic power of a single circulating lncRNA is not

superior to that of a model consisting of multiple lncRNAs, an

increasing number of prognostic models are undergoing growth

with the advancement of bioinformatics, both for predicting disease

progression as well as for early intervention and prevention, while

providing new ideas and helping to make initial therapeutic

decisions for cancer treatment (109, 110). Predictive models based

on lncRNAs and clinical features are effective in predicting renal cell

carcinoma with clear cells (111). Ma et al. constructed an alternative

marker for clear cell renal cell carcinoma consisting of seven

lncRNAs, which was able to precisely Predict the prognosis of

individuals diagnosed with clear cell renal cell carcinoma, and there

was a substantial correlation between distant metastasis, tumor size,

stage, and grade. The experimental prognostic characteristics

provide a foundation for tracking the effectiveness of mTOR

inhibitors or learning more about how they work in renal cell

carcinoma (112). In their study, Ma et al. created a unique bladder

cancer prognosis model by examining nine lncRNAs associated

with glycolysis. These lncRNAs are involved in various signaling

pathways, including lymphocyte receptor signaling, the nuclear

factor-k-gene binding pathway, the Notch signaling pathway, the

P53 pathway, chemokine signaling, and oxidative phosphorylation,

which provides a newer and more comprehensive approach for

cancer research (112, 113).
Therapeutic targeting of malignancy by
glycolysis-associated lncRNAs

Inhibiting proto-oncogene expression decreases tumor cell

growth and metastasis while increasing treatment susceptibility

and apoptosis. In an in vitro investigation, scholars noted that

lncRNA HOTAIRM1 silencing inhibited glucose consumption and

lactate production in non-small cell lung cancer. Western blot

analysis revealed that lncRNA HOTAIRM1 inactivation

prevented the HK2 protein from being expressed, and the miR-

498 inhibitor impeded this suppression. In another in vitro

investigation, lncRNA KCNQ1OT1 was found to stimulate cell

proliferation and inhibit apoptosis while promoting osteosarcoma
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cell development in vivo. lncRNA KCNQ1OT1 sponged miR-34c-

5p in the capacity of a competitive endogenous RNA (ceRNA),

hence inhibiting the development of osteosarcoma cells in vivo, and

prevented the in vivo proliferation of osteosarcoma cells by directly

targeting its 3’Untranslated. Region to inhibit aldolase A expression

(99, 114). In vivo studies, knockdown of the lncRNAs MALAT-1,

HULC, DANCR, and AP000695.2 revealed inhibition of tumor cell

growth. Similarly, upregulation of oncogenes is an efficacious

strategy to combat tumor development.

Moreover, the LncRNA ELFN1-AS1 has been observed to

promote the proliferation of colorectal cancer cells and impede

apoptosis by enhancing G6PD activity (53). In a separate

investigation, Fusarium promotes carcinogenesis by enhancing

glucose metabolism in colorectal cancer cells. One way Fusarium

promotes lncRNA ENO1-IT1 transcription is by increasing the

binding efficiency of transcription factor SP1 to the promoter region

of this gene. Raise ENO1-IT levels alter histone modification

patterns on ENO1 and other target genes by interacting with

KAT7 histone acetyltransferase, thereby altering the biological

function of colorectal cancer; therefore, targeting the pathway

may be advantageous in the treatment of patients with CRC (11).

Therefore, despite the increasing accessibility of biomarker

research, it is still far from complete and serves as a compass for

future cancer treatment research.
Conclusions and discussions

Glycolysis has become more well-known in cancer research in

recent years. LncRNAs play a significant role in the modulation of

several crucial biological processes and tumor development through

the glycolytic pathway, including regulating the manifestation of

key enzymes of glycolysis, modulating lactate production and

transport, engaging in glycolysis-associated immune escape from

tumors, or forming complexes with transcription factors that

regulate gene expression, which in turn affects the expression of

related genes. Here we focus on the complex and multi-functional

network of energy metabolism regulators controlled by post-

translational modifications mediated by LncRNA. This network

serves as a central node for numerous cell signaling pathways and is

among the quickest ways in which cells react to both internal and

external stimuli. Nevertheless, the present comprehension of its

particular mode of action remains rather restricted, necessitating

more investigation to clarify the complicated processes and

regulatory pathways linked to its exact activity.

In conclusion, lncRNAs in tumors are similar to a regulatory

key during glycolysis, and lncRNAs can turn on or off switches for

key genes, signaling pathways, or cellular functions in cancer cells.

They can be involved as regulators not only in the normal

regulation of cells but also in immunity and drug resistance. The

existence of such amazing regulatory keys has shed light on the

mechanisms of cancer development, providing new ideas and

potential therapeutic targets for early diagnosis, treatment, and

prognostic evaluation of cancer. However, these molecular

mechanisms and their interactions require further studies

to elucidate.
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Perspectives

Regarding human genes, only 2% can code for proteins, of

which 98% are non-coding sequences that form a complex

regulatory network. A significant proportion of these DNA

sequences, which lack protein-coding potential, undergo the

process of transcription to become RNA molecules. This group

includes a substantial number of microRNAs (miRNAs) as well as

lncRNAs, numbering in the thousands for each category. As

discussed herein, many studies have shown that lncRNAs act by

regulating specific miRNAs downstream of them. However,

individual lncRNAs are not limited to regulating only one

miRNA, so it is critical to conduct a more extensive investigation

into the myriad targets or signaling pathways that follow lncRNAs.

As an illustration, LncRNA EGOT-mediated glycolysis also involves

autophagy-associated regulation. Whether lncRNAs regulate these

pathways necessitates additional research and discourse. On one

side, the regulatory mechanisms behind these non-glycolytic

reactions must be clarified; on the other side, clarifying the

relationship between glycolysis and various non-glycolytic

activities is of paramount importance so as to examine in greater

detail how lncRNA regulation of tumor cell glycolysis affects the

immune system’s monitoring mechanism for tumor cells. Further

investigation of the intricate lncRNA-miRNA-mRNA competing

endogenous RNA networks is warranted since they constitute a

sophisticated and tightly controlled mechanism for governing gene

expression and cellular processes and may help to address the

etiology of diseases such as glioblastoma, osteoarthritis,

neuroblastoma, heart disease, lung cancer, pancreatic cancer,

and inflammation.

Early detection of cancer can increase survival or cure rates.

Nevertheless, despite lncRNAs’ promising future as biomarkers in

medical research, they still face challenges of uncertainty in

functional interpretation, variability and dynamics in expression

levels, standardization and technical differences, lack of validation

and validation sets for clinical applications, and bioinformatics

analysis and interpretation, and solving these problems requires

additional research and methodological improvements. The use of
Frontiers in Immunology 13
multiple lncRNAs in model construction can greatly enhance

diagnostic and predictive capabilities, but further extensive

research is required in order to identify circulating biomarkers

that possess the capability to consistently detect malignancies in

their early stages.
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Glossary

AMPK adenosine monophosphate-activated protein kinase
Frontiers in Immunol
ATP adenosine-triphosphate
CAF cancer associated fibroblasts
CircRNAs CircularRNA
c-MYC cellular-myelocytomatosis viral oncogene
CRC Colorectal cancer
DNA Deoxyribonucleic acid
DC Dendritic cells
ENO1 enolase 1
FILNC1 FoxO-induced long non-coding RNA 1
FoxO Forkhead Box O
G6PD Glucose-6-Phosphate Dehydrogenase
GLUT1 glucose transporter isoform 1
HCC hepatocellular carcinoma
HIF-1a hypoxia-inducible factor-1a
HISLA HIF-1a-stabilizing lncRNA
HK2 hexokinase 2
HOTAIR HOX antisense intergenic RNA
HOTAIRM1 HOX antisense intergenic RNA myeloid 1
HULC highly up-regulated in liver cancer
IGF2BP2 insulin-like growth factor 2 mRNA-binding protein 2
LDHA lactate dehydrogenase A
lincRNA long intergenic noncoding RNA
LINRIS long intergenic noncoding RNA for IGF2BP2 stability
Lnc RNA Long non-coding RNA
lncRNA HITT HIF-1a inhibitor at translation level
m6A N6-methyladenosine
MACC1 metastasis-associated in colon cancer-1
MALAT1 metastasis-associated lung adenocarcinoma transcript 1
miRNA microRNA
miRNA: MicroRNA mRNA-binding, protein 2 stability (LINRIS) metastasis-

associated in colon
mTOR mammalian target of rapamycin
NADH nicotinamide adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate
NK Natural killer cells
NSCLC non-small cell lung cancer
OXPHOS oxidative phosphorylation
PCa prostate cancer
PFK1 phosphofructokinase-1;PFKFB3,6-phosphofructo-2-kinase/

fructose-2,6-bisphosphatase3
PGK1 phosphoglycerate kinase 1
PHD2 proline hydroxylase domain 2
PI3K phosphoinositide-3-kinase
PKM2 pyruvate kinase muscle isozyme M2
PKM2 Pyruvate kinase muscle isozyme M2
ogy 17
Tam tumor-associated macrophages
TNBC triple-negative breast cancer
TP53 Tumor Protein P53
UPF1 Up-frameshift protein 1
YAP yes-associated protein
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