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chemokines in hepatocellular
carcinoma therapy: a critical
pathway for natural products
regulation of the
tumor microenvironment
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Fang Xiaoxue1, Zhu Difu1, Lan Xintian1*, Zhu Ming1*

and Luo Haoming1*

1School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China, 2The First
Hospital of Jilin University, Changchun, China
Hepatocellular carcinoma (HCC) is one of the most common primary neoplasms

of the liver and one of the most common solid tumors in the world. Its global

incidence is increasing and it has become the third leading cause of cancer-related

deaths. There is growing evidence that chemokines play an important role in the

tumor microenvironment, regulating the migration and localization of immune

cells in tissues and are critical for the function of the immune system. This review

comprehensively analyses the expression and activity of chemokines in the TME of

HCC and describes their interrelationship with hepatocarcinogenesis and

progression. Special attention is given to the role of chemokine-chemokine

receptors in the regulation of immune cell accumulation in the TME.

Therapeutic strategies targeting tumor-promoting chemokines or the induction/

release of beneficial chemokines are reviewed, highlighting the potential value of

natural products inmodulating chemokines and their receptors in the treatment of

HCC. The in-depth discussion in this paper provides a theoretical basis for the

treatment of HCC. It is an important reference for new drug development and

clinical research.
KEYWORDS
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1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common

primary neoplasms of the liver and one of the most common solid

tumors in the world (1). More so than other cancers, chronic

inflammation is a hallmark of HCC, with 90% of diagnoses

occurring in the context of chronic liver disease (2). The

incidence of HCC is on the rise worldwide and has become the

third most common cause of cancer-related deaths (3). The main

risk factors are infection with the hepatitis B virus (HBV) or the

hepatitis C virus (HCV) (4), metabolic-associated fatty liver disease

(MAFLD) (5), smoking (6), obesity and type 2 diabetes mellitus

(T2DM) (7), etc. Inflammation is a major contributor to the

pathogenesis of HCC (8).

The tumor microenvironment (TME) is a key determinant of

tumor growth and consists of tumor cells, numerous immune cells,

vascular and stromal cells, etc (9). Chemokines, vital cytokines

capable of altering the TME, constitute the largest subset of cell

factors (10). During inflammatory responses, chemokines are

regarded as primary drivers for immune cell infiltration into the

liver, including macrophages, neutrophils, and other cells (11). To

date, more than 50 chemokines have been identified in humans and

mice. Chemokines are categorized into families according to the

structural motifs of their N-terminal cysteines: C-C motif

chemokine ligands (CC), C-X-C motif chemokine ligands (CXC),

X-C motif chemokine ligands (XC), and CX3C motif chemokine

ligands (CX3C) (12), where C represents cysteine and X denotes any

amino acid residue (13). These chemotactic factors signal through

seven-transmembrane chemokine receptors coupled with cell

surface G-proteins, thereby stimulating directed cell migration

(14). Chemokine receptors are classified into four subfamilies

based on their binding to different ligands: CC Chemokine

Receptors (CCR), CXC chemokine receptors (CXCR), XC

chemokine receptors (XCR), and CX3C chemokine receptors

(CX3CR) (15). Constitutive chemokines are expressed under

physiological conditions and play roles in cell migration and

homing (16), while inflammatory chemokines are rapidly secreted

at sites of inflammation to recruit effector cells to inflamed tissues

(17). In TME, tumor cells and immune cells express multiple

chemokine receptors on their surfaces. This diversity leads to

differential responses to chemokines, which in turn affects their

migration and function, regulating the tumor immune response, as

well as tumor progression and prognosis, significantly influencing

tumor therapy (18). A substantial body of research substantiates

that CC chemokines (e.g., CCL2, CCL5) and CXC chemokines (e.g.,

CXCL1, CXCL2, CXCL5) recruit diverse immune cells, such as

CCR2+ monocytes and CXCR2+ neutrophils, to tumor sites. These

cells subsequently differentiate into tumor-associated macrophages

(TAMs) and tumor-associated neutrophils (TANs), thereby

exerting either promotive or inhibitory effects on tumorigenesis

(19, 20). For instance, studies in HCC have demonstrated that the

deletion of CCL5 enhances CXCL1 expression in neutrophils. This

upregulation activates the CXCL1-CXCR2 axis, promoting

neutrophil infiltration into the liver and consequently

exacerbating inflammatory liver damage (21). CCL15 recruits
Frontiers in Immunology 02
CCR1+CD14+ monocytes to the invasive front of HCC, thereby

suppressing antitumor immune responses, promoting angiogenesis,

and accelerating the metastasis of HCC cells. Notably, blockade of

the CCL15-CCR1 axis has been shown to reduce the proliferation

and migration of HCC cells in vivo (22). In contrast, Brandt et al.

elucidated that the chemokine receptor CXCR3 orchestrates the

polarization of TAMs, effectively constraining tumor growth and

angiogenesis in murine hepatocellular carcinoma (HCC) (23). In

conclusion, chemokines and their receptors are promising

biomarkers and therapeutic targets for the diagnosis and

immunotherapy of hepatocellular carcinoma, and an in-depth

understanding of the regulatory mechanisms of chemokines is

essential for the development of novel therapeutic strategies (24).

Currently, natural products has been demonstrated to play a

significant role in the prevention of HCC, as well as in the control of

its metastasis and recurrence (25). These natural products modulate

chemokine expression and function, as well as the interaction

between chemokines and their receptors, to influence the immune

system and microenvironment in the body, thereby suppressing the

progression of HCC (26). Reportedly, the natural product 747 from

Abies georgei exhibits sensitivity and selectivity as a CCR2

antagonist in HCC mouse models. It effectively blocks tumor-

infiltrating macrophage-mediated immune suppression, increases

the number of CD8+ T cells within tumors, and suppresses the

growth of both in situ and subcutaneous tumors in a CD8+ T cell-

dependent manner (27). Triptolide, derived from Tripterygium

wilfordii Hook.f. extract, is a monomeric compound renowned

for its diverse pharmacological properties. It functions as an

inhibitor of the miR-532-5p/CXCL2 axis, effectively suppressing

the migration of HCC cells and inhibiting the initiation and

metastasis of HCC tumors (28). Aconite alkaloid extract (AAE)

induces the upregulation of CCL2 via activation of c-Jun N-

terminal kinase (JNK), thereby enhancing natural killer (NK) cell

infiltration to suppress the growth of HCC (29). These findings

suggest that leveraging natural products to modulate chemokine

actions and adjust the tumor microenvironment composition can

bolster immune responses in patients, presenting a promising and

clinically valuable therapeutic strategy for HCC (30). This article

provides a comprehensive review of the effects of metabolites

derived from natural products on the regulation of chemokines

and their receptors in the HCC tumor microenvironment,

revealing how natural products regulate chemokines through

specific molecular pathways, thereby affecting the tumor

microenvironment and the development of HCC. We summarizes

the research progress of plant metabolites in the treatment of

hepatocellular carcinoma by affecting chemokines and discusses

their potential developmental trends and shortcomings.
2 Tumor microenvironment
and chemokines

TME constitutes a complex ecosystem comprising tumor cells,

immune cells, stromal cells, and vascular networks. Beyond

supporting tumor cell growth, the TME plays a pivotal role in
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tumor immune evasion and drug resistance (10). TME exhibits

dynamic changes, wherein the distribution and functional status of

immune cells evolve continuously with tumor progression (31).

Chemokines are a class of cytokines that direct immune cell

migration by binding to specific receptors. Within the TME,

chemokines not only govern the recruitment and directional

migration of immune cells but also impact their activation states,

thus playing pivotal roles in tumor immune surveillance and

evasion (32).
2.1 Chemokines and tumor-
associated macrophages

TAMs constitute a critical component of the immune

microenvironment in HCC (33), primarily recruited and

polarized into an M2 phenotype by various cytokines (34, 35). It

is widely accepted that TAMs originate from peripheral blood

monocytes (PBMCs) and are recruited to the tumor vicinity by

chemokines secreted within the tumor microenvironment, such as

CCL2. Once within the tumor microenvironment, monocytes

undergo polarization into M2-like macrophages (36). These

macrophages secrete anti-inflammatory cytokines, promote

angiogenesis, exert anti-inflammatory effects, and contribute to

stromal remodeling. This polarization process leads to apoptosis

of CD8+ T lymphocytes, suppression of Th1-type immune

responses, reshaping of the microenvironment, alteration of

immune homeostasis, and ultimately facilitates tumor growth,

invasion, and metastasis (37). Concurrently, TAMs stimulate the

secretion of CXCL1, promoting the polarization of M2

macrophages and thereby influencing the migration and invasion

of HCC cells (38). Targeting the CCL2/CCR2 axis and CXCL1/

CXCR2 blockade therapy can inhibit the recruitment and M2

polarization of inflammatory monocytes/infiltrative TAMs,

disrupting immune suppression within the TME (39).

Consequently, reshaping the immunosuppressive TME and

repolarizing TAMs from an M2 to an anti-tumor phenotype

emerges as a promising cancer immunotherapy strategy. This

approach can activate anti-tumor immune responses, enhance the

efficacy of cancer immunotherapy, and thereby restrict tumor

progression (40).
2.2 Chemokines and tumor-
associated neutrophils

Within the TME, neutrophils undergo moderate activation to

become TANs, releasing reactive oxygen species (ROS), neutrophil

elastase (NE), and other bioactive substances that promote tumor

growth and invasion (41). TANs display two distinct phenotypes

categorized as the anti-tumor N1 and pro-tumor N2 phenotypes

(42, 43). Research has revealed that TANs enhance stem cell-like

characteristics in HCC through activation of the miR-301b-3p/

LSAMP/CYLD pathway. These stem cell-like HCC cells secrete the

chemokine CXCL5, which in turn recruits intratumoral TANs,
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thereby facilitating the invasion and metastasis of HCC (44). Xu

et al. explored the role of CCL21 in the TME of HCC using in vitro

and in vivo HCC subcutaneous tumor models with neutrophils.

Their findings indicate that CCL21 inhibits the polarization of N2

neutrophils by suppressing the activation of the nuclear factor kB
(NF-kB) pathway (45). In the future, targeting the recruitment,

migration, or activation of neutrophils may offer promising avenues

for anti-tumor therapy.
2.3 Chemokines and myeloid-derived
suppressor cells

Myeloid-derived suppressor cells (MDSCs) are highly

heterogeneous suppressive immune cells distributed across the

bone marrow, spleen, peripheral blood, and tumor tissues (46).

MDSCs can be categorized into two subsets: monocytic MDSCs (M-

MDSCs) and polymorphonuclear or granulocytic MDSCs (PMN-

MDSCs) (47). In HCC, reduced RIP3 expression has been observed

in patients, validating its capacity to upregulate CXCL1 expression

within HCC cells. This upregulation promotes the recruitment of

MDSCs through the CXCL1-CXCR2 axis, thereby fostering the

progression of HCC. Targeting the CXCL1-CXCR2 chemotactic

pathway presents a potential immunotherapeutic strategy to

impede the advancement of RIP3-deficient HCC (48).In H22

orthotopic HCC mice, PMN-MDSCs exhibit increased prevalence

compared to M-MDSCs, predominating in the spleen, peripheral

blood, and tumor tissue. CCL9 and CCL2 play a role in mobilizing

PMN-MDSCs from the spleen to peripheral blood, thereby

facilitating tumor initiation and growth (49). Hence, therapeutic

strategies aimed at modulating MDSCs accumulation and

activation hold promise as treatments for malignant liver diseases.
2.4 Chemokines and cancer-
associated fibroblasts

One of the hallmark features of HCC is liver fibrosis, observed

in approximately 80% to 90% of clinical cases (50). The

development of fibrosis often involves the infiltration of immune

cells and stromal cells, including hepatic stellate cells (HSCs), a

significant source of cancer-associated fibroblasts (CAFs) (51). Luo

et al. demonstrated that CAFs promote HCC stem-like

characteristics by inducing the expression of Forkhead box Q1

(FOXQ1) in HCC cells and activating N-myc downstream-

regulated gene 1 (NDRG1). Furthermore, activated HCC cells can

secrete chemokine ligand 26 (CCL26) to recruit additional CAFs,

thereby driving HCC progression (52). In HCC, CAFs secrete

higher levels of chemokines, including CCL2, CCL5, CCL7, and

CXCL16, compared to neighboring fibroblasts. These chemokines

play pivotal roles in recruiting immune cells, thus facilitating HCC

metastasis and invasion (53). This body of evidence underscores the

involvement of CAFs in immune suppression through the

modulation of interactions among diverse immune cell types via

chemokine signaling.
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2.5 Chemokines and tumor-
infiltrating lymphocytes

Tumor-infiltrating lymphocytes (TILs) are a pivotal component

of the HCC microenvironment, encompassing regulatory T cells

(Tregs), NK cells, cytotoxic T lymphocytes (CTLs), and B cells (54).

Tregs are a subset of immune cells known for their potent

immunosuppressive effects (55). Studies have reported a

significant increase in CD4+ CD25+ Tregs in the peritumoral

regions of HCC, with this increase being correlated with tumor

size (56). TAMs secrete the chemokine CCL22, which recruits T

cells to the tumor site, thereby enhancing the accumulation of Tregs

and fostering an immunosuppressive microenvironment that

impedes cytotoxic T cell activation (57). NK cells mediate innate

immune responses and possess the ability to directly exert cytotoxic

effects without prior sensitization. However, their functionality is

often compromised within the tumor microenvironment

(58).Recent studies have elucidated that miR-561-5p, which is

upregulated in HCC, directly targets and downregulates CX3CL1

expression, thereby inhibiting the chemotactic migration of

CX3CR1+ NK cells, promoting tumor cell survival, and

facilitating pulmonary metastasis (59).

In conclusion, chemokines play a pivotal role in the TME,

orchestrating the recruitment, migration, and activation of immune

cells by binding to specific receptors. This regulatory process

significantly impacts tumor progression and immune evasion

mechanisms. In HCC, chemokines not only drive the polarization

and functionality of TAMs, TANs, MDSCs, and CAFs, but also

influence the distribution and activity of TILs. Collectively, these

roles contribute to the establishment of an immunosuppressive

TME that supports tumor growth, invasion, and metastasis.

By modulating chemokines and their associated signaling

pathways, the immunosuppressive TME can be reshaped to

activate antitumor immune responses. Growing evidence
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indicates that natural products has unique potential in regulating

chemokines and their signaling pathways. Modulating the TME

through natural products can effectively inhibit tumor progression.

Numerous studies have investigated the mechanisms by which

these active components of natural products exert their effects in

HCC, thereby advancing the development of immunotherapy for

this malignancy (Figure 1).
3 Role of natural products and their
extracts in hepatocellular carcinoma

Natural products are extensively utilized in cancer treatment

due to their inherent characteristics. Unlike conventional drugs that

target specific symptoms or diseases, natural products often regulate

overall bodily functions (60). Compared to chemical drugs, natural

products tend to have fewer side effects, which is particularly

advantageous for HCC patients with impaired liver function and

low drug tolerance. Furthermore, natural products possess unique

potential and mechanisms for regulating chemokines to mediate

immune cell activity and treat HCC (61). Various natural

components, such as phenolics, flavonoids, terpenes, and

alkaloids, exhibit notable antitumor activity (Table 1).
3.1 Alkaloids

Alkaloids, a class of natural compounds extracted from natural

products, have been shown to possess significant anti-hepatocellular

carcinoma effects (82). Current research indicates that alkaloids

exert their anticancer effects by reducing cancer cell migration and

invasion through mechanisms such as downregulating the

expression of CXCR4, MMP-9, and MMP-2, or inhibiting the

CXCL12-CXCR4 and CCL21-CCR7 axes.
FIGURE 1

The impact of chemokines on HCC development via modulation of immune cell migration and recruitment.
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TABLE 1 Mechanism of natural products and their extracts in the treatment of HCC through the chemokines.

Natural
product

Compound
Name

Chemokines
or chemo-

kine
receptors

Machine References

Cordyceps
militaris

Cordycepin CXCR4
Inhibition of p-IkBa activation to suppress P65 nuclear translocation reduces CXCR4
expression, thereby attenuating the migratory and invasive capacities of liver cancer cells

(62)

Sabia
japonica

Sinomenine
CXCL1/2-CXCR4
CCL21-CCR7

Downregulate CXCL1/2-CXCR4 and CCL21-CCR7 axes expression, while inhibiting the
ERK1/2/MMP2/9 signaling pathways

(63)

Ervatamia
microphylla

Conophylline CCL2
Inhibit smooth muscle actin expression in cancer-associated fibroblasts (CAFs), and
suppress the production of cytokines IL-6, IL-8, CCL2, angiogenin, and osteopontin
(OPN) synthesized by CAFs

(64)

Uncaria
rhynchophylla

Isorhynchophylline CXCR4
Inhibit Signal Transducer and Activator of Transcription 3 (STAT3) phosphorylation,
suppress HepG2 cell migration, and downregulate CXCR4, MMP-9, and MMP-
2 expression

(65)

Tea

Epigallocatechin-3-
gallate,

Gallocatechin
gallate

CCL2
Epicatechin binds to receptors/GAGs, acting as an inhibitor of CCL2-GPCR interaction
and modulating CCL2-mediated leukocyte recruitment

(66)

Ganoderma
resinaceum

G. resinaceum
polysaccharide-
rich fractions

CX3CL1/CCL11

Anti-inflammatory and antioxidant properties restrict immune cell infiltration, suppress
pro-inflammatory cytokines such as G-CSF, IFNg, and TNFa, along with eosinophil
chemotactic factor and fractalkine expression, while enhancing anti-inflammatory
cytokines (IL-10 and IL-12 p70)

(67)

Cladosiphon
okamuranus

Fucoidan CXCL12-CXCR4
Binding to CXCL12 results in the downregulation of CXCL12 expression, which induces
cell cycle arrest and impedes its function in liver regeneration

(68)

Saccharina
japonica

Fucosylated
glycoproteins
(AAL- or

LCA-glycoprotein)

CXCR2
Inhibition of migration of human HCC cells through binding to the IL-8
receptor CXCR2

(69)

Erigeron
breviscapus

Breviscapine CCL2
Reduced ROS generation results in the inactivation of pro-inflammatory signaling
pathways, including TLR4/NF-kB, caspase-3/PARP, and MAPK, leading to decreased
secretion of pro-inflammatory cytokines TNF-a, IL-6, IL-1b, and the chemokine MCP-1

(70)

Epimedium Icaritin CCL2

Induction of caspase-dependent cellular apoptosis, inhibition of hepatocellular carcinoma
development via IL-6/Jak2/IL-10 pathways, and reshaping of the immunosuppressive
microenvironment using combined doxorubicin nanoparticles. This strategy enhances
immune-stimulatory cytokines IFNg, TNFa, and IL-12, and diminishes
immunosuppressive cytokines CCL2, TGFb, IL-4, IL-6, and IL-10

(71)

Chloranthus
henryi

Flavokawain A CXCL12/CXCR 4
Targeting CXCL12 to inhibit CXCR4 activation suppresses HCC cell proliferation, EMT,
invasion, metastasis, and vasculogenic mimicry (VM) formation through the PI3K/Akt/
NF-kB signaling pathway.

(72)

Plumbago
zeylanica

Plumbagin CXCR4/CXCR7
Eliminating SDF-1-induced endothelial tube formation, partially block activation of the
angiogenesis signaling pathway and inhibit CXCR4/CXCR7 expression

(73)

Terminalia
bellirica

Tannin CCL5/CXCL10
Facilitating TAM polarization from the pro-tumoral M2 phenotype to the
immunostimulatory M1 phenotype enhances the immune-suppressive TME; Promoting
T cell infiltration mediated by the expression of CCL5 and CXCL10

(74)

Mylabris
phalerata
Pallas

Cantharidin CXCL10

Factors influencing immune cell trafficking and immune signal responses, potentially
regulated by EZH2 in an HDAC10-dependent manner, suppress CXCL10 to inhibit NK
cells and contribute to miR-214-regulated macrophage polarization, exerting anti-tumor
effects on HCC

(75)

Tripterygium
wilfordii

Celastrol CXCR4
In a dose-dependent manner, the expression of CXCR4 and its downstream pathways
PI3K and Akt is reduced

(76)

Bufonis
Venenum

Bufalin
CCR9/

CCR10/CXCR4
Inhibit APOBEC3F and intestinal immune network proteins CCR9, CCR10, CXCR4,
and pIgR to promote IgA production

(77)

Schisandra
chinensis

Schisandra
chinensis lignans

CCL20
Inhibiting CCL20-induced EMT, invasion, and migration, while enhancing apoptosis in
hepatocellular carcinoma cells through the ERK1/2 pathway

(78)

(Continued)
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3.1.1 Cordycepin
Cordyceps sinensis (BerK.) Sacc. exhibits potent anti-

hepatocellular carcinoma properties and enhances immune

function (83). Key components such as cordycepin, cordyceps

polysaccharides, and cordyceps peptides possess anti-

inflammatory, antitumor, antiviral, and immunomodulatory

effects (84). These components exert anticancer effects by

interfering with cancer cell signal transduction, regulating the cell

cycle, and modulating the expression of apoptosis-related proteins.

Guo’s research investigated the mechanisms by which cordycepin

inhibits HepG2 and Huh7 liver cancer cells using migration,

invasion, and chemotaxis assays. They found that the invasion

and migration rates of cells treated with 10 µM cordycepin

were significantly lower than those of the control group, with a

concomitant downregulation of CXCR4 expression. Consequently,

the migration and invasion abilities of liver cancer cells were

impaired, indicating a significant inhibitory effect of cordycepin

on liver cancer. Furthermore, the inhibitory effect of cordycepin was

markedly enhanced when used in combination with JSH-23,

suggesting that cordycepin may have potential to prevent liver

cancer metastasis when combined with other therapeutic

compounds (62). Li et al. treated HepG2 cells with various

concentrations of cordycepin and doxorubicin, either alone or in

combination, for 48 hours. Both cordycepin and doxorubicin

downregulated CCL2 expression in a dose-dependent manner,

effectively inhibiting HCC cell proliferation and migration, and

inducing apoptosis. The combined treatment showed more

pronounced effects (85).

3.1.2 Sinomenine
Sinomenine is an alkaloid compound primarily extracted from the

roots and stems of the Menispermaceae plant, Sabia japonicaMaxim.,

commonly used in its hydrochloride salt form (86). It exhibits a broad

range of pharmacological activities, including antitumor, anti-

inflammatory, neuroprotective, and immunosuppressive properties,
Frontiers in Immunology 06
making it highly effective against HCC (87). Shen et al. investigated

the inhibitory effects of sinomenine hydrochloride on the growth,

invasion, and metastasis of mouse liver cancer cells (Hepa1-6). They

analyzed its impact on the expression of apoptosis-related and

metastasis/invasion-related genes at the mRNA level. The study

found that sinomenine hydrochloride inhibits the CXCL12-CXCR4

and CCL21-CCR7 axes in HCC cells, thereby suppressing HCC cell

growth and invasion while promoting apoptosis (63).

3.1.3 Conophylline
Conophylline (CnP), a vinca alkaloid derived from the tropical

plant Ervatamia microphylla Pit., has shown promising therapeutic

potential for liver disease (88). Utilizing a primary CAFs model

established from surgically resected HCC tissues, it was revealed

that CnP effectively inhibits the activation of rat HSCs. Further

investigations demonstrated that CnP primarily exerts its anti-HCC

effects by suppressing the activation of CAFs and reducing the

production of pro-tumorigenic factors, particularly interleukin-6

(IL-6), interleukin-8 (IL-8), CCL2, angiopoietin, and osteopontin

(OPN) (64).

3.1.4 Isorhynchophylline
Isorhynchophylline (Rhy), a major oxindole alkaloid isolated

from Uncaria rhynchophylla (Miq.) Miq. ex Havil., has

demonstrated notable anticancer properties. Lee et al. employed

HepG2 cells to elucidate the detailed mechanisms underlying Rhy’s

anticancer effects. Utilizing Annexin V assay, scratch assay, and

Transwell assay, their findings revealed that Rhy inhibits HepG2

cell migration, invasion, and the constitutive expression of CXCR4.

Furthermore, the study showed that Rhy modulates multiple

cellular signaling pathways by inhibiting the phosphorylation of

p38, ERK, JNK, CREB, c-Jun, Akt, and STAT3, while enhancing the

phosphorylation of p53 at the Ser15 residue. These actions

collectively induce apoptosis and exert antimetastatic effects in

HepG2 cells (65).
TABLE 1 Continued

Natural
product

Compound
Name

Chemokines
or chemo-

kine
receptors

Machine References

Cnidium
monnieri

Osthole CXCL1/CX3CL1

Inhibiting the production of fibrosis- and inflammation-related cytokines and
chemokines such as ICAM-1, CD62L, VEGF, CXCL1, and CX3CL1 reduces plasma AST
and ALT levels, improves tissue structure, and decreases collagen and a-SMA
accumulation, thereby alleviating liver damage

(79)

Oldenlandia
diffusa

Oldenlandia
diffusa

active ingredients

CXCR1/
CXCR2/CXCR4

Inhibit the migration of hepatocellular carcinoma cells by downregulating migration-
related chemokine receptors, such as CXCR1, CXCR2, and CXCR4; induce apoptosis in
these cells via the caspase-3 pathway

(80)

Trichosanthes Trichosanthin
CCL2/

CCL17/CCL22

Induce caspase-mediated apoptosis in hepatocellular carcinoma cells, upregulate the
expression of chemokines CCL2, CCL17, and CCL22, increase the expression of the
main receptor for granzyme B in hepatocellular carcinoma tissue, the mannose-6-
phosphate receptor (M6PR), and promote recruitment of CD8+ T cells to hepatocellular
carcinoma tissue.

(81)

Aconite
Aconite

aqueous extracts
CCL2

By activating c-Jun N-terminal kinase, CCL2 expression is upregulated to promote NK
cell infiltration into tumors

(29)
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3.2 Phenols

Phenolic compounds, a class of organic molecules featuring one or

more hydroxyl groups (-OH) directly attached to an aromatic ring, are

abundant in various natural products, including Scutellaria baicalensis

Georgi, Salvia miltiorrhiza Bunge, and catechins. The CCL2/CCR2 axis

has been implicated in HCC by promoting the recruitment of

monocytes/macrophages. Deepak et al. conducted a systematic

investigation into the inhibitory mechanisms of epigallocatechin-3-

gallate (EGCG) and gallocatechin gallate (GCG) in HCC. Their

findings demonstrated that both EGCG and GCG inhibit CCL2

chemokine-mediated monocyte recruitment. Notably, EGCG reduces

CCL2-induced macrophage migration, whereas GCG functions as an

effective protein-protein interaction (PPI) inhibitor, regulating CCL2-

directed leukocyte recruitment to ameliorate inflammation and

immune dysregulation (66).
3.3 Polysaccharide

Polysaccharides are polymeric carbohydrates consisting of ten

or more monosaccharide units linked by glycosidic bonds. They are

prevalent in animals, plants, microorganisms, and other organisms.

Owing to their low toxicity and minimal side effects,

polysaccharides have found extensive applications in the food and

pharmaceutical industries (89). Research has demonstrated their

antitumor effects through mechanisms including the regulation of

the CXCR4/CXCL12 axis, downregulation of CXCL12 expression,

and reduction in the production of eosinophil chemotactic

factors (90).

3.3.1 Ganoderma resinaceum polysaccharide
Ganoderma resinaceum polysaccharide-rich fractions (GRP)

exhibits chemopreventive properties by inhibiting cell proliferation,

promoting liver structural restoration, enhancing antioxidant

enzymes, and modulating cytokine/chemokine levels (67). Data

from the treatment groups reveal that GRP II effectively reduces

immune cell infiltration into subcutaneous tissues, suppresses the

expression of pro-inflammatory cytokines Interferon-g (IFN-g),
tumor necrosis factor-a (TNF-a) and chemokines (eosinophil

chemotactic factor, fractalkine), and increases levels of anti-

inflammatory cytokines (IL-10 and IL-12p70) in Wistar rats with

N-nitrosodiethylamine-induced HCC, highlighting its potent in vivo

anti-inflammatory activity (67).

3.3.2 Fucoidan
Fucoidan, also known as brown algae polysaccharide, is a natural

active polysaccharide uniquely found in brown algae and containing

sulfate groups (91). It primarily resides in the cell wall matrix,

intercellular spaces, and secreted mucilage of seaweeds such as kelp,

wakame, giant kelp, and bladderwrack. Fucoidan exhibits essential

functions including antimicrobial, moisturizing, and radioprotective

effects on algae themselves (92). Recent research has extensively

documented multiple physiological benefits of fucoidan, including

enhancement of gastrointestinal health, anti-tumor properties,
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treatment of chronic kidney failure, immune modulation, and

anticoagulant activity. Studies have demonstrated that fucoidan

modulates the CXCL12/CXCR4 axis, exerting a dose-dependent

inhibitory effect on Huh7 liver cancer cells by reducing CXCL12

expression (68). Fucosylated AAL-polysaccharides and LCA-

glycoproteins similarly significantly decrease IL-8-induced migration

of HCC cells. This effect may be attributed to their capacity to bind IL-8

receptors, particularly CXCR2, which likely retains sugar residues

linked with Fuc a1-2 and/or Galb1-4 (Fuca1-3) GlcNAc. This

interaction competitively inhibits IL-8 binding to CXCR2, thereby

suppressing the migration of human liver cancer cells (69).
3.4 Flavonoids

Flavonoids, secondary metabolites naturally found in plants,

demonstrate diverse biological activities (93). In anticancer

research, several flavonoids have been identified to modulate the

expression or activity of chemokines and their receptors to exert

their effects.

3.4.1 Breviscapine
Breviscapine, a flavonoid isolated from the traditional Chinese

herb Erigeron breviscapus (Vant.) Hand.-Mazz., is renowned for its

diverse pharmacological effects, including anti-inflammatory,

antioxidant, anti-apoptotic, vasodilatory, antiplatelet, and

anticoagulant properties. Recent studies have demonstrated that

breviscapine protects against CCl4-induced liver injury by reducing

the secretion of pro-inflammatory cytokines and oxidative stress.

Specifically, breviscapine attenuates the secretion of TNF-a, IL-6,
IL-1b, and the chemokine monocytechemoattractantprotein-1

(MCP-1) in serum, as well as their expression in liver tissues (70).
3.4.2 Icaritin
Icaritin (ICT), an active flavonoid compound derived from

Epimedium Linn., has demonstrated clinical efficacy in extending

the survival of HCC patients through immune modulation (94).

Several studies have shown that ICT induces autophagy and

apoptosis in cancer cells while enhancing the anti-tumor effects of

doxorubicin. However, the precise mechanisms underlying these

effects remain to be elucidated. Yu et al. first reported that ICT

inhibits the proliferation of Hepa1-6 and Huh7 liver cancer cells by

promoting caspase-mediated mitochondrial apoptosis .

Furthermore, they demonstrated that the combination of ICT and

doxorubicin synergistically reduces the immunosuppressive

functions of MDSCs, Treg cells, and M2 macrophages, leading to

decreased release of immunosuppressive cytokines, including

chemokine CCL2, transforming growth factor b (TGF-b), IL-4,
IL-6, and IL-10 (95). Additional research has revealed that ICT

significantly blocks the immunosuppressive activity of bone

marrow cells, modulates immunosuppressive MDSC cells and

inflammation-associated cytokines and chemokines, and inhibits

the expression of programmed death ligand-1 (PD-L1), thereby

enhancing the efficacy of immunotherapy and anti-cancer

treatments (71).
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3.4.3 Flavokawain A
Xiao’s research isolated a chalcone compound, flavokawain A

(FKA), from Chloranthus henryi Hemsl. Utilizing SMMC-7721,

Huh7, PANC-1, HepG2, HeLa, and Hep3B cell lines, they

conducted Transwell invasion assays to investigate cell invasiveness.

Their findings indicate that FKA inhibits the migration, invasion, VM

formation, and EMT progression of HCC cells by targeting CXCL12,

thereby suppressing the PI3K/Akt/HIF-1a/Twist1 pathway (72).
3.5 Plumbagin

Zhong et al. utilized SDF-1 to induce proliferation, invasion,

and growth factor activation in the HCC cell line SMMC-7721,

revealing that SDF-1 enhances the secretion of angiogenic factors

IL-8 and VEGF. Plumbagin (PL) was found to significantly inhibit

SDF-1-induced angiogenesis in co-cultured SMMC-7721 and

HUVECs, and it downregulated the mRNA expression of CXCR4

and CXCR7, thereby suppressing angiogenesis in HCC (73).
3.6 Tannic

Terminalia bellirica (Gaertn.) Roxb. (TB-TF) tannin extract

promotes T cell infiltration mediated by the chemokines CCL5 and

CXCL10. Chemokine CCL5 and its receptor CCR5, as well as CXCL9,

CXCL10, and their receptor CXCR3, are involved in the recruitment

of CD8+ T cells within the TME (96). Immunohistochemical (IHC)

staining with CD68, a pan-macrophage marker, was employed to

evaluate macrophage recruitment. The results showed that TB-TF

treatment significantly increased the number of tumor-infiltrating

macrophages in Hepa 1-6 orthotopic mice and markedly enhanced

macrophage-mediated recruitment of CD8+T cells. Restoring the

ability of tumor-trained macrophages to recruit CD8+T cells

inhibited HCC growth and reversed tumor-conditioned media-

induced M2 polarization of macrophages. However, the underlying

mechanisms by which TB-TF reverses this tumor cell suppression

remain unclear and warrant further investigation (74).
3.7 Terpenes

Terpenoids are a class of natural products commonly found in

plants, known for their diverse biological activities, including anti-

inflammatory, antibacterial, and antitumor properties. In the realm

of antitumor research, the antitumor potential of terpenoids has

been extensively investigated. Current studies suggest that

cantharidin and triptolide may exert their antitumor effects by

modulating chemokines and their receptor signaling pathways,

thereby influencing the activities of immune cells and tumor cells.

3.7.1 Cantharidin
Cantharidin (CTD), the primary component of an anticancer

drug derived from Mylabris phalerata Pallas, has shown significant
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antitumor activity in various cancers, particularly HCC (97). In vivo

treatment with CTD resulted in increased expression of CXC and

CCL chemokines involved in the immune response. Flow cytometry

analysis of mouse blood indicated an elevated proportion of CD4

+/CD8+ T cells and B cells, while the proportion of T lymphocytes

decreased. These findings suggest that CTD may inhibit HCC

progression by modulating chemokines that regulate immune cell

trafficking and immune signaling responses (75).

3.7.2 Celastrol
Celastrol, a compound extracted from the traditional Chinese

herb Tripterygium wilfordii Hook. f., exhibits notable antitumor

activity. Its antitumor mechanisms primarily include inhibiting

tumor cell proliferation, promoting tumor cell apoptosis,

suppressing tumor cell migration, and inhibiting tumor

angiogenesis. Chan et al. discovered that triptolide dose-

dependently reduces CXCR4 expression by inhibiting the CXCR4-

mediated pathway. This inhibition also downregulated downstream

pathways, including PI3K and Akt. Their experimental results

demonstrated that triptolide significantly inhibits the proliferation

and migration of HCC cells and induces apoptosis by targeting

CXCR4-related signaling pathways (76).
3.8 Steroids

Current research indicates that steroid compounds have potential

therapeutic effects in HCC treatment through modulation of

chemokines (98). Yang et al. observed elevated expression of

APOBEC3F in HCC tumors compared to adjacent tissues based on

proliferation and migration experiments, suggesting it as a potential

tumor protein influencing HCC invasiveness. Further confirmation

through APOBEC3F siRNA experiments showed that siAPOBEC3F

reduced the expression levels of intestinal immune network IgA

generation pathway proteins, including CCR9, CCR10, CXCR4, and

pIgR. Subsequently, in SK-Hep1 and Bel-7404 cell lines, the effects of

bufalin on cell proliferation and migration were assessed via CCK-8

assay, wound healing assay, and transwell assay. Bufalin was found to

inhibit the expression of CCR9, CCR10, CXCR4, and pIgR proteins,

thereby suppressing IgA production and impeding cancer cell

proliferation and migration (77).
3.9 Phenylpropanoids

Schisandra chinensis (Turcz.) Baill is a perennial deciduous woody

vine in the Magnoliaceae family (99). A recent study by Jiang et al.

revealed that the combination of the Schisandra chinensis lignans and

acteoside effectively suppressed the expression of CCL20. This is

noteworthy because the CCL20-CCR6 axis is implicated in

promoting invasion and metastasis of hepatocellular carcinoma cells

by influencing regulatory T cells within the tumor microenvironment.

The study suggests that the Schisandra chinensis lignans and acteoside

may counteract CCL20-induced epithelial-mesenchymal transition

(EMT), invasion, and migration of hepatocellular carcinoma cells via
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the ERK1/2 pathway, while also promoting apoptosi (78). Osthole is a

natural coumarin compound extracted from the dried mature fruits of

the Umbelliferae plant Cnidium monnieri. Liu and colleagues utilized

an SD rat model of thioacetamide (TAA)-induced liver fibrosis to

demonstrate osthol’s significant reduction in fibrosis-related gene

expression induced by TAA. Analysis of various extracellular matrix

(ECM) formation mediators via cytokine arrays revealed that osthol

treatment markedly decreases levels of ICAM-1, CD62L, VEGF, and

the chemokine CX3CL1. These findings highlight osthol’s potent

inhibitory effects on the inflammatory response associated with liver

fibrosis (79).
3.10 Other natural product extracts

Natural product extracts have shown promising potential in

regulating chemokine expression for the treatment of HCC.

Specific natural product extracts have been identified for their

ability to modulate chemokine expression, thereby impeding the

progression of HCC. These extracts exert their effects by targeting

specific signaling pathways or molecular targets involved in the

generation and secretion of chemokines, thus modifying the tumor

microenvironment to suppress tumor growth and metastasis. For

instance, Oldenlandia diffusa (Willd.) Roxb. (OD) extract, a natural

product, inhibits HCC metastasis by downregulating crucial

migration-related chemokine receptors such as CXCR1, CXCR2,

and CXCR4. Scratch wound healing assays conducted with Huh7

and HepG2 cells have demonstrated that OD inhibits the migration

of liver cancer cells through the inhibition of OA and UA migration

receptors. Moreover, OD enhances the expression of the apoptosis-

related enzyme caspase-3, thereby suppressing the growth of liver

cancer cells (80). Trichosanthin (TCS) is a single-chain ribosome-

inactivating protein extracted from the rhizomes of the natural

product Trichosanthes Linn (100). Wang et al. explored the in vitro

and in vivo anticancer effects of TCS in HCC by administering it to

HCC cell cultures and xenograft models in BALB/c mice with intact

immune systems. They investigated how TCS modulates T cell

recruitment in host anti-HCC immune responses. Treatment with

varying concentrations of TCS demonstrated dose-dependent

inhibition of HCC cell line and xenograft tumor growth. Further

investigations showed that TCS upregulates the expression of

chemokines CCL2, CCL17, and CCL22, facilitating the

accumulation of CD8+ T cells in HCC tissues (81). Additionally,

TCS-induced GrzB secretion by T cells, transported via M6PR into

HCC cells, promotes cell apoptosis (101). These findings suggest that

TCS enhances T cell-mediated immunity in anti-tumor

immunotherapy by potentially augmenting chemokine secretion

and facilitating GrzB entry into HCC cell (81). Cisplatin (CDDP), a

platinum-based anticancer drug, markedly upregulates the expression

of chemokine CKLF1 in HepG2 cells. Functional assays reveal that

CKLF1 potentially enhances metastasis in HCC. Kanglaite (KLT),

derived from Coix lacryma-jobi L.var.mayuen(Roman.) Stapf seed,

mitigates CDDP-induced CKLF1-mediated NF-kB pathway

activation, thereby synergizing with CDDP in the combined

therapy of HCC (102). Yang et al. established a subcutaneous

tumor model in mice and found that treatment with AAE
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significantly reduced tumor size and weight. Immunohistochemical

staining revealed that AAE intervention significantly decreased the

proliferative capacity of tumor cells and increased the expression of

multiple chemokines, including CCL2, CCL5, and CCL10. Notably,

CCL2 was the most upregulated chemokine following AAE

treatment, significantly enhancing NK cell infiltration into tumors.

The knockdown of CCL2 via viral transfection attenuated AAE’s

effects on NK cell infiltration and tumor growth inhibition, further

validating these findings. The authors conducted in vitro studies

using HuH7, HepG2, and Hepa1-6 cell lines, elucidating that the

upregulation of CCL2 expression is mediated through JNK activation.

Viral transfection-mediated knockdown of CCL2 diminished AAE’s

effects on NK cell infiltration and tumor growth inhibition (29).

Cisplatin (CDDP) is a widely employed chemotherapeutic agent for

treating hepatocellular carcinoma. While elevating its concentration

enhances cancer cell apoptosis rates, it concurrently poses risks of

toxicity and resistance, thereby constraining its clinical utility (103).

Kanglaite (KLT) is a biologically active compound derived from Coix

lacryma-Jobi, recognized as a biphasic broad-spectrum anticancer

agent (104). KLT augmented the antitumor efficacy of CDDP in

HepG2 cells. While CDDP notably upregulated the chemokine-like

factor 1 (CKLF1)-mediated NF-kB pathway in HepG2 cells, KLT

effectively suppressed CDDP-induced NF-kB activation. This

synergistic effect possibly stems from its ability to modulate

inflammation and combat chemotherapy resistance (102). The

mechanism underlying the combined therapy of KLT and CDDP

against hepatocellular carcinoma remains unclear, necessitating

comprehensive studies. Nevertheless, these findings advance our

understanding of the pharmacological interactions between

traditional Chinese and Western medicines, highlighting their

potential in treating hepatocellular carcinoma.
4 Role of botanical drugs remedies in
hepatocellular carcinoma

Botanical drugs remedies are a pivotal aspect of traditional

medicine, distinguished by their multi-component and multi-target

characteristics (105). These formulations regulate the body’s internal

environment and enhance immune function, thereby achieving

therapeutic effects (106). Recent studies have increasingly highlighted

the efficacy of natural product formulations in treating HCC (Table 2).

The use of Astragalus mongholicus Bunge—Curcuma aromatica

Salisb. (AC) is a classic pairing in Chinese medicine for the treatment

of HCC disease (118). AC modulates the CXCL8/CXCR2 chemokine

axis and inhibits the PI3K/Akt/mTOR pathway in colorectal cancer

cells and orthotopic mouse models, thereby exerting anti-metastatic

effects on HCC (107). Biejiajian Pill (BJJP), originally documented in

the “Jin Gui Yao Lue”. Research indicates that BJJP inhibits tumor cell

growth in an immune-dependent manner, modulating CCL5

expression and promoting CD8+ T cell infiltration into HCC

tumors in H22 tumor-bearing mice (108). Cheng et al.

demonstrated that Gehua Jiecheng Decoction (GHJCD) has

therapeutic effects on diethylnitrosamine (DEN)-induced HCC in

mice. Their findings elucidate that GHJCD counteracts the
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immunosuppressive tumor microenvironment of HCC by

downregulating the proportions of Tregs, TAMs, and MDSCs

(109). Zhang et al. utilized bioinformatics and network

pharmacology to identify that the regulator of cell cycle gene

(RGCC) and atypical chemokine receptor 3 (ACKR3) are

implicated in the progression from non-alcoholic liver disease to

hepatocellular carcinoma and impact the prognosis of hepatocellular

carcinoma. They discovered that the Shipi-Xiaoji recipe (SPXJF)

effectively inhibited the proliferation and invasion of HEPG2 cells

in a dose-dependent manner. Furthermore, SPXJF was observed to

dose-dependently suppress the expression of RGCC and ACKR3

proteins, highlighting its potential therapeutic relevance (110). The

Chinese herbal decoction Kuan-Sin-Yin (KSY) reduces the

expression of CCL2, which is associated with cell migration, and

downregulates the mRNA levels of phosphoinositide-3-kinase

regulatory subunit 3 (PIK3R3) and CEA cell adhesion molecule 1

(CEACAM1), thereby inhibiting the migration and invasion of HCC

cells (111). Wang et al. explored the mechanisms by which Jiedu

Huayu granules prevent liver injury in a rat model induced by D-

galactosamine and lipopolysaccharide, demonstrating that these

granules mitigate liver damage through T cell-mediated
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suppression of inflammation (119). Tianhuang formula (THF)

downregulates the macrophage marker CD68 and improves liver

injury, inflammation, and fibrosis by inhibiting the CCL2-CCR2 axis

and its downstream MAPK/NF-kB signaling pathways (112).

Dahuang Zhechong Pill (DZP) reduces the expression of CCL2 and

its receptor CCR2 in the liver, decreasing M2 macrophage

polarization. By remodeling the hepatic microenvironment, it

inhibits colorectal cancer liver metastasis, providing strong evidence

for the role of traditional Chinese medicine in reshaping the

premetastatic niche and preventing liver metastasis (113). The

Wan-Nian-Qing prescription (WNQP), a traditional Chinese

medicine formulation containing Ornithogalum caudatum, has

shown promising immunomodulatory effects. Antibody chip

screening in immunosuppressed BALB/c mice revealed that

WNQP modulates serum levels of interleukins and chemokines,

leading to IL-2 activation of NK cells and subsequent secretion of

CCL28. This mechanism enhances the targeted cytotoxicity against

tumor cells, forming an immunoregulatory network that inhibits

tumor growth and regulates tumor progression (114). When it comes

to treating liver diseases, the Qizhu Anticancer Prescription

(QZACP) has shown promise as a therapeutic approach (120). In
TABLE 2 Mechanism of botanical drugs remedies in the treatment rough the chemokines.

Botanical
drugs remedies

Chemokines or
chemokine
receptors

Machine References

Astragalus mongholicus
Bunge—Curcuma
aromatica Salisb

CXCL8/CXCR2
Downregulate the CXCL8/CXCR2 axis in colorectal cancer, inhibit the PI3K/Akt/mTOR
pathway, suppress the EMT process, and mitigate liver metastasis

(107)

Biejiajian Pill CCL5
Induce the expression of CCL5 to promote the infiltration of peripheral blood CD8+ T cells
into tumor tissues via the CCL5 pathway

(108)

Gehua
Jiecheng Decoction

CCL2

Counteract the immune-suppressive effects of the hepatocellular carcinoma
microenvironment, exert anti-inflammatory and anti-angiogenic activities, downregulate the
proportions of Tregs, TAMs, and MDSCs, upregulate the proportions of CD8 T cells and
functional CD8 T cells, inhibit the expression of IL-6, IL-10, TNF-a, and CCL-2, and reduce
the expression of angiogenesis-related molecules CD31 and VEGF

(109)

Shipi-Xiaoji recipe ACKR3
Inhibition of HEPG2 proliferation and invasion by dose-dependent inhibition of RGCC and
ACKR3 protein expression

(110)

Kuan-Sin-Yin CCL2
Downregulate CCL2, CEACAM1, and PIK3R3 to inhibit the migration of hepatocellular
carcinoma cells

(111)

Tianhuang formula CCL2-CCR2
Inhibit the CCL2-CCR2 axis and MAPK/NF-kB activation to alleviate macrophage
infiltration and activation of hepatic stellate cells (HSCs)

(112)

Dahuang Zhechong Pill CCL2
Inhibit the CCL2-mediated M2-skewing paradigm to improve the pro-fibrotic
microenvironment and suppress liver metastasis of CRC

(113)

Wan-Nian-
Qing prescription

CCL28
Modulate Nrf2 and its downstream proteins to inhibit oxidative stress, counteract ROS
generation and accumulation, enhance SOD activity, regulate IL-10 levels, activate NK cell
secretion of CCL28 upon IL-2 binding, and augment targeted cytotoxicity against tumor cells

(114)

Qizhu
Anticancer Prescription

CXCL14
The upregulation of p21 expression and secretion of PASP factor in tumor cells lead to
irreversible cell cycle arrest under cellular stress.

(115)

Chanling Gao CXCR4
Inhibit the HIF1a/SDF1a-CXCR4/PI3K-AKT signaling pathway to reduce vascular
endothelial growth factor synthesis and release, decrease type IV collagen degradation, and
suppress tumor growth and liver metastasis in nude mice

(116)

JC-001 CCL1/CCL17

Inhibit Th17 immunity, leading to elevated levels of IL-1, IL-6, IL-10, and IL-12 p70. IL-12
facilitates the differentiation of undifferentiated CD4+ T cells into Th1 cells, which produce
CCL1 and CCL17, directly promoting cytotoxicity and proliferation of CD8+ T cells, and
inducing T cells and NK cells to secrete TNF-a and IFN-g.

(117)
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DEN-induced hepatocellular carcinoma mice, QZACP significantly

reduced both the number and size of intrahepatic nodules. It

effectively mobilized NK and CD8+ T cells to combat tumor

invasion and stimulated the release of interferon-g. Furthermore,

QZACP induced irreversible cell cycle arrest in stressed tumor cells

by up-regulating the expression of p21 and promoting the secretion

of PASP factors (decorin, CXCL14, and Wnt family member 2)

within tumor cells after recruiting NK and CD8+ T cells (115). Yang

et al. demonstrated that the binding of SDF-1 to CXCR4 activates

downstream signaling pathways that regulate tumor cell proliferation,

adhesion, and migration. The traditional Chinese medicine

formulation Chanling Gao (CLG) was found to inhibit the

expression of SDF-1a and CXCR4 in the liver. Results indicate that

CLG effectively suppresses the growth and liver metastasis of

colorectal cancer xenografts in nude mice, potentially through the

HIF-1a/SDF-1a-CXCR4/PI3K-Akt signaling pathway (116). JC-001
is a traditional Chinese medicine formulation used for the treatment

of liver diseases. Clinical studies have demonstrated that JC-001

inhibits Hepa 1-6 tumors in immunocompetent models through

immunomodulation. It increases TNF-alevels in the tumor

microenvironment, thereby enhancing the inflammatory response.

Additionally, JC-001 induces an elevation in IL-12p70 levels within

the tumor microenvironment. IL-12 enhances the cytotoxicity,

survival, and proliferation of CD8+ T cells by producing CCL1 and
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CCL17. It also aids in the differentiation of naive CD4+ T cells into

Th1 cells, promoting the secretion of TNF-a and IFN-g by T cells and

NK cells (117). Botanical drugs remedies have shown efficacy and

advantages in the treatment of HCC, involving multiple mechanisms.

However, current research on their use for HCC remains in the early

stages, and further in-depth investigation and validation of their

mechanisms of action and efficacy are required.
5 Discussion and prospect

Currently, there are numerous treatments for HCC, including

surgical resection, liver transplantation, radio frequencyablation

(RFA), transcatheter arterial chemoembolization (TACE), targeted

therapy, and immunotherapy (121). Due to the subtle symptoms of

early-stage HCC, early detection is often challenging, making surgical

eradication difficult at diagnosis. Surgical interventions, particularly

liver transplantation, are theoretically effective but limited in practice

by donor shortages and eligibility criteria (122). Liver resection also

has drawbacks, including lower recurrence-free survival rates and

high risks for patients with advanced cancer and cirrhosis (123).

Radio frequencyablation techniques are minimally invasive, safe,

simple, and relatively inexpensive, but they require repeated

treatments to be effective and are limited by tumor size and
FIGURE 2

Therapeutic potential of natural products and its extracts, and formulations in HCC treatment via chemokine modulation.
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location (124). TACE is an interventional procedure that delivers

chemotherapeutic drugs directly to liver tumors via the hepatic artery,

effectively targeting the tumor tissue (125). Although TACE can

improve survival rates in intermediate-stage patients, the complex

arterial supply of HCC means that tumors may continue to grow via

collateral circulation even after main vessel embolization, leading to

postoperative recurrence (126). Chemotherapy for HCC also carries

risks. For instance, sorafenib, a multi-kinase inhibitor, can block up to

40 kinases, extending the survival time of patients with advanced

HCC from 7.9 months to 10.7 months (127). However, its adverse

effects, such as hand-foot skin reactions, diarrhea, liver function

abnormalities, hypertension, and rash, as well as the potential for

drug resistance within six months of treatment initiation, limit its

clinical efficacy in treating HCC (128).

HCC resides within a complex immune microenvironment, where

the TME often exerts functional suppression on immune cells, thereby

playing a pivotal role in cancer progression (129). The genesis and

dynamic alterations of this TME encompass diverse cell types and

intricate signaling pathways, reminiscent of the multi-faceted and

bidirectional immune modulation emphasized in traditional Chinese

medicine (130, 131). Natural products leverage their advantages such as

comprehensive regulation and minimal toxicity, complementing

conventional therapies by ameliorating patient symptoms, bolstering

immune function, and enhancing overall quality of life during HCC

treatment. Natural products, enriched with multiple active

constituents, confers diverse mechanisms of action and targets, thus

influencing the pathological processes of HCC through multifaceted

approaches concurrently (132). Based on current research, we are

increasingly clarifying themechanisms through which natural products

exert therapeutic effects in HCC by modulating chemokine function.

Certain active ingredients of natural products inhibit chemokine

production, thereby reducing immune cell aggregation and

inflammation. Conversely, other active ingredients can stimulate

chemokine expression, enhancing immune system function and

suppressing tumor growth and metastasis (133). Chemokines, a

significant research focus in biomedicine, play recognized roles in

immune and inflammation-related diseases (134). Chemokine-based

therapies in immunotherapy generally fall into two categories: targeting

pro-tumor chemokines and increasing anti-tumor chemokine levels.

Both can be used as standalone therapies or in combination with other

treatment strategies. There have been successful clinical applications of

chemokine therapies, such as the CXCR4 antagonist AMD3100 for

treating relapsed or refractory acute myeloid leukemia (AML) and the

CCL2 inhibitor CNTO 888 for metastatic prostate cancer (135). These

developments provide new treatment options for cancer patients and

lay a solid foundation for further advancement in chemokine therapies.

Furthermore, data suggest that combining natural products with

chemotherapy drugs significantly improves chemotherapy sensitivity,

enhances tumor suppression effects, and notably ameliorates cancer-

related fatigue, bone marrow suppression, and other adverse reactions

(136). Natural products typically exhibit multi-target and multi-

pathway characteristics in cancer treatment, effectively impeding

HCC development by modulating various physiological processes

(137). However, despite some successes, natural products in HCC

treatment face challenges. The development and progression of HCC
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involve abnormalities in multiple genes and pathways, making it

difficult for a single drug to address all aspects. Additionally, the

complex composition and unclear mechanisms of natural products

limit their application in HCC treatment. Chemokine therapies still

face many challenges and opportunities. The complexity of

chemokines and their receptors makes selecting and validating

therapeutic targets particularly difficult. Nonetheless, with the

continuous development and innovation of biotechnology,

techniques like gene editing and the combined application of

immunotherapy and chemokine therapies could allow more precise

regulation of chemokine expression and function, achieving targeted

disease treatment.

In summary, our comprehensive investigation into the role of

chemokines within the immune microenvironment of HCC offers a

novel perspective on understanding the disease’s pathogenesis (138).

Concurrently, the exploration of natural product-derived active

ingredients targeting chemokines in HCC treatment presents

promising new therapeutic avenues (Figure 2). However, while

natural products offer distinct advantages in HCC treatment, they

also come with certain limitations (139). Thus, it is crucial to elucidate

the precise mechanisms through which natural products modulate

chemokines to enhance therapeutic outcomes in HCC. This effort aims

to provide enhanced theoretical support and practical guidance for

precision medicine in HCC treatment. As our understanding of HCC

pathogenesis advances, future research may uncover additional

therapeutic targets involving chemokines, potentially leading to more

effective treatment strategies for HCC patients.
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