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Exploring the transcriptomic
landscape of moyamoya
disease and systemic lupus
erythematosus: insights
into crosstalk genes and
immune relationships
Qingbao Guo1,2,3*†, Yan-Na Fan4†, Manli Xie5†, Qian-Nan Wang6,
Jingjie Li1,2,3, Simeng Liu1,2,3, Xiaopeng Wang1,2,3, Dan Yu3,
Zhengxing Zou3, Gan Gao1,2,3, Qian Zhang3, Fangbin Hao1,2,3,
Jie Feng3, Rimiao Yang3, Minjie Wang1,2,3, Heguan Fu3,
Xiangyang Bao3* and Lian Duan2*

1Medical School of Chinese PLA, Beijing, China, 2Department of Neurosurgery, The First Medical
Centre, Chinese PLA General Hospital, Beijing, China, 3Department of Neurosurgery, The Fifth
Medical Centre, Chinese PLA General Hospital, Beijing, China, 4Department of Radiation Oncology,
Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China,
5Department of Occupational Diseases, Xi’an Central Hospital, Xi’an, Shanxi, China, 6Department of
Neurosurgery, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, China
Background: Systemic Lupus Erythematosus (SLE) is acknowledged for its

significant influence on systemic health. This study sought to explore potential

crosstalk genes, pathways, and immune cells in the relationship between SLE and

moyamoya disease (MMD).

Methods: We obtained data on SLE and MMD from the Gene Expression

Omnibus (GEO) database. Differential expression analysis and weighted gene

co-expression network analysis (WGCNA) were conducted to identify common

genes. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were performed on these shared

genes. Hub genes were further selected through the least absolute shrinkage and

selection operator (LASSO) regression, and a receiver operating characteristic

(ROC) curve was generated based on the results of this selection. Finally, single-

sample Gene Set Enrichment Analysis (ssGSEA) was utilized to assess the

infiltration levels of 28 immune cells in the expression profile and their

association with the identified hub genes.

Results: By intersecting the important module genes from WGCNA with the

DEGs, the study highlightedCAMP, CFD, MYO1F, CTSS, DEFA3, NLRP12, MAN2B1,

NMI, QPCT, KCNJ2, JAML, MPZL3, NDC80, FRAT2, THEMIS2, CCL4, FCER1A,

EVI2B, CD74, HLA-DRB5, TOR4A, GAPT, CXCR1, LAG3, CD68, NCKAP1L,

TMEM33, and S100P as key crosstalk genes linking SLE and MMD. GO analysis

indicated that these shared genes were predominantly enriched in immune

system process and immune response. LASSO analysis identified MPZL3 as the

optimal shared diagnostic biomarkers for both SLE and MMD. Additionally, the
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analysis of immune cell infiltration revealed the significant involvement of

activation of T and monocytes cells in the pathogenesis of SLE and MMD.

Conclusion: This study is pioneering in its use of bioinformatics tools to explore

the close genetic relationship between MMD and SLE. The genes CAMP, CFD,

MYO1F, CTSS, DEFA3, NLRP12, MAN2B1, NMI, QPCT, KCNJ2, JAML, MPZL3,

NDC80, FRAT2, THEMIS2, CCL4, FCER1A, EVI2B, CD74, HLA-DRB5, TOR4A,

GAPT, CXCR1, LAG3, CD68, NCKAP1L, TMEM33, and S100P have been

identified as key crosstalk genes that connect MMD and SLE. Activation of T

and monocytes cells-mediated immune responses are proposed to play a

significant role in the association between MMD and SLE.
KEYWORDS

systemic lupus erythematosus, moyamoya disease, transcriptomic analysis, crosstalk
genes, immune infiltration
Introduction

Moyamoya disease is a progressive cerebrovascular disorder

characterized by chronic blockage of the major arteries in the brain,

leading to the development of a network of tiny blood vessels that

attempt to compensate for the reduced blood flow. It is a rare

condition affecting about 1 in 1,000,000 individuals, marked by

ischemic events and a myriad of neurological symptoms, such as

strokes and transient ischemic attacks (1). While the precise

etiology of moyamoya disease remains unknown, a combination

of genetic and environmental factors is believed to contribute to its

onset and progression (2). While the exact pathogenesis of MMD is

still under investigation, emerging evidence suggests that immune

mechanisms play a pivotal role in its development and progression

(3). This includes the involvement of inflammatory cytokines,

autoimmune reactions, as well as genetic predispositions that may

influence immunopathological responses (4). Abnormal

immunological activity, such as the presence of circulating

autoantibodies and elevated levels of pro-inflammatory cytokines,

has been documented and correlated with disease activity in

Moyamoya patients (5).

Systemic Lupus Erythematosus (SLE) is a highly prevalent

autoimmune disease with a significant impact on patient

morbidity and mortality (6). The etiology of SLE is multifaceted,

with genetic, environmental, hormonal, and immunological factors

contributing to its complex pathogenesis (7). Notably, infections

have been posited to play a crucial role in the development and

exacerbation of SLE (8). Epidemiologically, it is observed that

infections can precipitate the onset of SLE and exacerbate its

symptoms, particularly those infections that stimulate a robust

immune response. SLE is considered to be associated with

aberrations in immune regulation that lead to autoantibody

production and the formation of immune complexes (9), which
02
can be further stimulated by interactions with pathogens. Various

viral and bacterial antigens have been implicated in the disease

process, though the precise mechanisms remain to be fully

elucidated (10, 11). Among the infectious agents, the Epstein-Barr

virus (EBV) has received attention due to its ubiquitous nature and

its ability to establish life-long latent infections, which

may contribute to the chronic stimulation of the immune

system in SLE patients (12). Furthermore, the hygiene

hypothesis suggests a link between increased hygiene and

autoimmune disease prevalence, potentially implicating the role

of commensal microbes and the immune system’s development and

regulation (13). The relationship between infections, immunity,

and SLE supports the notion that managing chronic

infections could be beneficial for patients with SLE. Indeed,

targeted immunosuppressive therapies such as glucocorticoids

and immunomodulators are central to SLE treatment regimens

(14). These treatments aim to dampen the overactive immune

response and reduce the formation of damaging immune

complexes associated with SLE pathology.

Many case reports have examined the association of MMD with

SLE (15–17), and MMD is more common in women (18), which is

consistent with SLE (19). However, the exact crosstalk genes have

not been elucidated yet. Therefore, there is a need for additional

research to better understand the connection between MMD and

SLE, particularly at the cellular and molecular levels. Given the

advancements in microarray and high-throughput sequencing

technologies, bioinformatics tools are increasingly being utilized

to investigate the interplay between various diseases. In this study,

we utilized bioinformatics techniques to identify potential shared

genes between MMD and SLE and to assess how these genes

interact with immune cells that infiltrate the affected tissues. This

approach aims to deepen our understanding of the underlying

pathophysiological mechanisms that could link MMD and SLE.
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Materials and methods

Data download and processing

Gene expression profiles specific to MMD and SLE were

procured from the Gene Expression Omnibus (GEO) repository.

Detailed information about the datasets is available online at the

GEO website: https://www.ncbi.nlm.nih.gov/geo/. The datasets

were obtained in the MINiML format. Utilizing the GPL16699

platform, the GSE157628 and GSE141025 dataset consists of 36

subjects, with 19 classified as “diseased” and 17 as “control”. To

assess diagnostic efficiency, we downloaded the GSE189993 dataset

based on GPL16699 consists of 36 subjects, with 21 classified as

“diseased” and 11 as “control”.

Gene expression datasets exploring SLE (GSE78193) employed

the GPL6480 and GPL6848 platform and encompassed 125

samples, including 101 from SLE patients and 24 from healthy

individuals serving as controls. In addition to this dataset,

GSE154851 was acquired—utilizing the GPL16699 platform—it

comprised 38 SLE patient samples alongside 32 control samples,

facilitating the evaluation of diagnostic accuracy. The detailed

information regarding the datasets included in this study is

available in Table 1.

Data normalization is a crucial step to ensure the comparability

and reliability of data by removing biases and inconsistencies

between samples. In this study, we employed various

normalization techniques to standardize the data. We applied Z-

score normalization, where each feature’s values were transformed

by subtracting the mean and dividing by the standard deviation.

This transformation resulted in a standard normal distribution of

the data, reducing the impact of outliers and ensuring uniform

scaling across features. To address potential batch effects in our

dataset, we implemented Uniform Manifold Approximation and

Projection (UMAP) as a batch correction method. Data

normalization and batch effect processing in this study are

detailed in Supplementary Figure S1.
Detection of differentially expressed genes

Differential expression analysis is a critical aspect of our study,

aimed at identifying genes that are differentially expressed between

two or more groups of samples. To perform this analysis, we used

the Linear Models for Microarray Data (LIMMA) package (version
Frontiers in Immunology 03
3.32.4) within the R software. The approach taken using LIMMA is

designed to model the expression data efficiently, taking into

account the various sources of biological and technical variability.

The “LIMMA” R package was employed to identify DEGs in the

GSE157628, GSE141025, and GSE78193 datasets. DEGs were

determined in GSE157628, GSE141025, and GSE78193 with an

adjusted P value < 0.05 and |log FC| ≥ 1.0. Using the

‘ComplexHeatmap’ package, we created a differential gene

clustering heatmap. The heatmap reflects the standardized

expression data (z-scores) for the DEGs across all samples to

provide a visual representation of expression patterns and

potential clustering. In addition, we constructed volcano plots for

each dataset using the ‘ggplot2’ package. The volcano plots

graphically display the -log10(p-value) against the log2 fold

change of all tested genes to highlight those that are significantly

differentially expressed (DEGs are highlighted according to the

criteria mentioned above).
Construction of WGCNA networks and
identification of modules

Weighted Gene Co-expression Network Analysis (WGCNA)

serves as a computational approach for the characterization of

genomic interconnections within diverse biological samples. This

methodology aggregates genes based on congruent expression

profiles and evaluates the relationship between gene clusters,

known as modules, and particular attributes or phenotypic

characteristics (20). The co-expression network was constructed

using the WGCNA package in R. Genes that demonstrated

statistical significance with an adjusted P value < 0.05 were

selected for inclusion in the network analysis. The process began

with hierarchical clustering, utilizing the “Hclust” function native to

R, to detect and exclude potential outliers. Following this, the

‘pickSoftThreshold’ function was employed to determine an

optimal soft-thresholding power (b), ensuring the network

adhered to a scale-free topology. Using the chosen b, the

‘adjacency’ function transformed the expression similarity matrix

into an adjacency matrix. Lastly, this adjacency matrix was further

refined into a topological overlap matrix (TOM) using the relevant

WGCNA function, thereby reducing noise and false linkages to

bolster the network’s robustness. Subsequently, modules were

identified using hierarchical clustering alongside the dynamic tree

cut algorithm. To explore the relationship between these modules
TABLE 1 Detailed information about the datasets used in the study.

Dataset Name Sample Type Cases Controls Sex(F) Age(y)

GSE157628 Micro-samples of the MCA from MMD and IA 11 9 16 (80.0%) 54 ± 17

GSE141025 Intracranial Artery from MMD and IA 8 8 14 (87.5%) 61 ± 13

GSE189993 Micro-samples of MCA from MMD, IA, and EPI 21 11 22 (68.8%) 44 ± 20

GSE78193 Blood samples from SLE and healthy volunteers 101 24 none none

GSE154851 Blood samples from SLE and healthy volunteers 38 32 68 (97.1%) 35 ± 11
MMD, moyamoya disease; IA, internal carotid artery aneurysm; EPI, epilepsy; SLE, systemic lupus erythematosus.
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and the clinical characteristics of patients, Pearson correlation

analysis was conducted, with a significance threshold set at a P

value < 0.05.
Identification of shared genes and
pathway enrichment

An integrated evaluation was conducted using WGCNA and

DEGs to identify core common genes. The overlap among these

genes was visually represented through Venn diagrams to identify

key genes for further investigation of their functional roles.

Subsequently, these genes underwent thorough functional

enrichment analysis. The enrichment analysis, focusing on Gene

Ontology (GO) terms and pathways from the Kyoto Encyclopedia

of Genes and Genomes (KEGG), utilized the “enrichplot” and

“ggplot2” visualization tools in the R. To ensure the reliability of

the identified relationships, a significance threshold of P < 0.05 was

meticulously established.
Feature selection using the least absolute
shrinkage and selection operator

The Lasso technique, often employed in regression analysis,

utilizes an ℓ1 norm regularization to promote sparsity in the

solution, effectively leading to models with fewer parameters. This

method not only helps in feature selection but also improves model

interpretability by reducing the complexity of the model (21). A 10-

fold cross-validation strategy was utilized to evaluate gene selection

performance across diverse data subsets, further elucidating the

generalizability of the Lasso model and the robustness of the

selected genes. LASSO regression processing and drawing were

conducted using Hiplot (https://hiplot.com.cn) (22). This platform

facilitated the analysis and interpretation of the results obtained

from the Lasso model, including the visualization of selected genes

and their respective coefficients. we executed LASSO regression to

ascertain the most robust predictive variables for MMD and SLE

from the previously mentioned set of DEGs and the intersection of

WGCNA findings. Additionally, bootstrapping was conducted with

1,000 resamples to assess the stability of the identified genes. This

non-parametric technique enabled an evaluation of model accuracy

through resampling from the original dataset with replacement and

re-computation of the Lasso model for each bootstrap iteration.
Expression levels of potential biomarkers
and their diagnostic value

Violin plots, generated through the ggplot2 package in R, were

utilized to analyze the expression patterns of key genes with a

significance level established at P < 0.05. Further, the proficiency of

proposed biomarkers across the datasets (GSE157628, GSE141025,

GSE189993, GSE78193, and GSE154851) was assessed through the
Frontiers in Immunology 04
calculation of the area under the receiver operating characteristic

(ROC) curve, using the pROC package in R.
Single-sample gene set
enrichment analysis

The “GSVA” R package was utilized to conduct ssGSEA for

analyzing the infiltration of 28 immune cells in diseased and normal

samples. Spearman’s rank correlation tests were used to examine

the relationship between core genes and the levels of infiltrating

immune cells, with p values calculated (P < 0.05).
Results

Identification of DEGs

In the GSE157628 and GSE141025 dataset for MMD, 364 DEGs

were detected, comprising 94 upregulated and 270 downregulated

genes. In contrast, the GSE78193 dataset for SLE revealed 11,189

DEGs, with 7,812 upregulated and 3,377 downregulated genes.

Heatmaps (Figures 1A, B) illustrated DEGs for both diseases,

while volcano plots (Figures 1C, D) displayed the expression

patterns of the DEGs.
Construction of WGCNA networks and
identification of modules

To ensure a scale-free network structure, we determined the

scale-free fit index and mean connectivity. A power of b = 8 was

selected for soft thresholding in GSE157628 and GSE141025, while

a power of b = 26 was utilized for GSE78193. In the co-expression

network analysis, 6 modules were identified in the MMD samples,

and 9 modules in the SLE samples (Figures 2A, B).

For the investigation of genes associated with disease, we

examined the relationship between modules and clinical

phenotypes. In the MMD dataset (GSE157628 and GSE141025),

The green module exhibited the strongest positive correlation (r =

0.35, P = 0.003), while no significant difference was observed for the

strongest negative correlation. In contrast, for SLE (GSE78193), the

black module demonstrated the strongest positive correlation (r =

0.99, P < 0.001), and the midnightblue module had the strongest

negative correlation (r = -0.99, P < 0.001) (Figures 2C, D).
Identification of shared genes, pathway
enrichment, and protein-protein
interaction networks

Ninety-four overlapping DEGs were identified between MMD and

SLE (Figure 3A). A Venn diagram was used to illustrate the overlap

betweenthehubmodulesofMMDandSLE,resultingintheidentification
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of 570 intersection genes (Figure 3B). Twenty-eight core genes (CAMP,

CFD,MYO1F, CTSS, DEFA3, NLRP12,MAN2B1, NMI, QPCT, KCNJ2,

JAML, MPZL3, NDC80, FRAT2, THEMIS2, CCL4, FCER1A, EVI2B,

CD74, HLA-DRB5, TOR4A, GAPT, CXCR1, LAG3, CD68, NCKAP1L,

TMEM33, and S100P) were identified as overlapping between the genes

identified through WGCNA and DEGs. These genes may represent

potential crosstalk genes between the two diseases (Figure 3C).

GO and KEGG enrichment analyses were conducted on the 28

genes mentioned above in order to investigate common regulatory

pathways. The GO analysis revealed that these shared genes may be

associated with immune system process, immune response, neutrophil

chemotaxis, regulation of immune system process, and granulocyte

chemotaxis (Figure 4A). On the other hand, the KEGG analysis

indicated that these genes might primarily participate in

Staphylococcus aureus infection, tuberculosis, lysosome, antigen

processing and presentation, NOD-like receptor signaling pathway,

viral protein interaction with cytokine and cytokine receptor, and

asthma (Figure 4B). Finally, we employed extensive PPI network

analyses using STRING databases to investigate and visualize the

direct and indirect interactions of the proteins encoded by the
Frontiers in Immunology 05
identified genes. The more connected a protein is within the network,

the more likely it is to contribute to pathway crosstalk (Figure 4C).
Selection of potential shared diagnostic
genes using LASSO regression

A LASSO regression was applied to pinpoint shared diagnostic

biomarkers. Bootstrapping, conducted with 1,000 resamples,

yielded a concordance index (c-index) of 1.000 for SLE patients

and c-index of 0.868 for MMD patients. In dataset GSE157628 and

GSE141025, this method revealed 14 of the 28 principal intersecting

genes at an optimal lambda of 0.011 (Figures 5A, B). In a similar

analysis of dataset GSE78193, LASSO regression pinpointed 5 out of

the 28 key intersecting genes, again at optimal lambda = 0.137

(Figures 5C, D). Ultimately, a single gene, MPZL3, emerged as the

most promising shared diagnostic indicator for MMD and SLE, as

illustrated in Figure 5E. Bootstrapping, conducted with 1,000

resamples, yielded a concordance index (c-index) of 1.000 for SLE

patients and c-index of 0.878 for MMD patients.
FIGURE 1

Identification of differentially expressed genes. (A) A heatmap of DEGs in GSE157628 and GSE141025. (B) A heatmap of DEGs in GSE78193. (C) A
volcano plot of DEGs in GSE157628 and GSE141025. (D) A volcano plot of DEGs in GSE78193. MMD: Moyamoya disease; SLE: Systemic lupus
erythematosus; HC: Healthy control.
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Expression levels of candidate biomarkers
and their diagnostic value

Figures 6A, C, E, G present the upregulation of MPZL3 in both

MMD and SLE, indicating their potential as biomarkers. Sensitivity

and specificity assessments reveal their diagnostic potential in

GSE157628 and GSE141025 datasets (Figure 6C), where MPZL3

achieved an AUC of 0.734, implying substantial discriminative

power. In dataset GSE78193 (Figure 6B), MPZL3 exhibited

considerable diagnostic capacity for SLE (AUC = 1.000)

(Figure 6F). External validation was also conducted using datasets

GSE189993 for MMD (AUC = 0.762) and GSE154851 for SLE

(AUC = 0.942) (Figures 6D, H), where both biomarkers

demonstrated strong predictive capabilities.
Correlation between candidate biomarkers
and infiltration of immune cells

We conducted a detailed analysis of immune cell infiltration in

various samples. A total of 28 immune cell types were identified in

the GSE157628 and GSE141025 dataset, visualized through

heatmap and box plots (Figures 7A, B). The distribution of these
Frontiers in Immunology 06
28 immune cells in the GSE78193 sample is illustrated in

Figures 8A, B. Our findings revealed a significant increase in the

infiltration of activated CD4 T cell, immature B cell, macrophages,

and mast cell in both MMD and SLE. Furthermore, our correlation

analysis between immune cells and candidate biomarkers indicated

a positive association between activated CD4 T cell, immature B

cell, macrophages, and mast cell with MPZL3 in both MMD and

SLE (Figures 7C, 8C).
Discussion

This study integrated transcriptomes of MMD and SLE, using

WGCNA for the first time to investigate their shared mechanisms,

uncovering potential crosstalk genes, common pathways, and

associated immune cells. By intersecting DEGs with WGCNA

module genes, we identified CAMP, CFD, MYO1F, CTSS, DEFA3,

NLRP12, MAN2B1, NMI, QPCT, KCNJ2, JAML, MPZL3, NDC80,

FRAT2, THEMIS2, CCL4, FCER1A, EVI2B, CD74, HLA-DRB5,

TOR4A, GAPT, CXCR1, LAG3, CD68, NCKAP1L, TMEM33, and

S100P as key crosstalk genes between MMD and SLE, potentially

linked to immunity and inflammation regulatory activity. MPZL3

were found to be valuable diagnostic markers. Immune infiltration
FIGURE 2

Co-expression analysis for differentially expressed genes. (A) Sample cluster dendrogram and trait heatmap in GSE157628 and GSE141025.
(B) Sample cluster dendrogram and trait heatmap in GSE78193. (C) Heatmap of the module-trait relationships in GSE157628 and GSE141025.
(D) Heatmap of the module-trait relationships in GSE78193. MMD: Moyamoya disease; SLE: Systemic lupus erythematosus; HC: Healthy control.
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analyses highlighted the significant roles of activated CD4 T cell,

immature B cell, macrophages, and mast cell in the pathogenesis of

both MMD and SLE.

The precise pathogenesis of MMD and SLE remains unclear;

however, numerous studies have indicated that these conditions are

associated with genetic factors, infections, and immune

dysregulation (23, 24). This study findings provides further

evidence that core crosstalk genes in MMD and SLE are

associated with immune system process and immune response.

The immune system process and immune response play a
Frontiers in Immunology 07
fundamental role in the progression and pathology of various

diseases. While the exact role of the immune system in MMD

remains to be fully elucidated, certain infection and autoimmune

diseases have been implicated in its progression. Several studies in

cohorts of MMD patients have proposed autoimmune disorders

and infections as potential environmental factors that could trigger

the disease. In 1980, there were already reports of 75 cases of MMD

linked to leptospiral cerebral arteritis (25). In addition to infections,

Graves’ disease, a prevalent autoimmune condition leading to

hyperthyroidism, has been associated with MMD. Research on
FIGURE 3

Identification of the shared genes. (A) Venn diagram showing an overlap of 94 DEGs between MMD and SLE. (B) Venn diagram shows that 570 genes
overlap in the MMD and SLE modules. (C) Networks venn diagram showing that 28 core genes were crossed and overlapped between the genes
screened by WGCNA and DEGs. MMD: Moyamoya disease; SLE: Systemic lupus erythematosus; DEG: Differentially expressed gene; WGCNA:
Weighted gene co-expression network analysis.
FIGURE 4

Functional enrichment analyses of the shared genes. (A) GO analysis of the shared genes. (B) KEGG pathway enrichment analysis of the shared
genes. (C) protein-protein interaction (PPI) networks of the shared genes.
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170 patients with MMD, of which 25 had Graves’ disease, revealed

that individuals with both conditions experienced accelerated

disease advancement in MMD compared to those without Graves’

disease, resulting in a notably increased risk of stroke (26). In

addition, SLE is an autoimmune disorder impacting multiple organ

systems and is managed through immunomodulation and

immunosuppression. Patients with SLE possess a fundamentally

compromised immune system, heightened by disease activity,

rendering them susceptible to infections. Immunosuppressive

therapy amplifies the risk of infections, making infectious diseases

a primary reason for hospitalization and mortality among SLE

patients (27). Therefore, immune system process and immune

response induced by infection and autoimmune diseases could

potentially serve as a key factor in the shared pathophysiology of

both conditions.

This study preliminarily explored the potential immune

relationship between MMD and SLE, revealing significant

differences in the immune patterns of the MMD and SLE groups

compared to the control group. Activated CD4 T cell, immature B

cell, macrophages cells showed a more significant increase in both

MMD and SLE samples.

The association between T cells and MMD was initially

identified in 1993, revealing that the thickened vascular intima in

MMD consists primarily of smooth muscle cells and a fraction of
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macrophages and T cells (28). Furthermore, Leihua Weng and

colleagues conducted a clinical study indicating notably elevated

percentages of circulating Treg and Th17 cells in MMD patients

compared to controls. Their research also highlights the significant

involvement of TGF-b in the advancement of MMD (29). These

findings align with the results from our ssGSEA analysis.

Immunohistochemical analysis revealed B cells were infrequently

observed in the patients (28). Remarkably, we observed a notable

rise in immature B cell in MMD. In addition, collaboration between

activated naïve B cells and CD4+ T cells facilitated SLE

development by enhancing the differentiation of pathogenic T

cells (Th2 and Th17) as well as the production of autoantibodies

(30). Recent clinical studies have shown a positive association

between the quantity of monocytes expressing M1 macrophage-

like markers (CD163-CD14+) in the peripheral blood of children

with lupus and the severity of childhood-onset SLE (31). Similarly,

agents promoting M1 macrophage polarization may worsen

inflammatory disorders like lupus (32). Thus, it is speculated that

SLE could aggravate the onset and advancement of MMD through

the activation of T and monocytes cells.

To mitigate the risk of overfitting and to enhance the reliability

of performance metrics, it is crucial to incorporate a substantial

number of samples in clinical biomarker identification studies (33).

In our research, we included 19 MMD samples from the
FIGURE 5

Discovering potential diagnostic genes shared across conditions using the LASSO regression. (A) Implementation of tenfold cross-validation for
optimal tuning parameter selection, identified through log(lambda), within the GSE157628 and GSE141025 dataset. (B) A similar tenfold cross-
validation method applied to the GSE157628 and GSE141025 dataset to determine the best log(lambda) value. (C) The breakdown of LASSO
coefficients for the genes linked to diagnostics in the GSE78193 dataset. (D) LASSO coefficients for genes with diagnostic relevance within the
GSE78193 dataset. (E) A Venn diagram illustrating shared optimal diagnostic biomarkers.
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FIGURE 6

Expression pattern validation and diagnostic value. (A) Expression of MPZL3 in GSE157628 and GSE141025. (B) ROC curve of the shared diagnostic
genes in GSE157628 and GSE141025. (C) Expression of MPZL3 in GSE189993. (D) ROC curve of the shared diagnostic genes in GSE189993.
(E) Expression of MPZL3 in GSE78193. (F) ROC curve of the shared diagnostic genes in GSE78193. (G) Expression of MPZL3 in GSE154851. (H) ROC
curve of the shared diagnostic genes in GSE154851. MMD: Moyamoya disease; SLE: Systemic lupus erythematosus; HC: Healthy control.
FIGURE 7

Evaluation of immune cell infiltration in relation to MMD. Heatmap (A) and box plot (B) illustrating the distribution of 28 immune cell types in the
GSE157628 and GSE141025 sample. (C) Correlation between diagnostic genes and immune cell infiltration. MMD: Moyamoya disease; HC: Healthy control.
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GSE157628 and GSE141025 dataset and 101 SLE samples from the

GSE78193 dataset. The effectiveness of a biomarker can be

measured using the area which ranges from 0 to 1 (34). A higher

AUC value signifies a more accurate diagnostic test. In our analysis,

ROC assessment revealed that the biomarker MPZL3 had an AUC

of 0.734 for MMD prediction and 1.000 for SLE prediction.

Consequently, our findings suggest that both MPZL3 demonstrate

strong predictive capabilities for MMD and SLE.

As a significant gene facilitating the interaction between MMD

and SLE, MPZL3 is a nuclear-encoded protein that is predominantly

localized in the mitochondria. It possesses an immunoglobulin-like V-

type structure and plays a crucial role in regulating epithelial cell

differentiation, lipid metabolism, reactive oxygen species (ROS)

generation, glycemic control, and energy expenditure (35). MPZL3

contains an immunoglobulin domain and functions as a cell adhesion

molecule, regulating the recruitment of immune cells during

inflammation. MPZL3 may play a role in the inflammatory response

to dietary fat intake (36). A positive correlation was identified between

the infiltration of CD8+ T cells, CD4+ T immune cells, B cells, and

other immune cells, and the expression of MPZL3 in breast invasive

carcinoma (BRCA) (37). Elevated levels of MPZL3 expression have

been associated with the activation of immune cell signaling pathways.

Previous research has suggested that MPZL3 expression in immune

cells such as dendritic cells, CD4, and CD8 central memory and

effector T cells supports its potential role in immunity. Moreover,

mutations in the conserved V-type domain of MPZL3 can impact
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immune function, potentially leading to immunodeficiencies (38).

MPZL3 and FDXR collaborate to elevate ROS levels, promoting

epidermal differentiation. The differentiation induced by ROS is

contingent upon MPZL3 enhancing FDXR enzymatic activity. The

generation of ROS by the mitochondrial proteinsMPZL3 and FDXR is

crucial for driving epidermal differentiation (39). In summary, there is

a potential involvement of inflammation and immunity mediated by

MPZL3 in the interplay between MMD and SLE; however, additional

data is required to confirm this association. This will emphasize the

shared immune-level pathophysiology and could be vital in

comprehending the link between MMD and SLE.

Our study exhibits multiple strengths. Initially, we employed a

comprehensive and intricate bioinformatics analysis as a novel

approach to explore the association between the two diseases. The

utilization of the LASSO regression algorithm facilitated the

identification of potential shared diagnostic genes. Validation

using external datasets enhanced the accuracy of our predictions.

However, there are some limitations in our research. Our findings

were based on distinct patient cohorts and lacked validation within

the same individuals. Establishing a model that combines MMD

and SLE is essential to confirm the potential relationship between

these conditions in future studies. Additionally, this study did not

consider data on age, gender, medication, and patient

comorbidities, which could impact the reliability of the current

results. Finally, our study was not experimentally validated due to

the absence of dependable cell and animal models.
FIGURE 8

Evaluation of immune cell infiltration in relation to SLE. Heatmap (A) and box plot (B) illustrating the distribution of 28 immune cell types in the
GSE78193 sample. (C) Correlation between diagnostic genes and immune cell infiltration. SLE: Systemic lupus erythematosus; HC: Healthy control.
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Conclusion

This study is pioneering in its use of bioinformatics tools to

explore the close genetic relationship between MMD and SLE. The

genes CAMP, CFD, MYO1F, CTSS, DEFA3, NLRP12, MAN2B1,

NMI, QPCT, KCNJ2, JAML, MPZL3, NDC80, FRAT2, THEMIS2,

CCL4, FCER1A, EVI2B, CD74, HLA-DRB5, TOR4A, GAPT, CXCR1,

LAG3, CD68, NCKAP1L, TMEM33, and S100P have been identified

as key crosstalk genes that connect MMD and SLE. Activation of T

and monocytes cells-mediated immune responses are proposed to

play a significant role in the association between MMD and SLE.
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