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Introduction: Despite progress in our understanding of disease pathogenesis for

systemic autoimmune rheumatic diseases (SARD), these diseases are still

associated with high morbidity, disability, and mortality. Much of the strongest

evidence to date implicating environmental factors in the development of

autoimmunity has been based on well-established, large, longitudinal

prospective cohort studies.

Methods: Herein, we review the current state of knowledge on known

environmental factors associated with the development of SARD and potential

areas for future research.

Results: The risk attributable to any particular environmental factor ranges from

10-200%, but exposures are likely synergistic in altering the immune system in a

complex interplay of epigenetics, hormonal factors, and the microbiome leading

to systemic inflammation and eventual organ damage. To reduce or forestall the

progression of autoimmunity, a better understanding of disease pathogenesis is

still needed.
Abbreviations: aHR, adjusted hazards ratio; AI, artificial intelligence; ANA, antinuclear antibody; BWHS,

Black Women’s Health Study; CI, confidence interval; COVID-19; coronavirus disease 2019; BlyS, B-cell

lymphocyte stimulator; CCP, cyclic citrullinated peptide; CRP, C-reactive protein; dsDNA, anti-double-

stranded DNA; DNAm, DNA methylation; EBV, Epstein-Barr virus; GRS, genetic risk score; HCQ,

hydroxychloroquine; HLA, human lymphocyte antigen; HR, hazard ratio; ML, machine learning; IFN,

interferon; IL, interleukin; IIM, idiopathic inflammatory myopathies; IU, international units; NHS, Nurses’

Health Study; OR, odds ratio; NHSII, PTSD, post-traumatic stress disorder; RA, rheumatoid arthritis; rRNA,

ribosomal RNA; SARD, systemic autoimmune rheumatic diseases; SARS-CoV2, severe acute respiratory

syndrome coronavirus 2; SjD, Sjögren disease; SLE, systemic lupus erythematosus; SSc, systemic sclerosis;

TNF, tumor necrosis factor; UV, ultraviolet; VH3 BCR, VH3 B Cell Repertoire.
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Conclusion: Owing to the complexity and multifactorial nature of autoimmune

disease, machine learning, a type of artificial intelligence, is increasingly utilized as an

approach to analyzing large datasets. Future studies that identify patients who are at

high risk of developing autoimmune diseases for prevention trials are needed.
KEYWORDS

autoimmunity, autoimmune diseases, environment, autoantibodies, epigenetics,
microbiome, machine learning, artificial intelligence
Introduction

Environmental factors operating on the background of

hormonal factors and genetic vulnerability may be accelerating

factors included in a long-held paradigm that helps explain the

etiology of systemic autoimmune rheumatic disease (SARD),

including systemic lupus erythematosus (SLE), rheumatoid

arthritis (RA), systemic sclerosis (SSc), Sjögren’s disease (SjD),

idiopathic inflammatory myopathies (IIM) and others (1). On the

backdrop of an increasing prevalence of SARD and other

autoimmune diseases (2–6), potential accelerating factors include

several environmental and socioeconomic factors that include

alterations of foods, increasing exposure to xenobiotics due to

water and air pollution, heat and other extreme weather events

(i.e., climate change), biodiversity loss, ultraviolet (UV) light

exposure, pandemics and infections, and socioeconomic factors

such as changes in personal lifestyles and psychological stress.

Extensive research over the past three to four decades has

elucidated the environmental factors associated with SLE (7) and

other SARD. In general, the environmental factors can be classified

as airborne, waterborne, workplace/occupational, social, and

behavioral (8). While it has not been possible to identify a

universal environmental “pathogen” for all SARD, there is

compelling evidence that some environmental exposures clearly

serve as risk factors for disease onset. The central importance of

identifying these factors is that many of these factors are actionable

and modifiable through intervention and remediation. Expanding

the use of machine learning (ML), a form of artificial intelligence

(AI), to analyze large datasets including environmental exposures

may lead to the identification of other modifiable environmental

risk factors, and allow the development of new disease-specific

remediation programs (2).
Environmental factors
and autoimmunity

The development of SARD has been associated with several

lifestyle behaviors. For instance, cigarette smoke (9–11), obesity

(12), alcohol use (moderate consumption being protective) (10, 13–
02
15), poor nutrition and intake of ultra-processed foods (16),

psychosocial factors (e.g., major depression (17), sleep deprivation

(18), child abuse, personal trauma, post-traumatic stress disorder

[PTSD]) (19, 20), and reproductive factors (21–23) have been

associated with SLE development. Environmental exposures such

as air pollution (24), occupational hazards (25), residential

proximity to hazardous waste sites or pesticide exposure (26, 27),

UV light (28–33), vitamin D deficiency (34), and exposure to

viruses (35, 36) have also been linked to increased SLE risk.

Similar lifestyle factors have been reported for increased risk of

developing RA (moderate alcohol consumption decreases RA risk),

SSc, IIM, other SARD, and autoinflammatory conditions

(Tables 1, 2).

Precisely how and the extent to which these lifestyle factors

contribute to individual risk of autoimmune disease likely varies

(57, 58). This has been particularly well-studied using large cohort

studies including cohorts enrolled in the Nurses’ Health Study

(NHS) and Black Women’s Health Study (BWHS). In SLE, each

factor independently increases the risk of disease development by

10-200%, but they likely interact with each other and with genetic

risk, potentially synergistically, to accelerate brewing autoimmunity

in SLE [reviewed in (57–60)]. Using SLE as an example below, we

discuss several potential biologic pathways involving epigenomics,

the microbiome, and immune dysregulation that lead to

inflammation and organ damage, mechanisms that may also

apply to the development of other SARD (Figure 1).
Common pathways of pathogenesis:
immune dysregulation, epigenomics,
the microbiome

Immune dysregulation

Inflammation is an adaptive response to stressors that involves

multiple physiological processes that include the innate and

adaptive immune systems. In turn, inflammation regulates – and

is regulated by – several highly interconnected systems including

the epigenome and microbiome (64). Unhealthy lifestyle behaviors

(i.e., smoking, sedentary lifestyle, and consumption of ultra-
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TABLE 1 Environmental factors that increase risk for systemic autoimmune rheumatic diseases.

Lifestyle Exposure Disease Association Reported Risk from Select Key References (Citation)

Air Pollution RA • HR 1.31 (95%CI: 0.98–1.74) living near traffic pollution (road) vs. not (24)

SLE • Increases in air pollutants nitrogen dioxide (NO2), carbon monoxide (CO), and fine particles (PM2.5)
(HR 1.21 [95% CI: 1.08–1.36], HR 1.44 [95% CI: 1.31–1.59], and HR 1.12 [95% CI: 1.02–1.23],
respectively) (37)

SARD1 • OR 1.13 (95%CI: 1.02-1.25) for lowest vs. highest satellite fine particulate air pollution level (38)

Cigarette Smoke RA • RR 3.8 (95%CI: 2.0-6.9) in current smokers vs. never smokers (39)
• OR 1.65 (95%CI: 1.03–2.64) for >20 versus 0 pack-years) for anti-CCP-positive RA (40)

SLE • OR 1.50 (95%CI: 1.09–2.08) for current smokers compared with non-smokers (11)
• HR 1.86 (95%CI: 1.14–3.04) for current vs. never smokers for dsDNA+ SLE risk (9)

Diet SLE • Women in the highest tertile of cumulatively updated dietary ultra-processed food (UPF) intake/day
were at almost 50% greater risk of developing SLE vs. women in the lowest tertile of UPF daily
intake (16)

Hazardous Waste Sites SLE • Exposure to volatile organic compounds (P < 0.05) (26)

Obesity RA • History of obesity (OR 1.24 [95%CI: 1.01–1.53]) (41)

SLE • An 85% (HR 1.85 [95%CI: 1.17-2.91]) significantly increased risk of SLE among obese compared to
normal BMI women in the more recent NHSII cohort (12), but not NHS

Organic Solvents, Pesticides
and Heavy Metal

RA • Application of chemical fertilizers (adjusted OR 1.7 [95%CI: 1.1-2.7]) and cleaning with solvents (OR
1.6 [95%CI: 1.1-2.4]) (42)

SLE • Pesticide exposure (adjusted OR 2.24 [95%CI: 1.28–3.93]) (27)
• Association with SLE risk seen with mercury (OR 3.6 [95%CI: 1.3-10.0]) and mixing pesticides for
agricultural work (OR 7.4 [95%CI: 1.4-40.0]) (43)

SSc • OR 2.9 (95%CI: 1.1-7.6) for solvent organic solvent exposure (male SSc vs controls) (44)

Periodontitis RA • OR 1.16 (95%CI: 1.13-1.21) history of periodontitis (45)

Psychosocial SLE • Probable PTSD (HR 2.94 [95%CI: 1.19–7.26]) and trauma exposure (HR 2.83 [95%CI: 1.29–6.21]) (19)
• Women with a history of depression vs. no depression (HR 2.67 [95%CI: 1.91-3.75]) (17)
• Adverse childhood experiences (abuse, neglect, and household challenges) associated with increased risk
of SLE. Exposure to the highest vs. lowest physical and emotional abuse was associated with 2.57 times
greater risk of SLE (95%CI: 1.30–5.12) (46). HR for ≥2 episodes of severe sexual abuse compared to no abuse
was 2.51 (95%CI: 1.29–4.85) and ≥5 episodes of severe physical abuse was 2.37 (95%CI: 1.13–4.99) among
Black women) (20).

Reproductive/
Hormonal Factors

SLE • Pooled RR 1.5 (95%CI: 1.1-2.1) oral contraceptive use and use of postmenopausal hormones RR 1.9
(95%CI: 1.2-3.1) (21)

Silica RA • Silica exposed men OR 2.2 (95%CI: 1.2-3.9) among men aged 18 to 70 years and 2.7 (95%CI: 1.2-5.8)
among those aged 50 to 70 years (47)

SLE • Medium silica exposure was OR 2.1 (95%CI: 1.1–4.0), high exposure OR 4.6 (95%CI: 1.4–15.4) (25)

Vasculitis • Overall significant summary effect estimate of silica “ever exposure” with development of AAV (OR
2.56 (95%CI: 1.51–4.36) (48)

SSc • The combined estimator of relative risk for studies in females was 1.03 (95%CI: 0.74–1.44) and was
3.02 (95%CI: 1.24–7.35) for males (49).

Sleep Deprivation SLE • HR 2.47 (95%CI: 1.29-4.75) for chronic low sleep duration (≤5 hours/night versus >7–8 hours) (18)

UV Radiation SLE • History of more than one serious sunburn before the age of 20 years (OR 2.2, 95%CI: 1.2–4.1) and
sunburn-susceptible skin type (OR 2.9, 95%CI: 1.6–5.1) (32)

Viruses SLE • Epstein-Barr virus serologic reactivation among unaffected SLE relatives (viral capsid antigen IgG OR
1.28 [95%CI: 1.07-1.53], p=0.007 and early antigen IgG OR 1.43 [95%CI: 1.06-1.93], p=0.02) (36)

SARD • Higher risk of RA (adjusted HR (aHR) 2.98 [95%CI: 2.78–3.20]), SLE (aHR 2.99 [95%CI: 2.68–3.34]),
dermatopolymyositis (aHR 1.96 [95%CI: 1.47–2.61]), SSc (aHR 2.58 [95%CI: 2.02–3.28]), SjD (aHR 2.62
[95%CI: 2.29–3.00]), mixed connective tissue disease (aHR 3.14 [95%CI: 2.26–4.36]), Behçet's disease
(aHR 2.32 [95%CI: 1.38–3.89]), polymyalgia rheumatica (aHR 2.90 [95%CI: 2.36–3.57]), and vasculitis
(aHR 1.96 [95%CI: 1.74–2.20]) among COVID-19 vs. non-COVID-19 exposed unvaccinated
individuals (50).
F
rontiers in Immunology
AAV, anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis; CI, confidence interval; CCP, cyclic citrullinated peptide; HR, hazard ratio; NHSII, Nurses’ Health Study Cohort 2; OR,
odds ratio; RA, rheumatoid arthritis; RR, relative risk; SARD, systemic autoimmune rheumatic diseases; SjD, Sjögren disease; SLE, systemic lupus erythematosus; SSc, systemic sclerosis; UV, ultraviolet.
1. SARD included systemic lupus erythematosus, Sjögren's disease, scleroderma, polymyositis, dermatomyositis, or undifferentiated connective tissue disease.
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processed foods) promote systemic inflammation leading to chronic

inflammatory diseases, including SARD. Before developing overt

clinical manifestations, individuals developing SARD have a period

of asymptomatic autoimmunity and inflammation of variable

intensity and duration, characterized by increasing oxidative

stress, loss of immune tolerance, autoantibody formation,

immune complex deposition and complement activation,

epigenetic modifications, and upregulation and/or downregulation

of cytokine expression [reviewed in (65)].

In SLE, both obesity and exposure to the toxic components of

cigarette smoke induce oxidative stress (66). This, in turn, raises

intracellular levels of reactive oxygen species that damage DNA

producing immunogenic DNA adducts that can lead to the

production of ‘pathogenic’ anti-double-stranded DNA antibodies

(dsDNA) (67–69). In the NHS and NHSII cohorts, smokers were at

higher risk of developing anti-dsDNA positive SLE compared to

never-smokers (hazard ratio [HR] 1.86 [95% confidence interval

(CI): 1.14-13.04]), while there were no significant associations

between smoking status or pack-years and overall SLE or anti-

dsDNA negative SLE (9). In addition to elevated oxidative stress,

the byproducts of smoking could also augment native autoreactive

B cells (11) and induce pulmonary antinuclear antibody (ANA) as

demonstrated in the lungs of exposed mice (70). Smoking may also

influence specific genes in the pathogenesis of SLE (57). An

individual with a high SLE genetic risk score or GRS (score based

on 86 single-nucleotide polymorphisms and 10 classic HLA alleles

previously associated with SLE) and a status of current/recent

smoking was strongly associated with SLE risk (odds ratio [OR]

1.5, p=0.0003 versus more distant past/never smoking) and even

stronger in the presence of anti-dsDNA antibodies. Not

surprisingly, smoking also affects circulating cytokines. Elevated

SARD-related cytokines including the B-cell lymphocyte stimulator

(BlyS) (70), tumor necrosis factor-alpha (TNF-a), and interleukin
Frontiers in Immunology 04
(IL)-6 (71, 72), but lower IL-10 (an anti-inflammatory cytokine)

have been detected in smokers (73). These cytokines affect the

function of T cells and CD4+ regulatory T cells, which are important

in maintaining self-tolerance. Similarly, adipose tissue, in particular

visceral fat, secretes pro-inflammatory adipocyte-derived cytokines

and exhibits higher levels of C-reactive protein (CRP), TNF-a
receptor 2, and IL-6 than non-obese individuals (74).

The association between SLE risk and diet is less clear in

humans (75–77) compared to other autoimmune diseases such as

RA [reviewed in (78)]. There is evidence from SLE-prone mice

models that low dietary fiber intake and a Western-type diet (i.e.,

high in sugar, fat, refined grains, and red meat) are associated with

increased autoantibody production (79, 80). In the BWHS, a diet

high in carbohydrates and low in fats was associated with an

increased risk of developing SLE in African American women

(HR 1.88 [95%CI: 1.06-3.35]) (75). Consumption of ultra-

processed foods, in particular sugar and artificially sweetened

beverages, has been associated with an increased risk of

developing SLE among women (16). Low to moderate alcohol

consumption (approximately 1/2 drink a day), on the other hand,

has been shown to reduce the risk of SLE development among

women (10, 13–15). Alcohol (e.g., ethanol) and antioxidants may

counteract the changes induced by smoking and obesity, i.e.,

inhibiting key enzymes in DNA synthesis and suppressing TNF-

a, IL-6, IL-8, and interferon (IFN)-g that lower systemic

inflammation (81, 82).

Several studies have reported an association between lack of

sleep and SLE risk in humans (18, 83, 84). In the NHS and NHSII

cohorts, chronic low sleep duration (</=5 hours/night versus the

recommended >7-8 hours) was associated with increased SLE risk

(adjusted HR 2.47 [95% CI: 1.29, 4.75]), with stronger effects among

those with body pain and depression. In sleep-deprived individuals,

increased levels of IL-6 and TNF-a have been reported (85–89).
TABLE 2 Environmental factors that decrease risk for systemic autoimmune rheumatic diseases.

Lifestyle Exposure Disease Association Reported Risk from Select Key References (Citation)

Alcohol RA • HR 0.78 (95%CI: 0.61–1.00) for alcohol use of 5.0–9.9 gm/day (51)

SLE • HR 0.65 [95%CI: 0.45–0.96] among women who drank 2 or more servings of wine had significantly
decreased SLE risk compared to women who did not drink wine (13)

Diet RA • HR 0.67 (95%CI: 0.51-0.88) among women aged ≤55 years, better quality diet was associated with
lower RA risk, particularly seropositive RA (52)

Exercise SLE • Regular exercise (performing at least 19 metabolic equivalent hours of exercise per week) assessed with
other healthy behaviors (never or past smoker, healthy diet, moderate alcohol consumption, healthy body
weight) was associated with a 19% reduction in SLE risk per additional healthy behavior, such that
women with four or more healthy lifestyle factors had the lowest risk (HR 0.42 [95%CI: 0.25-0.70]) (53).

RA • Similar to the SLE study above, a lower risk of RA was also observed with a healthier lifestyle
including regular exercise, i.e., women with five healthy lifestyle factors had the lowest risk (HR 0.42 [95%
CI: 0.22-0.80]) (54).

Reproductive/
Hormonal Factors

RA • RR 0.8 (95%CI: 0.6–1.0) for breastfeeding for 2–23 total months (55)

Vitamin D SARD1 • Vitamin D 2000IU daily supplementation was associated with a 22% reduction in the development of
autoimmune disease (HR 0.78 [95% CI: 0.61, 0.99], P=0.05) (56).
CI, confidence interval; HR, hazard ratio; RA, rheumatoid arthritis; RR, relative risk; SARD, systemic autoimmune rheumatic diseases; SLE, systemic lupus erythematosus; 1. This included RA,
polymyalgia rheumatic, autoimmune thyroid disease, psoriasis, inflammatory bowel disease, and many others (e.g., SLE, systemic sclerosis).
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In SLE-prone mice, sleep deprivation was associated with

accelerated production of autoantibodies and earlier disease onset

(90). Sleep disturbances arising in individuals who have had

childhood or adult trauma, PTSD, or occupational stress from

working night or rotating shifts, may also explain why these

factors have also been linked to SLE onset (17, 19, 20, 43, 91, 92).

In the NHSII, PTSD, a condition arising after exposure to trauma

and marked by severe psychological stress, was associated with

increased SLE risk (HR 2.94 [95% CI: 1.19-7.26], p<0.05) compared

to women with no trauma, even after adjusting for other SLE risk

factors smoking, body mass index (BMI), and oral contraceptive use

(19). In the NHS and NHSII, women with a history of depression

had a higher risk of SLE (HR 2.67 [95:CI: 1.91-3.75] p<0.001)

compared to women with no depression (17). Systemic

inflammation, denoted by elevated TNF, IL-6, and CRP levels,

has been repeatedly reported in individuals with emotional stress

and distress (91, 93–102).

There is also evidence that sex hormones are important in SLE

development (21, 22), a disease, like some other SARD, that

predominantly affects females. In SLE, a population-based nested

case-control study using the UK’s General Practice Research

Database demonstrated that there was a dose-response in oral

contraceptive pill (ethinyl estradiol) and SLE risk (adjusted rate

ratio [aRR] 1.42, 1.63, and 2.92 for < or =30 microgram, 31-49

microgram, and 50 microgram, respectively) (22). They also

reported that the rate was particularly increased among females

who recently started taking oral contraceptive pills (aRR 2.52 [95%

CI: 1.14-5.57]) compared with longer-term current users. Estrogen
Frontiers in Immunology 05
prevents B cell receptor-mediated apoptosis and upregulates several

genes that contribute to B cell activation and survival (cd22, shp-1,

bcl-2, and vcam-1) (103).

Chemical and physical exposures have also been historically

linked to SLE onset, including crystalline silica dust (25, 33, 104,

105), heavy metals such as mercury (43), air pollution and other

respiratory particulates (38, 106), residential proximity to

hazardous waste sites (26), agricultural pesticides (27, 43, 107),

and organic solvents (42, 44). Proposed mechanisms of

pathogenesis include stimulation of cellular necrosis and release

of intracellular antigens resulting in systemic inflammation and IFN

upregulation. These environmental exposures have also been

described as important risk factors in the development of RA

(42), SSc (44), and vasculitis (48). A comprehensive review of the

literature (~1980-2010) on environmental factors and SARD

development concluded that among these chemical factors,

crystalline silica exposure, solvent exposure, and smoking had the

strongest level of evidence (108). Since then, however, multiple

studies have been published. The evidence for metal exposure and

SARD development including mercury at that time was felt to be

insufficient, although there is renewed interest in mercury-induced

autoimmunity in more recent studies (109, 110). Mercury exposure

has been associated with autoimmune features that are more

consistent with pre- or sub-clinical autoimmunity in humans, and

in animal studies, acts independently of type I IFN to induce milder

disease (111).

UVB radiation can exacerbate pre-existing SLE, however,

whether it contributes to SLE disease onset or pathogenesis is less
FIGURE 1

Environmental factor-associated pathogenesis and personalized preventative vs. treatment interventions for systemic autoimmune rheumatic diseases
(SARD). Among individuals genetically predisposed to SARD development, unhealthy lifestyle behaviors and other environmental factors can trigger
dysregulation in the microbiome, epigenetic changes, and immune dysregulation which, together, drive inflammation. In turn, inflammation can drive
further derangements in the microbiome, cause distinct epigenetic changes, and lead to additional immune dysregulation. During the periods of
asymptomatic autoimmunity and pre-clinical SARD, this positive feedback leads to a process wherein inflammation becomes chronic and self-sustaining,
ultimately driving autoimmunity and eventually leading to organ damage and clinical disease. Effective lifestyle interventions, supplementation, and early
introduction of immunomodulatory therapies may help prevent disease progression. There may be a potential role for treatments such as
hydroxychloroquine for pre-SLE [SMILE trial underway (61)] and Abatacept, a T-cell co-stimulation inhibitor, for pre-RA (62, 63).
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clear. While UVB radiation can up-regulate Th2 cells and down-

regulate Th1 cells, induce IL-10 production, increase type I IFN

expression, and prolong T cell activation to increase SLE risk (29–

31), another subset of UV radiation, UVA, is used as a phototherapy

modality to treat cutaneous forms of lupus (112). UVB also has an

important role in vitamin D3 synthesis in the skin, which has been

hypothesized to lower SLE risk (28, 113). Vitamin D deficiency is

reportedly common among SLE patients (34) and is important in

the regulatory pathways of numerous genes involved in

inflammation and immunity including IL-2 inhibition, antibody

production, and lymphocyte proliferation (114, 115). We will later

discuss a large, randomized, double-blind, placebo-controlled

clinical trial called the vitamin D and omega 3 trial (VITAL) trial,

where vitamin D 2000 IU daily supplementation was associated

with a 22% reduction in the development of autoimmune disease

(HR 0.78 [95% CI: 0.61, 0.99], p=0.05) (56).

Viral triggers, particularly Epstein-Barr Virus (EBV), have also

been associated with SLE development (35). In a recent study of 436

unaffected SLE patient relatives who were followed for 6.3 ± 3.9 years

and evaluated for interim transitioning to SLE, increased serological

reactivation of EBVwas associated with higher risk of transitioning to

SLE (viral capsid antigen IgG OR 1.28 [95%CI: 1.07-1.53], p=0.007

and expression of EBV early antigen IgG (OR 1.43 [95%CI: 1.06-

1.93], p=0.02) (36). Proposed mechanisms include molecular

mimicry and the release of EBV-encoded small RNAs from

infected cells resulting in the induction of type-1 IFN and

proinflammatory cytokines via activating toll-like receptor (TLR)-3

signaling (116). The interest in triggering of autoimmune conditions

by viral infections was renewed during the coronavirus disease 2019

(COVID-19) pandemic when there were outbreaks of pediatric

inflammatory multisystemic syndrome [PIMS also referred to as

multisystem inflammatory syndrome in children (MIS-C)] that

reportedly followed severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) infection in children. These reports included cases

of Kawasaki-like disease, Kawasaki disease shock syndrome, toxic

shock syndrome, myocarditis and macrophage activation syndrome

(117–119). In adults, SARS-CoV-2 infection has also been linked to a

higher risk of developing a diverse spectrum of new-onset

autoimmune diseases as highlighted by two large retrospective

studies (50, 120). Chang et al. used data from the TriNetX network

and propensity score matching (two cohorts [COVID-19 and non-

COVID-19] of 887,455 SARS-CoV-2 unvaccinated individuals) to

identify the incidence of autoimmune conditions during the study

period (1 January 2020 to 31 December 2021) (50). Unlike EBV, there

was a wider spectrum of SARD seen including higher risk of RA

(adjusted hazard ratio (aHR) 2.98 [95%CI: 2.78–3.20]), SLE (aHR

2.99 [95%CI: 2.68–3.34]), dermato/polymyositis (aHR 1.96 [95%CI:

1.47–2.61]), SSc (aHR 2.58 [95%CI: 2.02–3.28]), SjD (aHR 2.62 [95%

CI: 2.29–3.00]), and other autoimmune diseases. Future studies that

elucidate how viruses, such as SARS-CoV-2, increase the risk of

SARD development may help implement preventive measures and

early treatment in individuals who have had these infections to

prevent morbidity and mortality.

A key pathway involved in both anti-viral response and the

pathogenesis of SLE and other SARD including IIM and SSc is the
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type I IFN pathway (121). Approximately 50-70% of adult and

pediatric SLE patients have an upregulated IFN signature, a cluster

of IFN-stimulated genes, that correlates with disease activity and

severity (122). A recent study demonstrated that type-1 IFN inhibits

the aryl hydrocarbon receptor (AHR) pathway. Suppressed AHR

signaling promotes T cell production of CXC ligand 13 (CXCL13), a

chemokine that regulates B cell recruitment and lymphoid

aggregation in inflamed tissues (123). AHR is important for

sensing changes in the cellular milieu provided by the

environment, diet, commensal flora, and host metabolism (124).

In response to these environmental ligands, AHR has a protective

role against inflammation by downregulating pro-inflammatory

pathways (124). In the gut, AHR is expressed in epithelial cells

and immune cells in the lamina propria to also stabilize the gut

epithelial barrier (124). In the central nervous system, AHR is

upregulated in astrocytes and microglia in response to ligands that

cross the blood-brain barrier (124). Lower AHR expression has

been described as a potential mechanism of pathogenesis for several

autoimmune conditions including inflammatory bowel disease

(125), multiple sclerosis (126), and psoriasis (127). In SLE, deficits

in the AHR-driven immunoregulation exacerbated by the type-1

IFN may explain how alterations in the environment lead to the

development of autoimmunity and uncontrolled inflammation.

Moreover, polycyclic aromatic hydrocarbons, smoking, air

pollution, and other environmental exposures cause DNA

methylation changes in the AHR repressor genes, potentially

linking these exposures to the development of autoimmunity

(128–130). Future studies are warranted to elucidate the pathways

by which regulation of the AHR pathway is related to lymphocyte

activation status in the pathogenesis of autoimmunity.
Epigenetic changes

The currently accepted etiologic model for SARD implicates an

interaction of inherited genetic factors and environmental

exposures over time. DNA methylation (DNAm), an epigenetic

change controlling gene expression, is influenced by both genetics

and environmental exposures and therefore, may provide a critical

link between them [reviewed in (131–133)]. For instance, UV light

exposure, infections, silica, heavy metals and pesticide exposures,

cigarette smoking, and air pollution are all thought to inhibit

DNAm by oxidative stress, which could promote SARD onset

specifically or non-specifically (134). In addition to DNAm,

cigarette smoking is linked to the activation of enzymes that

regulate other types of epigenetic modifications (i.e., post-

translational modifications of histones via methylation,

acetylation, phosphorylation, ubiquitination, and regulation of

non-coding RNA sequences) to mediate the expression of

multiple inflammatory genes, thereby participating in the onset

development of autoinflammatory diseases (135).

DNAm occurs when a methyl group is added to a cytosine base

in a cytosine-phosphate-guanine dinucleotide (CpG) which, in

general, silences nearby gene expression. By comparison,

demethylation activates gene expression. These changes, mainly
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demethylation and in particular IFN gene hypomethylation, have

been observed in various cell subsets, including CD4 T cells in

patients affected by SLE (136–145). Upregulation of type I IFN in

SLE is thought to induce an “IFN epigenomic signature”, activating

latent enhancers and “bookmarking” chromatin, reprogramming

genes to be hyper-responsive, amplifying the inflammatory cascade

(146–148). Emerging data reveal that some of these epigenetic

changes are correlated with SLE disease manifestations (malar

and discoid rash, dsDNA autoantibodies, lupus nephritis) and

disease severity (137, 139, 144, 149), and are highly specific to

SLE such that they distinguish individuals with existing SLE from

controls and other SARD (141, 150). Well-designed epidemiologic

studies are still needed to determine whether other epigenetic

changes precede the development of SARD and whether such

changes could be modified to abrogate disease.
Microbiome influences

There is mounting evidence that imbalances in the microbiota

contribute to metabolic and immune regulatory dysfunction, which

may contribute to the pathogenesis of chronic inflammatory

diseases such as SARD [reviewed in (151)]. Several independent

reported studies of 16S rRNA libraries have identified characteristic

patterns of gut dysbiosis in SLE, in which there is an inverse

relationship between disease activity and overall biodiversity of

the intestinal microbiota (152–154). In studies of 61 female SLE

patients, there was an eight-fold increase in Ruminococcus gnavus

abundance compared to the healthy subjects, and most patients

with high R. gnavus abundance had active nephritis (152). Increases

in R. gnavus abundance have also been observed in other diseases

including allergies and spondyloarthropathies with inflammatory

bowel disease (155–157). Importantly, many strains of R. gnavus

express a VH3 B cell repertoire (BCR) targeted B cell superantigen,

particularly relevant to SLE given the importance of B cell activation

in disease pathogenesis (158).

Evidence suggests that SLE patients may suffer chronic

microbial translocation through impaired gut barrier integrity

contributing to immunologic dysregulation (159). Oral

microbiome studies confirm that SLE patients have a distinct

microbiome signature compared to healthy controls, with

evidence of translocation of bacteria, e.g., Veillonella species, from

the oral cavity to the intestine (160, 161).

In healthy adults, the microbiome, even at the level of strains, is

relatively stable over many years (162). However, the microbiome

can be altered by diet, sleep, exercise, stress, medications (antibiotics

and non-antibiotics), and the environment (163). Perturbations in

the gut microbiome composition have been suggested to trigger SLE

onset or disease flares and vice versa (164). In-depth studies

examining the impact of lifestyle and environmental factors on

changes to the microbiome and subsequent risk of autoimmune

diseases are needed.

Other host barriers should also be considered as potential

targets for prevention including the oral cavity and lung mucosa
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immune responses that contribute to autoimmune disease. The

initiation of RA by inflammation characterized by an aberrant

Th-17-dominated immune response, neutrophil activation,

antigen citrullination, and anti-cyclic citrullinated peptide

(CCP) production is exacerbated by microbial dysbiosis, the

presence of oral pathobionts (e.g., Porphyromonas gingivalis

and Aggregatibacter actinomycetemcomitans), and periodontitis

has been described (45, 165–167).

The lung mucosa is another site of protein citrullination leading

to RA development, promoted by microbial infection or dysbiosis

and the inhalation of pollutants such as tobacco smoke or other

pollutants (168, 169). This anti-CCP production and translocation

into the systemic circulation has been proposed to accelerate the

development of RA with interstitial lung disease for individuals who

are genetically predisposed (e.g., gain-of-function MUC5B

promoter variant reducing mucociliary function in small airways

responsible for clearing inhaled particles in the lungs (170)). It is

difficult to be certain that microbiome alterations observed in recent

studies of SARD patients are not due to established and treated

disease. Additional studies of the microbiome before disease onset

are warranted.
Mitigation of environmental factors

Traditional cohort studies

Our current understanding of lifestyle factors and autoimmune

diseases has largely depended on large observational

epidemiological studies (53, 54, 171). Many of these studies used

self-reported data including the use of validated and standardized

questionnaires. These studies also relied on the retention of subjects

in the long term to enable repeated measurement of lifestyle

behaviors. Nevertheless, these studies have filled important

knowledge gaps in our understanding of the link between

environmental exposures and autoimmunity.

In the NHS and NHSII cohorts, our group demonstrated that

adherence to multiple healthy behaviors (healthy diet (highest 40th

percentile of the Alternative Healthy Eating Index), regular exercise

(performing at least 19 metabolic equivalent hours of exercise per

week), never or past smoker, moderate alcohol consumption

(drinking ≥5 gm/day alcohol), and maintaining a healthy body

weight (body mass index <25 kg/m2) was associated with a 19%

reduction in SLE risk per additional healthy behavior, such that

women with four or more healthy lifestyle factors had the lowest

risk (HR 0.42 [95%CI: 0.25-0.70]) (53). An even greater reduction

per healthy behavior (22%) was observed for the risk of anti-

dsDNA-positive SLE. Overall, the population-attributable risk, or

the proportion of the risk in this population that could be attributed

to these five modifiable lifestyle risk factors was 47.7% [95%CI:

23.1-66.6%]. Using the same cohorts and similar modeling, a lower

risk of RA was also observed with a healthier lifestyle, i.e., women

with five healthy lifestyle factors had the lowest risk (HR 0.42 [95%
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1456145
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Choi et al. 10.3389/fimmu.2024.1456145
CI: 0.22-0.80]) (54). Therefore, a significant proportion of the risks

of both SLE and RA may be preventable by adhering to

healthy lifestyles.
Intervention and prevention trials

There is a scarcity of clinical trials examining lifestyle and

environmental interventions and prevention strategies to reduce the

risk of autoimmune disease development. One of the challenges in

designing a strong and well-powered prevention study is identifying

which at-risk individuals to study. Our group has previously

developed SLE risk prediction models having 76% accuracy by

combining family history, genetic factors, and lifestyle, medical and

behavioral exposures that classify a woman’s risk of SLE in the next

two years (172). There is also a rapidly growing panel of potential

biomarkers of SLE risk or early disease including anti-dense fine

speckled 70 (DFS70) as a rule-out SARD test (173), anti-C1q

antibodies as a rule-in test (174), cytokines and chemokines (175,

176), IFN signature (177), as well as markers of complement

activation (178). Therefore, identifying individuals for screening,

risk-stratifying, assessing biomarkers, and testing intervention and

prevention strategies before clinical disease onset has recently

become possible (65, 179).

In a pivotal randomized, double-blind, placebo-controlled

vitamin D and omega 3 trial (VITAL) trial with a two-by-two

factorial design (n=25 871 participants followed for a median of 5.3

years), vitamin D (2000IU/day) supplementation for five years

[with or without omega 3 fatty acid (1000 mg/day)] had a

significant reduction in the risk of confirmed autoimmune disease

of 22% (HR 0.78 [95% CI: 0.61, 0.99], p=0.05) (56). This included

RA, polymyalgia rheumatica, autoimmune thyroid disease,

psoriasis, inflammatory bowel disease, and others (e.g., SLE, SSc).

Individuals who received an omega-3 fatty acid supplementation

(with or without vitamin D supplementation) had a reduced rate of

incident autoimmune disease by 15% but this was not statistically

significant. However, the two-year post-intervention observation

study where participants were no longer provided with any

supplements but were invited to continue being observed while

off assigned supplements, demonstrated that the protective effects of

the 5.3 years of randomized exposure to 2000 IU/day of vitamin D

dissipated, but the randomized supplementation with 1,000 mg/day

of omega-3 fatty acids for the 5.3 years was seen to have a sustained

effect in reducing autoimmune disease incidence (180). The results

suggest that vitamin D supplementation of 2000 IU/day should be

given continuously for long-term prevention of autoimmune

disease, while the beneficial effects of omega-3 fatty acids may be

more sustained.

The only SLE-specific prevention trial to date is the “Study of

Anti-Malarials in Incomplete Lupus Erythematosus (SMILE)” (61),

which was set to determine whether SLE progression can be

abrogated by using hydroxychloroquine (HCQ) among patients

with a positive ANA test and at least one (but not three or more)

additional clinical or laboratory criterion from the 2012 Systemic

Lupus Inception Collaborating Clinics (SLICC) classification

criteria (181). This highly anticipated, multicenter, randomized,
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double-blind, placebo-controlled, 24-month trial is expected to be

completed soon.

A similar HCQ prevention trial in RA (“Strategy to Prevent the

Onset of Clinically-Apparent Rheumatoid Arthritis” or STOP-RA)

was halted early due to the futility of the treatment (182). In the

interim analysis it was observed that in individuals who were anti-

CCP positive but without inflammatory arthritis at baseline, one

year of HCQ was not superior to placebo in preventing or delaying

the development of inflammatory arthritis, and the classification of

individuals as having RA at 3 years (probabilities of RA

development were 34% in the HCQ arm and 36% in the placebo;

p=0.844). Therefore, in RA, HCQ did not help prevent or delay the

onset of clinical disease compared to placebo. The study did suggest

however that anti-CCP at levels of ≥40 units will be an important

enrolment criterion in future RA prevention studies. Therefore, as

we strive towards a future of prevention over cure in any SARD, a

better and more standardized approach to identifying the timing of

intervention and which patients are at the highest risk is urgently

needed to ensure the success of prevention trials.

Other RA prevention trials such as the “TREAT Early

Arthralgia to Reverse or Limit Impending Exacerbation to

Rheumatoid arthritis” (TREAT EARLIER) trial examining one

year of methotrexate also did not meet its endpoint of

development of clinical arthritis among individuals with

arthralgia clinically suspected of progressing to RA and magnetic

resonance imaging (MRI)-detected subclinical joint inflammation

(183). The T-cell co-stimulation inhibitor abatacept has shown

greater promise in delaying RA development in two different at-

risk populations. In the “Abatacept inhibits inflammation and onset

of rheumatoid arthritis in individuals at high risk” or ARIAA trial,

abatacept treatment for six months among RA-at-risk individuals

(anti-CCP positive and showing MRI signs of inflammation)

reduced subclinical joint inflammation and delays the

development of RA (62). In the “Arthritis Prevention In the Pre-

clinical Phase of RA with Abatacept” (APIPPRA) trial, at-risk

individuals were defined as individuals with arthralgia, anti-CCP

plus rheumatoid factor (RF) positive or high anti-CCP titers ≥3 x

upper limit of normal plus RF negative, without synovitis at baseline

(63). In this randomized, double-blind, multicenter, parallel,

placebo-controlled, phase 2b clinical trial, 52 weeks of abatacept

treatment reduced RA development over two years compared to

placebo. However, by 24 months, the effect of abatacept treatment

on symptom burden and subclinical inflammation as determined by

ultrasound was not sustained. Therefore, longer treatment with

abatacept beyond 12 months might be required. These studies again

highlight the need for criteria that identify at-risk individuals from

patients with early RA and the most appropriate time to target

preventative interventions (184).
Future technologies for research on
environmental exposures and SARD

In the last decade, there has been an exponential uptake of AI

technologies to study diseases including SARD [reviewed in (185–
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1456145
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Choi et al. 10.3389/fimmu.2024.1456145
187)]. Much of this is due to greater access to a variety of data

sources, e.g., images, efficient data collection tools, and

supercomputer and analytic methods to rapidly compute. ML is a

type of AI that refers to utilizing computers to perform specific tasks

by learning from the data rather than being explicitly programmed

with instructions such as traditional statistical tests. Within ML,

different algorithms are generally categorized into supervised,

unsupervised, reinforcement, and deep learning.

In the study of SARD, ML has proven useful in developing

prediction models for diagnosis and disease outcomes and in

elucidating pathogenesis [reviewed in (185)]. As SARD are highly

complex, multifactorial, and heterogeneous diseases, ML is an ideal

approach because it can reveal patterns and interactions between

variables in large and complex datasets more accurately and

efficiently than traditional statistical methods. As we enter an era

of ‘multi-omics’, information on our patients is becoming

increasingly ‘layered’ and challenging to interpret and ML holds

promise for new insights and interpretations.

Utilizing ML, we recently demonstrated that there are four

unique SLE clusters defined by longitudinal autoantibody profiles

alone (188). While these clusters are predictive of disease activity,

treatment requirements, complications, and mortality, it also

points to autoantibodies as being a fundamental underlying

mechanism of immune dysregulation and disease pathogenesis of

SLE. This approach can be adopted to study pathogenesis for other

SARD and inform more personalized monitoring and treatment

plans. The focus of current SLE ML models is on the identification

of patients with established disease or the prediction of specific SLE

manifestations, e.g., nephritis, neuropsychiatric disease. This

includes a validated diagnostic algorithm called the SLE Risk

Probability Index (SLERPI) where a SLERPI score of greater than

7 was highly accurate (94.2%) and sensitive for detecting early

disease (93.8%) and severe manifestations including kidney

(97.9%) and neuropsychiatric involvement (91.8%) (189). Future

studies to develop MLmodels that predict the development of new-

onset SLE utilizing datasets that include environmental exposures

are needed.
Conclusions

Our examination of risk and protective factors for SARD

development, including adherence to multiple healthy lifestyle

behaviors, has helped our understanding of the pathogenesis of

autoimmunity that involves immune dysregulation, epigenetics,

and an altered microbiome. Multiple environmental exposures,

including social and behavioral factors throughout our lifespan

are likely synergistic and interactive with each other and with

genetic factors, influencing the immune system in a complex

interplay of epigenetic, hormonal, and microbiome influences,

leading to systemic inflammation and eventual organ damage in
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some. While a major focus has been placed on identifying new

targets for disease treatment, shifting the care paradigm to disease

prevention is an attractive proposition, especially as our ability to

identify high-risk individuals improves. In the few prevention trials

that have been conducted, the importance of identifying patients at

the highest risk and the likelihood of benefiting from preventative

treatment has been highlighted, and thus far, biomarkers have

played a critical role in risk stratification. Given the complexity

and vast clinical heterogeneity of SARD, ML approaches will

become increasingly relied upon to study SARD pathogenesis

and prevention.
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