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Introduction: Heart failure (HF) and kidney failure (KF) are closely related

conditions that often coexist, posing a complex clinical challenge.

Understanding the shared mechanisms between these two conditions is

crucial for developing effective therapies.

Methods: This study employed transcriptomic analysis to unveil molecular

signatures and novel biomarkers for both HF and KF. A total of 2869 shared

differentially expressed genes (DEGs) were identified in patients with HF and KF

compared to healthy controls. Functional enrichment analysis was performed to

explore the common mechanisms underlying these conditions. A protein-

protein interaction (PPI) network was constructed, and machine learning

algorithms, including Random Forest (RF), Support Vector Machine-Recursive

Feature Elimination (SVM-RFE), and Least Absolute Shrinkage and Selection

Operator (LASSO), were used to identify key signature genes. These genes

were further analyzed using Gene Set Variation Analysis (GSVA) and Gene Set

Enrichment Analysis (GSEA), with their diagnostic values validated in both training

and validation sets. Molecular docking studies were conducted. Additionally,

immune cell infiltration and correlation analyses were performed to assess the

relationship between immune responses and the identified biomarkers.

Results: The functional enrichment analysis indicated that the common

mechanisms are associated with cellular homeostasis, cell communication,

cellular replication, inflammation, and extracellular matrix (ECM) production,

with the PI3K-Akt signaling pathway being notably enriched. The PPI network

revealed two key protein clusters related to the cell cycle and inflammation.

CDK2 and CCND1 were identified as signature genes for both HF and KF. Their

diagnostic value was validated in both training and validation sets. Additionally,

docking studies with CDK2 and CCND1 were performed to evaluate potential

drug candidates. Immune cell infiltration and correlation analyses highlighted the

immune microenvironment, and that CDK2 and CCND1 are associated with

immune responses in HF and KF.
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Discussion: This study identifies CDK2 and CCND1 as novel biomarkers linking

cell cycle regulation and inflammation in heart and kidney failure. These findings

offer new insights into the molecular mechanisms of HF and KF and present

potential targets for diagnosis and therapy.
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Introduction

Heart failure (HF) is a life-threatening problem which impacts

over 64 million individuals globally (1). Concurrently, chronic kidney

disease (CKD) represents a growing public crisis with a prevalence of

10-13% (2). The coexistence of heart and kidney failure (KF) is linked

to significantly increased morbidity, mortality, and healthcare

expenditures, alongside detrimental clinical outcomes (3, 4). The

intricate interplay between the heart and kidneys is such that

dysfunction in one organ can precipitate complications in the

other. The prevalence of HF and CKD in tandem is not

uncommon. This bidirectional relationship, where heart or kidney

disorders can induce dysfunction in the counterpart organ, manifests

acutely and chronically as cardiorenal syndrome (5).

The heart and kidney interact in both physiological and

pathological manners. The heart relies on the kidney’s critical role

in maintaining homeostasis, while the kidney’s function is

intricately tied to adequate blood perfusion—a process governed

by neurohormonal, hemodynamic, and inflammatory mechanisms,

which are essential for maintaining salt-water balance and normal

blood pressure (6). Dysregulation of the heart-kidney cross talk

contributes to cardiovascular diseases, CKD, and other systemic

dysfunctions (7). Recent insights suggest that the bidirectional

pathways and feedback loops underpinning heart and renal

failure are more complex than previously recognized (8).

Emerging research indicates that cardiac and renal disorders

share common pathways, such as inflammation, endothelial

dysfunction, hemodynamic instability, neurohormonal activation,

metabolic anomalies, and oxidative stress (9–12), along with

frequently co-existence risk factors like hypertension, diabetes,

obesity, and vascular complications (13), which pose challenges in

medical therapy. However, the mechanisms underlying the

interdependence of heart and kidney failure remain elusive. It is

hence important to explore the diverse mechanisms involved in the

progression of the both diseases.

The traditional diagnostic and evaluative methods for patients

with HF and CKD, which rely on serum creatinine or Brain

Natriuretic Peptide (BNP) levels, are limited as they reflect

changes in only one organ at a time. Nevertheless, recent studies

have reported several biomarkers that improve the assessment of

kidney disorder severity and accurately indicate the risk of
02
cardiorenal syndrome progression, such as NGAL, NAG, KIM1,

and PCS, while still primarily detecting the deterioration of renal

function (14–17). Consequently, further research is needed to

identify shared novel biomarkers for diagnosis of the HF and

CKD, as well as to elucidate the molecular and cellular

physiological mechanisms associated with the both diseases,

which may provide new targets for treatment.

To address current diagnostic limitations and deepen our

understanding of the heart-kidney interplay, our study aims to

advances our knowledge of the molecular mechanisms shared

between heart and kidney failure, and also to uncover novel

biomarkers for diagnostic and therapeutic targets. This research is

pioneering in leveraging transcriptomic analysis within an

integrated bioinformatics tools and machine learning algorithms

to explore HF and KF. The findings are expected to provide new

insights into these conditions, ultimately paving the way for

improved management of cardiorenal syndrome.
Materials and methods

Study design

The workflow of this study is depicted in Figure 1.
Data collection

The keywords “heart failure” and “kidney failure” were used to

search on the Gene Expression Omnibus (GEO, http://www.ncbi.

nlm.nih.gov/geo/), a comprehensive public repository for genomics

data (18). Two datasets, GSE57345 (which includes the gene

expression profile of HF patients and healthy controls) and

GSE37171 (comprising the gene expression profile of KF patients

and healthy controls), were extracted from the GEO database as the

training set. To validate the findings from these datasets, we

acquired two additional datasets, GSE135055 (HF and controls)

and GSE97709 (KF and controls), from GEO to function as our

validation set. The selected datasets met specific criteria: they were

derived from human subjects, utilized expression profiling by array,

and each had a total sample size of at least 30, encompassing
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individuals with heart failure or kidney failure along with

control subjects. Details regarding all datasets are listed in

Supplementary Table 1.
Identification of shared DEGs

The datasets were processed using the R programming language

(version 4.3.2) and Bioconductor (http://bioconductor.org/

biocLite.R). Initially, raw datasets underwent background

correction, log2 transformation, and normalization via the ‘affy’

and ‘limma’ packages in R. Subsequently, the ‘ComBat’ algorithm

within the ‘sva’ package was applied to correct for batch effects due

to technical variations among the samples. To identify differentially

expressed genes (DEGs) of statistical significance and biological

relevance, even with modest expression difference, the ‘limma’

package was employed with a significance threshold set at an

adjusted p-value <0.05 and |logFC| > 0 for GSE57345 (HF) and
Frontiers in Immunology 03
GSE37171 (KF), respectively, to evaluate DEGs between patients

and healthy controls. Ultimately, a total of 2869 mutual upregulated

and downregulated DEGs in both GSE57345 and GSE37171 were

identified using Venn diagrams in the TBtools software (19).
Functional enrichment analysis

The Gene Ontology (GO) framework categorizes and annotates

cellular components, molecular functions, and biological processes

(20). The Kyoto Encyclopedia of Genes and Genomes (KEGG)

facilitates the systematic analysis of gene functions, integrating

genomic information to investigate potential pathways (21). Gene

Set Enrichment Analysis (GSEA) offers statistical insights into the

biological significance of gene sets (22, 23). The aforementioned

2869 shared DEGs underwent GO, KEGG enrichment analysis, and

GSEA (in GSE57345 and GSE37171, respectively) using the

‘clusterProfiler’ package in R. Pathways for GO and KEGG
FIGURE 1

Schematic diagram of the study workflow.
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enrichment were selected based on an adjusted p-value < 0.05 and

q-value < 0.05. The top five upregulated and downregulated

pathways were visualized using the package ‘ggplot2’ in R.

Furthermore, the top 10 hub genes were enriched pathways using

Reactome website (https://reactome.org/) and also performed the

GO and KEGG analysis. Finally, the signature genes were set as

median symbol and performed the GSEA in GSE57345 and

GSE37171, respectively.
Protein-protein interaction network and
hub genes selection

In order to streamline the genes selection for protein-protein

interaction (PPI) network analysis, 543 genes were filtered from the

2869 shared genes based on a stringent threshold of |logFC| > 0.2

and adjusted p-value <0.05. These genes were next submitted to the

STRING database (http://string-db.org/) to compile the interactions

of the target proteins, setting a medium confidence score threshold

of 0.4. The Cytoscape software (version 3.10.1) was utilized to

construct a comprehensive PPI network, judiciously excluding any

proteins that lacked connections. Furthermore, the hub genes were

selected using the ‘cytoHubba’ plug-in within Cytoscape.
Machine learning and signature
genes selection

Three machine learning algorithms, including Random Forest

(RF), Support Vector Machine Recursive Feature Elimination

(SVM-RFE), and Least Absolute Shrinkage and Selection

Operator (LASSO), were employed to refine the selection of

signature genes. This process leveraged the top 10 hub genes

previously identified, aiming to bolster classification performance.

RF, known for its proficiency in predicting stable factors through an

ensemble of decision trees, thus enhancing prediction accuracy, was

implemented using the ‘randomForest’ package in R (24). SVM-

RFE, distinguished for pinpointing the most discriminative gene set

to ensure robust feature selection, was executed via the ‘e1071’

package in R, with the selection criterion in minimal cross-

validation error (25). LASSO, a regression algorithm acclaimed

for its variable selection efficiency by minimizing classification error

probability, here was carried out using the ‘glmnet’ package in R

(26). Collectively, the disease-related signature genes were discerned

from the overlapping of results across three machine learning for

further analysis.
Expression level and Gene set variation
analysis of signature genes

The RNA expression levels of signature genes were obtained

from the purified and standardized GSE57345 and GSE37171

datasets, and subjected to a t-test comparison between healthy

controls and HF or KF patients. The results were visualized using

violin plots in R. Gene Set Variation Analysis (GSVA) is a non-
Frontiers in Immunology 04
parametric, unsupervised method for evaluating gene set

enrichment through the transformation of gene expression data.

GSVA scores were employed to evaluate the biological activity of

the signature genes using the ‘GSVA’ package and visualized

through box plots in R.
Receiver operating characteristic curves

To assess the correlation between signature genes and disease

outcomes, Receiver Operating Characteristic (ROC) curves were

employed. Utilizing the ‘pROC’ package in R, ROC curves were

plotted, and the area under the curve (AUC) was calculated to

determine the predictive power of the signature genes. This analysis

was conducted on two training datasets, GSE57345 for HF and

GSE37171 for KF, and corroborated with on two validation

datasets, GSE135055 for HF and GSE97709 for KF. The resulting

AUC values provided a robust measure of the genes’ discriminative

capacity in relation to the disease states under investigation.
Development and validation of
the nomogram

A nomogram model was developed utilizing multivariate

logistic regression analysis, incorporating the two signature genes

to diagnose HF and KF, performing with the ‘rms’ package in R.

“Points” refers to each predictor’ score, while the “total points”

aggregate these scores, reflecting the cumulative assessment value

derived from each predictor. The nomogram’s predictive accuracy

was evaluated using a calibration curve, and its discriminative

ability was quantified by the ROC curve.
Molecular docking analysis of
bifunctional compounds

To develop a bifunctional compound that activates the CDK2

enzyme while inhibiting CCND1, potential activators of CDK2 and

CCND1 inhibitor were screened from the ChEMBL (https://

www.ebi.ac.uk/chembl) database. Out of 22,144 assay data entries,

only three compounds (CID141497232, CID170906997, CID31703)

showed induction of CDK2 expression increase. The 3D structural

conformers of these CDK2 activators and the CCND1 inhibitor

(CID23424592) were downloaded in SDF file format from the

PubChem (https://pubchem.ncbi.nlm.nih.gov) database. An

inhibitor of CDK2 (CID23667627) and an activator of CCND1

(CID137657657) were also screened and downloaded. These

conformers were converted to PDB format using the Open Babel

GUI (https://openbabel.org/docs/GUI/GUI.html) and later to

PDBQT format using AutoDockTools-1.5.7 (http://autodock.

scripps.edu/resources/adt). The crystal structures of CCND1

(PDB ID: 2W96) and CDK2 (PDB ID: 2A4L) were obtained from

the Protein Data Bank (PDB) (https://www.rcsb.org) and eventually

converted to PDBQT format using AutoDockTools. Molecular

docking was then performed using AutoDockTools-1.5.7 to assess
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the binding interactions between the selected compounds and their

respective protein targets. The docking results were visualized using

the PyMOL Molecular Visualization System 2020.
Immune infiltration and correlation analysis

To delineate the immune cell landscape within HF, KF, and

contro l g roups , we employed CIBERSORT (ht tps : / /

cibersort.stanford.edu/), an advanced computational tool that

quantifies the abundance of diverse immune cell types. This

analysis was conducted using the LM22 signature matrix for

datasets GSE57345 and GSE37171. Subsequently, Pearson

correlation analysis was applied to discern the correlation among

the 22 immune cell types and to elucidate their association with the

two signature genes across both datasets. The results were visualized

through the ‘ggplot2’ package in R.
Statistical analyses

All statistical analyses were performed using R software.

Differences between data from two sample groups were calculated

using an unpaired, two-tailed t-test. Pearson or Spearman correlation

coefficients were used to assess the correlation between variables.

Differences were considered significant at p < 0.05 (*p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001).
Results

Identification of DEGs in HF and KF and
their functional enrichment analysis

To investigate the molecular interplay between cardiac disease

and renal dysfunction, we analyzed the microarray dataset GSE57345

for heart failure (HF) and GSE37171 for kidney failure (KF), both

sourced from GEO database. DEGs were initially identified by

comparing HF patients with healthy individuals, and KF patients

with healthy individuals respectively using the ‘limma’ package in R.

The significance thresholds set at an adjust p-value < 0.05 and

|log2FC| > 0 for ensuring that no biologically significant DEGs are

overlooked. The resulting volcano plots (Figures 2A, B) graphically

represent the DEGs identified. A Venn diagram subsequently

revealed a total of 2869 shared DEGs, with 1602 genes

downregulated and 1267 genes upregulated across both HF and KF

conditions (Figure 2C). Next, functional enrichment analysis for

these DEGs were performed based on R language. GO analysis

indicated that the 2869 DEGs were predominantly associated with

processes such as “establishment of protein localization to organelle”,

“muscle cell differentiation”, “regulation of actin filament-based

process”, and “regulation of nervous system development” in

biological process (BP). In the cellular component (CC) ontology,

shared DEGs were primarily localized to “collagen-containing

extracellular matrix (ECM),” “nuclear envelope,” and “transport

vesicle”. For molecular function (MF), significant contributions
Frontiers in Immunology 05
were noted in “actin binding”, “protein serine/threonine kinase

activity”, and “DNA-binding transcription factor binding”. These

findings suggest a role for the shared DEGs in maintaining cell

structure, cellular homeostasis, cell communication, ECM production

and fundamental cell growth (Figure 2D). KEGG analysis highlighted

that the shared DEGs were significantly enriched in the “PI3K-Akt

signaling pathway” (Figure 2E). GSEA was conducted on both disease

patients and healthy controls to gain deeper insights into the

biological signaling of DEGs. The enriched terms, consisting the

top 5 upregulated and top 5 downregulated pathways, are illustrated

in Figures 2F, G for GSE57345 and GSE37171, respectively. These

pathways are linked to cellular biochemical reactions, cellular

replication capabilities, fibrosis, and inflammation. Additionally,

pathways such as “biosynthesis of nucleotide sugars,” “ECM-

receptor interaction,” and “insulin secretion” were found to be

enriched in either HF or KF through GSEA.
Unveiling common molecular signatures in
HF and KF via PPI network and hub genes

In the pursuit of elucidating common molecular signatures

between HF and KF, DEGs with an adjusted p value < 0.05 and |

log2FC| > 0.2 were selected to underscore the intricate protein

interactions between HF and KF. We obtained a pronounced PPI

network comprising 191 nodes and 901 interactions (Figure 3A),

after exclusion of unconnected and weakly connected nodes. Key

nodes and subnetworks were further established through the

Cytohubba plugins, leading to the selection of the top ten hub genes:

HIF1A, CDK2, MYC, CCND1, ACTB, TLR4, IRAK4, IRAK3, TLR2,

andMYD88.These geneswere central to twodistinctly interconnected

protein clusters, depicted in red and blue (Figure 3B).

Next, GO and KEGG analysis of these two clusters revealed that

the red network chiefly pertains to cell cycle and senescence

(Figure 3C), while the blue network is mainly associated with the

immune response and inflammation (Figure 3D). Particularly, the

ten hub genes focus on the “Cyclin D associated events in G1” and

“Toll-like Receptor Cascades” biological processes via Reactome

pathway analysis (Figure 3E). These implicate that the disorder of

cell cycle and immune system may play pivotal signaling roles, with

the interlinks between ACTB and TLR4 potentially driving the

common pathogenesis in both heart and kidney failure.
The role of signature genes CDK2 and
CCND1 in HF and KF

For the screening of the key genes affecting both diseases, RF,

SVM-RFE, and LASSO algorithms were performed to select

signature genes based on the 10 hub genes. In the RF algorithms,

three feature genes were extracted as significant by overlapping of

the top 6 genes from GSE57345 and GSE37171 according to their

importance in MeanDecreaseGini value. The RF classifier was

setting with optimal number of trees to minimize error rates and

maximize stability (Figure 4A), and the importance of the 10 hub

gens was ranked (Figure 4B). The SVM-RFE model identified a total
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of 7 genes with minimal root-mean-square error (RMSE) values of

0.1185227 in GSE37171 (Figure 4C) and 0.2507178 in GSE57345.

LASSO regression pinpointed 4 common genes in GSE37171 with a

lambda.min value of 0.003800386, and in GES57345 with a

lambda.min value of 0.01289927 for next analysis (Figures 4D, E).

The culmination of this analysis was the identification of CDK2 and
Frontiers in Immunology 06
CCND1 as the signature markers in HF and KF, as depicted in the

Venn diagram (Figure 4F). All the results of machine learning for

GSE57345 and GSE37171 are listed in Supplementary Table 2.

Further analysis revealed a marked decrease of CDK2 expression,

while CCND1 levels exhibited a significant increase in both the HF

and KF groups compared to the healthy group (Figures 4G, H). The
FIGURE 2

Identification of shared DEGs and their functional enrichment analysis. (A) The volcano plot illustrating DEGs between HF patients and healthy
controls in GSE57345. (B) The volcano plot showcasing DEGs between KF patients and healthy controls in GSE37171. (C) A total of 2869 shared
DEGs were identified, comprising 1602 downregulated and 1267 upregulated common DEGs from the overlaps of GSE57345 and GSE37171.
(D) Shared DEGs were enriched through GO terms in BP, CC, and MF. (E) Shared DEGs were further enriched through KEGG pathway approach.
(F, G) GSEA was performed on shared DEGs in GSE57345 and GSE37171, respectively. DEGs, differently expressed genes; HF, heart failure; KF, kidney
failure; GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and
Genomes; GSEA, Gene Set Enrichment Analysis.
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GSVA score results indicated that the bioactivity of CDK2 is

significantly lower in HF and KF patients compared to controls,

whereas CCND1 shows opposite (Figures 4I, J). We investigated the

signalingpathways enrichedby the two signature genes to explore their

potential molecular mechanisms affecting the progression of HF and

KF. GSEA results demonstrated that CDK2 is associatedwith the top 5

downregulated and upregulated pathway related to metabolism,

infection, and biosynthesis of nucleotide sugars in HF (Figure 4K),

and genetic regulation, cell signaling and transport in KF (Figure 4M).

CCND1 shows significant enrichment in inflammation, metabolism,

and biosynthesis of nucleotide sugars in HF (Figure 4L), and gene

transcription, circadianrhythminKF(Figure4N).The top20enriched

pathways analyzed by GSEA for the signature genes are listed in
Frontiers in Immunology 07
Figures 4O–R. Here suggests that the signature genes play a significant

role in the progression of HF and KF by modulating inflammatory

response, cellular metabolism, apoptosis, and cell cycle.
ROC curves analysis of signature genes in
HF and KF

ROC curve analysis was utilized to investigate the diagnostic

potential of the key genes CDK2 and CCND1 across training

datasets GSE57345 for HF and GSE37171 for KF, as well as

validation datasets GSE135055 for HF and GSE97709 for KF. The

AUCs for CDK2 were 0.89209 in HF and 0.926667 in KF, for CCND1,
FIGURE 3

PPI networks, modular analysis of shared DEGs, and functional enrichment of top 10 hub genes. (A) The PPI network of selected DEGs, with the top
10 hub genes indicated in yellow indicates. (B) Top 10 genes clustering modules were screened via Cytohubba plugins. (C, D). GO and KEGG
enrichment analysis of upper red circle genes and lower blue circle, respectively. (E) Reactome pathway analysis of top 10 hub gene. DEGs,
differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 4

The role of signature genes selected by machine learning methods in HF and KF. (A, B) Representative illustrations of the relationship between the
number of decision trees and the model error, and the ranking of the top 10 genes based on the importance score in GSE57345. (C) Representative
image of the RMSE of screening signature genes using the SVM-RFE algorithm for GSE57345. The minimal RMSE is 0.1975 corresponds to eight
candidate genes. (D, E) Representative images of signature screening in the LASSO model in GSE57345. The minimal point of the curve with n = 8 is
the most suitable for GSE57345 based on the 10 hub genes. (F) Identification of CDK2 and CCND1 as signature genes by overlapping RF, SVM-RFE,
and LASSO using Venn diagram. (G) Expression level of CDK2 and CCND1 in GSE57345, (H) in GSE37171. ****p<0.0001 by t-test. (I) Comparison of
GSVA scores of CDK2 and CCND1 in GSE57345, (J) in GSE337171. (K, L) GSEA for CDK2 and CCND1 in GSE57345, (M, N) in GSE37171. (O, P) The top
20 enriched pathways by GSEA for CDK2 and CCND1 in GSE57345, (Q, R) in GSE37171. HF, heart failure; KF, kidney failure; RMSE, Root Mean Square
Error; SVM-RFE, Support Vector Machine-Recursive Feature Elimination. LASSO, Least Absolute Shrinkage and Selection Operator. GSEA, Gene Set
Enrichment Analysis; GSVA, Gene Set Variation Analysis.
Frontiers in Immunology frontiersin.org08
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they were 0.90233 in HF and 0.815333 in KF. These ROC curves

demonstrated the genes’ exceptional ability to differentiate between HF

and KF patients from healthy individuals (Figures 5A, B). Furthermore,

the predictive value of CDK2 and CCND1 as biomarkers was validated

with AUCs of 0.857143 and 0.820105 in GSE135055, and 0.91905 and

0.73333 in GSE97709, respectively (Figures 5C, D). The results

implicate the significant roles that CDK2 and CCND1 may play in

the development of both HF and KF.
Nomogram assessment and validation of
diagnostic markers

A diagnostic nomogram model was constructed on the two

signature genes, CDK2 and CCND1, to predict the likelihood of

HF and KF occurrences via either training set or validation set

(Figures 6A, D, G, J), resulting in a high level of precision in

forecasting heart and kidney failure risk. The nomogram’s

predictive accuracy was initially assessed using calibration

curves for the four datasets, GSE57345, GSE37171, GSE135055,

and GSE97709 (Figures 6B, E, H, K). Subsequently, ROC analysis
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was developed to evaluate the precision and stability of the

nomogram model across the four datasets, with AUCs of

respective 0.9334912, 0.96, 0.8835979 and 0.9404762, for

GSE57345, GSE37171, GSE135055 and GSE97709 (Figures 6C,

F, I, L). Both signature genes, CDK2 and CCND1, possess a

potential clinical value in effectively distinguishing HF and KF

patients from healthy controls, offering promising diagnostic

biomarkers for cardiorenal disease.
Evaluation of bifunctional CDK2/CCND1
modulators for candidate
drug development

With the aim of targeting the signature genes CDK2 and

CCND1 for potential therapy in HF and KF, an initial screening

was conducted via the ChEMBL database (https://www.ebi.ac.uk/

chembl/) to identify compounds that could simultaneously activate

the CDK2 enzyme and inhibit CCND1. However, this screening did

not reveal any common chemical entities, and only three

compounds were identified as capable of activating CDK2.
FIGURE 5

ROC curves of the signature genes in HF and KF. (A, B) The ROC curves of CDK2 and CCND1 in the training set containing GSE57345 and GSE47171.
(C, D) The ROC curves of CDK2 and CCND1 in the validation set including GSE135055 and GSE97709. ROC, Receiver Operating Characteristic; HF,
heart failure; KF, kidney failure.
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Investigating protein-drug interactions through molecular

docking is crucial for understanding binding dynamics and

potential therapeutic roles (27). In this study, the three potential

CDK2 activators were subjected to molecular docking with the

CDK2 and CCND1 proteins, with the resulting binding energies

presented in Supplementary Table 3. Compound CID141497232

exhibited the lowest binding energies of -5.63 kcal/mol with CDK2

and -5.55 kcal/mol with CCND1, indicating the most stable docking
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outcomes (Figures 7A, B). Additionally, docking analysis was

performed using Compound CID23434592, a known CCND1

inhibitor, which showed binding energies of -4.04 kcal/mol with

CCND1 and -3.89 kcal/mol with CDK2 (Figures 7C, D). Negative

control docking was also conducted using CID23667627, a known

CDK2 inhibitor, and CID137657657, a known CCND1 activator,

resulting in binding energies of -5.19 kcal/mol and -6.03 kcal/mol,

respectively (Supplementary Figures 2A, B). In terms of binding
FIGURE 6

Construction of a nomogram and evaluation of its diagnostic value. (A, D, G, J) Visible nomograms for diagnosing HF and KF in training sets
GSE57345 and GSE37171, and validation sets GSE135055 and GSE97709, respectively. (B, E, H, K) Calibration of the nomogram model in the
respective datasets. (C, F, I, L) ROC plot assessments of the predictive model for each dataset.
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interactions, CID141497232 (the CDK2 activator) formed a

hydrogen bond with the Glu-56 residue of CCND1, whereas

CID23424592 (the CCND1 inhibitor) formed two hydrogen

bonds with Ser-225. CID137657657 (the CCND1 activator)

interacted with Val-96, His-95, Asp-158, and Ala-16, forming

hydrogen bonds with each. Moreover, CID23424592 also bound

to CDK2 at Leu-101 and Val-197, while CID141497232 formed a

hydrogen bond with Pro-238. In contrast, CID23667627 (the CDK2

inhibitor) interacted with Lys-250, forming a hydrogen bond.

While binding energies and binding modes provide insights

into the strength and stability of these interactions, they do not

directly determine whether a compound will function as an

activator or inhibitor. To conclusively establish the functional

roles of these compounds, further studies involving biological

activity assays are necessary.
Immune cell infiltration and correlation
with signature genes

Given our observation that the 10 hub genes from the shared

DEGs of HF and KF were strongly enriched in immune and

inflammation pathway (Figure 3D), and considering that the

signature genes CDK2 and CCND1 emerged as potential

diagnostic biomarkers for both conditions via nomogram model,
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we performed immune cell infiltration analysis to delve deeper into

the immune regulation of HF and KF.

Employing theCIBERSORTx algorithm, theHFgroup exhibited a

higher proportion of plasma cells, CD8+ T cells, naive CD4+ T cells,

M0 macrophages, M1 macrophages, resting mast cells, and

eosinophils, and a lower proportion of M2 macrophages and

neutrophils compared to the healthy group, across the spectrum of

22 immune cell types (Figure 8A). Conversely, the KF group showed a

significant increase in memory B cells, plasma cells, gamma delta T

cells,monocytes, andM0macrophages, and a decrease in naive B cells,

CD8+ T cells, and resting NK cells relative to controls (Figure 8B).

Correlation analysis among the 22 immune cell types revealed that

restingmemoryCD4+ T cells were negatively correlated with CD8+ T

cells, naive B cells, and regulatory T cells, as well as activated NK cells

with naive B cells in GSE57345 (Figure 8C). Additionally, neutrophils

andmonocytes demonstrated a negative associationwithCD8+T cells

and resting NK cells in GSE37171 (Figure 8F).

Further investigation into the role of signature genes in immune

response was conducted through a correlation analysis between

signature genes and immune cells (Figures 8D, E, G, H). CDK2 and

CCND1 were found to have significant associations with multiple

immune cells, particularly neutrophils, monocytes, and resting NK

cells. Consequently, we propose that CDK2 and CCND1 may play a

crucial role in immune response, potentially through signaling

pathways involving neutrophils, monocytes, and resting NK cells,
FIGURE 7

Interaction between selected ligands and CDK2 or CCND1. (A) 3D docking of CDK2 activator (CID14149723) into the CDK2 active site. (B) 3D
docking of CDK2 activator (CID14149723) into the CCND1 active site. (C) 3D docking of CCND1 inhibitor (CID23424592) into the CCND1 active site.
(D) 3D docking of CDK2 activator (CID23424592) into the CDK2 active site. CID14149723, a known activator of CDK2; CID23424592, a known
inhibitor of CCND1.
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which are related to the pathophysiology of both heart and

kidney failure.
Discussion

Clinical evidence indicates a high prevalence of cardiac and

renal co-dysfunction among numerous patients, due to the

intricate relationship between the heart and kidney, contributing

to the rising global mortality rate (28). Unraveling the underlying
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mechanism responsible for the interaction between cardiovascular

diseases and kidney disease could illuminate innovative therapies for

disorders of both heart and kidneys, further establishing beneficial

treatment for cardiorenal syndrome. This investigation delves into the

molecular signatures of shared pathways in both heart failure and

kidney failure using bioinformatics analysis, and identifies two novel

biomarkers based on machine learning related to the diagnosis and

cure of both HF and KF.

In this study, we initiated our analysis by acquiring two datasets

from GEO: GSE57345, patients from the diagnosis of heart failure
FIGURE 8

Landscape of immune cell infiltration and their correlation with the signature genes. (A, B) The distribution of 22 immune cell types between HF and
KF patients and healthy controls in datasets GSE57345 and GSE37171, respectively. (C, F) The correlation of diverse immunocytes in HF and KF
samples in datasets GSE57345 and GSE37171, respectively. (D, E, G, H) Lollipop charts showing the correlation of the signature genes, CDK2 and
CCND1, with immunocytes in HF and KF samples in datasets GSE57345 and GSE37171, respectively. HF, heart failure; KF, kidney failure. *p<0.05,
**p<0.01, ***p<0.001 and ****p<0.0001 by t-test.
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(HF), and GSE37171, patients concerning the criteria for uremia,

herein referred to as kidney failure (KF). A total of 2869 DEGs were

identified, including 1602 downregulated and 1267 upregulated,

shared between HF and KF. These DEGs were annotated through

GO, KEGG, and GSEA functional enrichment analysis, revealing a

significant association with the PI3K-Akt signaling pathway,

inflammatory response, metabolic process, and extracellular

matrix organization. The PI3K-Akt pathway, integral to cellular

functions such as cycle regulation, proliferation, metabolism,

survival, growth, and angiogenesis, is deemed critical in the

pathogenesis of HF and KF (29, 30). To further elucidate the

principal molecular clusters common to HF and KF, PPI analysis

was conducted, unveiling hub genes within two protein clusters

linked by an interaction edge through the CytoHubba plug-in of

Cytoscape. Remarkably, these clusters exhibit strong associations

with cell cycle and inflammation by GO, KEGG and Reactome

enrichment analysis, suggesting that dysregulation in cell cycle and

inflammation mechanisms may drive the pathogenesis of both heart

and kidney disorders. Such insights could provide a creative

understanding of the therapeutic approaches for HF, CKD, and

cardiorenal syndrome.

The cell cycle’s role in disease pathophysiology is well-

documented (31). Its dysregulation can lead to pathological

changes in cardiac and renal tissues, exacerbating HF and CKD.

Post-cardiac injury, the disruption of cell cycle regulation triggers

apoptotic pathways, hindering cardiomyocyte regeneration due to

the heart’s limited regenerative capacity, thus potentially

precipitating HF (32–34). Similar mechanisms in the kidneys,

where renal tubular epithelial cells may succumb to apoptosis

following cell cycle arrest after injury (35). Non-functional scar

tissue with the production of extracellular matrix proteins replaces

the lost cardiomyocytes in heart, also the arrest at the G2/M phase

of cell cycle enhances the secretion of profibrotic factors in kidney,

together as a result in fibrosis and failing organs (9, 36).

Furthermore, recent reports suggest that cell cycle dysregulation

is relative to oxidative stress, extracellular matrix, and the immune

system (37).

Inflammation also plays a critical role in the progression of HF

and CKD, involving a multitude of cytokines, chemokines, and

immune system components (38). In both diseases, inflammation is

not merely a consequence but also a potent drive. The inflammation

response in HF and CKD is characterized by the upregulation of

pro-inflammatory mediators like tumor necrosis factor-a (TNF-a),
interleukin-1b (IL-1b), and interleukin-6 (IL-6) in the tissue and

bloodstream, which are produced in response to neurohormonal

and sympathetic triggers (39). Furthermore, this leads to

exacerbated myocardial inflammation and fibrosis, while in CKD,

it contributes to tubular damage and worsened renal function

(9, 40). Our findings indicate a significant enrichment of genes

associated with the Toll-like receptor pathway within our identified

blue PPI network cluster, underscoring its pivotal role in the

inflammatory processes of HF and CKD.

The advent of artificial intelligence (AI) and machine learning

has revolutionized the processing of biological data, offering fresh

insights and approaches for biological research. In our study, we

combined the machine learning of RF, SVM-RFE, and LASSO to
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screen the signature genes based on the expression profiles of the

top 10 hub genes identified. The culmination of this integrative

machine learning strategy was the discovery of CDK2 and CCND1

as novel biomarkers for both HF and KF. The GSVA score and

GSEA analysis for CDK2 and CCND1 revealed the signaling

pathways potentially modulating the progression of HF and KF.

The diagnostic relevance of these biomarkers for HF and KF was

corroborated across the initial training set and subsequent

validation set.

Additionally, a molecular docking study was performed to assess

interactions between CDK2 and CCND1 with three CDK2-

activating ligands. A selected CCND1 inhibitor was also docked

with both CDK2 and CCND1. This analysis elucidates the molecular

mechanisms of these proteins and provides a structural basis for

further drug design efforts. To validate their roles as inhibitors or

activators, further cytotoxicity testing is essential. The design of

polypharmacological drugs poses significant challenges, particularly

due to the limited number of known CDK2 activators. Nonetheless,

Chen et al. utilized chemoinformatics to identify conformationally

flexible scaffolds capable of adapting to both activation and

antagonism-related pockets (41). However, their approach

requires a substantial number of activator scaffolds, underscoring

the importance of discovering more CDK2 activators to enhance the

existing database.

CDK2 (cyclin-dependent kinases 2) gene, a catalytic subunit of

the cyclin-dependent kinase (CDK) complex, controls the G1 to S

phase transition by binding with cyclins, where it is essential for

DNA replication and cellular entry into the S phase (42). It is known

that CDK2 has significant implications for cancer treatment and

cellular aging (43). In HF and CKD, Su et al. found an association

between CDK2 and impaired autophagic flux, which mitigated the

cardiac remodeling in mice with heart failure (44). Cedric et al.

observed that mice deficient in CDK4 and CDK2 are able to

complete embryonic progression but die shortly after birth due to

heart failure (45). Meanwhile, Turgay et al. reported that the CDK2

inhibitor roscovitine aggravated renal injury and fails to prevent the

tubulointerstitial fibrosis by Cul3 deletion (46). Also, enhancing the

cyclin-D1/cyclin-E2/CDK2/CDK4 axis has been shown to maintain

renal function in CKD models (47). These findings corroborate our

data, revealing a strong inverse correlation between CDK2

expression and the onset of HF and KF, as illustrated by our

predictive diagnostic mode. Although evidence on CDK2’s role in

HF and KF is limited, it may significantly influence cell

proliferation, apoptosis, senescence, and repair mechanisms,

aligning with our PPI results. CCND1 (cyclin D1), another cyclin

family member identified in our study, emerged as a promising

therapeutic target for HF (48). Its overexpression may contribute to

idiopathic dilated cardiomyopathy pathogenesis (49). CCND1

modulates cyclin-dependent kinases (CDKs) by binding with

CDK4 or CDK6, thereby facilitating the G1/S cell cycle transition

(50), a process which may critically impact HF and KF pathogenesis

by regulating the cell cycle in concert with CDK2.

Our PPI result and other studies underscores the importance of

inflammation and immune processes in HF and CKD (51). Here,

we explored immune infiltration in HF and KF compared to healthy

controls using CIBERSORTx, respectively. Our findings indicate a
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pronounced prevalence of plasma cells and M0 macrophages in

both HF and KF, highlighting their critical functions in the immune

response. Correlation analyses of immune cells was performed to

measure the immune microenvironment in HF and KF. Further

exploration into the interplay between immune responses and two

signature genes revealed that CDK2 exhibits a negative correlation

with plasma cells and M0 macrophages, whereas CCND1

demonstrates the converse. These insights lead us to hypothesize

that diminished CDK2 and elevated CCND1 expression may

potentiate the immune response by upregulating plasma cells and

M0 macrophages in both HF and KF. Furthermore, growing

evidence showed a close relationship between cell cycle regulation

and the immune system (52, 53), proposing that these two

biological processes, associated with CDK2 and CCND1, may

synergistically orchestrate the pathophysiology of HF and CKD.

Nevertheless, several limitations of our study should be

acknowledged. Firstly, the datasets employed were limited to

patients diagnosed with either HF or KF, instead of those with

concurrent diagnoses or cardiorenal syndrome due to such datasets

are not available in the public database. This delineation may

narrow the applicability of our findings, thereby highlighting the

imperative for future research including such datasets. Moreover,

our approach for selecting the top 10 hub genes from all the hub

gene pool is subjective and may inadvertently neglect other hub

genes of potential significance in disease progression. Lastly, our

findings are predicated on bioinformatics and machine learning

analysis. Future validation should include in vitro and in vivo

experiments to further investigate the shared pathogenic

mechanisms of HF and KF related to CDK2 and CCND1.
Conclusion

In conclusion, our research marks for the first exploration into

the utilization of an integrated bioinformatics and machine learning

framework to analyze transcriptomic data pertinent to HF and KF.

We have identified two novel biomarkers, CDK2 and CCND1, and

unveiled a significant discovery regarding the interplay between cell

cycle regulation and immune response, which may illuminate the

shared molecular mechanisms underlying both HF and KF. Our

findings underscore the diagnostic relevance of CDK2 and CCND1

in HF and KF, providing potential new insights and targets for the

diagnosis and treatment of both conditions, or cardiorenal

syndrome. While our research is in its early stages, it lays a

robust foundation for further investigation into this vital domain,

with the ultimate goal of improving patient care and outcomes.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Frontiers in Immunology 14
Author contributions

QL: Conceptualization, Data curation, Formal analysis,

Methodology, Software, Validation, Visualization, Writing –

original draft, Writing – review & editing. XZ: Methodology,

Software, Writing – review & editing. FR: Formal analysis,

Software, Visualization, Writing – review & editing. XW:

Conceptualization, Data curation, Supervision, Writing – review

& editing. Z-MW: Conceptualization, Funding acquisition, Project

administration, Resources, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by grants from the National Natural Science

Foundation of China (no. 81703213) and the Natural Science

Youth Foundation of Jiangsu Province of China (no.

BK20151034) to Z-MW.
Acknowledgments

We extend our gratitude to all researchers who created public

databases and generously shared extensive research data.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1456083/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1456083/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1456083/full#supplementary-material
https://doi.org/10.3389/fimmu.2024.1456083
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Long et al. 10.3389/fimmu.2024.1456083
References
1. Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global
burden of heart failure: a comprehensive and updated review of epidemiology.
Cardiovasc Res. (2023) 118:3272–87. doi: 10.1093/cvr/cvac013

2. Collaboration GBDCKD. Global, regional, and national burden of chronic kidney
disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.
Lancet. (2020) 395:709–33. doi: 10.1016/S0140-6736(20)30045-3

3. Chamberlain AM, St Sauver JL, Gerber Y, Manemann SM, Boyd CM, Dunlay SM,
et al. Multimorbidity in heart failure: a community perspective. Am J Med. (2015)
128:38–45. doi: 10.1016/j.amjmed.2014.08.024

4. DammanK, ValenteMA, Voors AA, O’Connor CM, van VeldhuisenDJ,HillegeHL.
Renal impairment, worsening renal function, and outcome in patientswith heart failure: an
updated meta-analysis. Eur Heart J. (2014) 35:455–69. doi: 10.1093/eurheartj/eht386

5. Ronco C, McCullough PA, Anker SD, Anand I, Aspromonte N, Bagshaw SM,
et al. Cardiorenal syndromes: an executive summary from the consensus conference of
the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. (2010) 165:54–67.
doi: 10.1159/issn.0302-5144

6. Verma S, Graham MM, Lecamwasam A, Romanovsky A, Duggan S, Bagshaw S,
et al. Cardiorenal interactions: A review. CJC Open. (2022) 4:873–85. doi: 10.1016/
j.cjco.2022.06.011

7. Windt WA, EijkelkampWB, Henning RH, Kluppel AC, de Graeff PA, Hillege HL,
et al. Renal damage after myocardial infarction is prevented by renin-angiotensin-
aldosterone-system intervention. J Am Soc Nephrol. (2006) 17:3059–66. doi: 10.1681/
ASN.2006030209

8. Ronco C, Bellasi A, Di Lullo L. Cardiorenal syndrome: an overview. Adv Chronic
Kidney Dis. (2018) 25:382–90. doi: 10.1053/j.ackd.2018.08.004

9. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J
Am Coll Cardiol. (2008) 52:1527–39. doi: 10.1016/j.jacc.2008.07.051

10. House AA, Anand I, Bellomo R, Cruz D, Bobek I, Anker SD, et al. Definition and
classification of Cardio-Renal Syndromes: workgroup statements from the 7th ADQI
Consensus Conference.Nephrol Dial Transplant. (2010) 25:1416–20. doi: 10.1093/ndt/gfq136

11. Segall L, Nistor I, Covic A. Heart failure in patients with chronic kidney disease: a
systematic integrative review. BioMed Res Int. (2014) 2014:937398. doi: 10.1155/2014/
937398

12. Mentz RJ, O’Connor CM. Pathophysiology and clinical evaluation of acute heart
failure. Nat Rev Cardiol. (2016) 13:28–35. doi: 10.1038/nrcardio.2015.134

13. Damman K, TangWH, Testani JM, McMurray JJ. Terminology and definition of
changes renal function in heart failure. Eur Heart J. (2014) 35:3413–6. doi: 10.1093/
eurheartj/ehu320

14. Goffredo G, Barone R, Di Terlizzi V, Correale M, Brunetti ND, Iacoviello M.
Biomarkers in cardiorenal syndrome. J Clin Med. (2021) 10:3433. doi: 10.3390/
jcm10153433

15. Bazzi C, Petrini C, Rizza V, Arrigo G, Napodano P, Paparella M, et al. Urinary N-
acetyl-beta-glucosaminidase excretion is a marker of tubular cell dysfunction and a
predictor of outcome in primary glomerulonephritis. Nephrol Dial Transplant. (2002)
17:1890–6. doi: 10.1093/ndt/17.11.1890

16. Lekawanvijit S, Krum H. Cardiorenal syndrome: acute kidney injury secondary
to cardiovascular disease and role of protein-bound uraemic toxins. J Physiol. (2014)
592:3969–83. doi: 10.1113/jphysiol.2014.273078

17. Damman K, Voors AA, Navis G, van Veldhuisen DJ, Hillege HL. Current and
novel renal biomarkers in heart failure. Heart Fail Rev. (2012) 17:241–50. doi: 10.1007/
s10741-011-9254-2

18. Parkinson H, Sarkans U, Shojatalab M, Abeygunawardena N, Contrino S,
Coulson R, et al. ArrayExpress–a public repository for microarray gene expression
data at the EBI. Nucleic Acids Res. (2005) 33:D553–5. doi: 10.1093/nar/gki056

19. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: an
integrative toolkit developed for interactive analyses of big biological data. Mol Plant.
(2020) 13:1194–202. doi: 10.1016/j.molp.2020.06.009

20. The Gene Ontology C. The Gene Ontology Resource: 20 years and still GOing
strong. Nucleic Acids Res. (2019) 47:D330–D8. doi: 10.1093/nar/gky1055

21. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. (2000) 28:27–30. doi: 10.1093/nar/28.1.27

22. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proc Natl Acad Sci U.S.A. (2005) 102:15545–50. doi: 10.1073/
pnas.0506580102

23. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al.
PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately
downregulated in human diabetes. Nat Genet. (2003) 34:267–73. doi: 10.1038/ng1180

24. EllisK,Kerr J,GodboleS,LanckrietG,WingD,Marshall S.A randomforest classifier
for the prediction of energy expenditure and type of physical activity from wrist and hip
accelerometers. Physiol Meas. (2014) 35:2191–203. doi: 10.1088/0967-3334/35/11/2191

25. Sanz H, Valim C, Vegas E, Oller JM, Reverter F. SVM-RFE: selection and
visualization of the most relevant features through non-linear kernels. BMC Bioinf.
(2018) 19:432. doi: 10.1186/s12859-018-2451-4
Frontiers in Immunology 15
26. Gao J, Kwan PW, Shi D. Sparse kernel learning with LASSO and Bayesian
inference algorithm. Neural Netw. (2010) 23:257–64. doi: 10.1016/j.neunet.
522009.07.001

27. Abdel-Rahman AA, Shaban AKF, Nassar IF, El-Kady DS, Ismail NSM,
Mahmoud SF, et al. Discovery of new pyrazolopyridine, furopyridine, and pyridine
derivatives as CDK2 inhibitors: design, synthesis, docking studies, and anti-
proliferative activity. Molecules. (2021) 26:3923. doi: 10.3390/molecules26133923

28. Chronic Kidney Disease Prognosis C, Matsushita K, van der Velde M, Astor BC,
Woodward M, Levey AS, et al. Association of estimated glomerular filtration rate and
albuminuria with all-cause and cardiovascular mortality in general population cohorts:
a collaborative meta-analysis. Lancet. (2010) 375:2073–81. doi: 10.1016/S0140-6736
(10)60674-5

29. Wang H, Gao L, Zhao C, Fang F, Liu J, Wang Z, et al. The role of PI3K/Akt
signaling pathway in chronic kidney disease. Int Urol Nephrol. (2024) 56:2623–33.
doi: 10.1007/s11255-024-03989-8

30. Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular mechanisms
underlying cardiac adaptation to exercise. Cell Metab. (2017) 25:1012–26.
doi: 10.1016/j.cmet.2017.04.025

31. Hydbring P, Malumbres M, Sicinski P. Non-canonical functions of cell cycle
cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol. (2016) 17:280–92.
doi: 10.1038/nrm.2016.27

32. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, et al.
Apoptotic and necrotic myocyte cell deaths are independent contributing variables of
infarct size in rats. Lab Invest. (1996) 74:86–107.

33. Foo RS, Mani K, Kitsis RN. Death begets failure in the heart. J Clin Invest. (2005)
115:565–71. doi: 10.1172/JCI24569

34. Abouleisa RRE, Salama ABM, Ou Q, Tang XL, Solanki M, Guo Y, et al. Transient
cell cycle induction in cardiomyocytes to treat subacute ischemic heart failure.
Circulation. (2022) 145:1339–55. doi: 10.1161/CIRCULATIONAHA.121.057641

35. Duffield JS, Humphreys BD. Origin of new cells in the adult kidney: results from
genetic labeling techniques. Kidney Int. (2011) 79:494–501. doi: 10.1038/ki.2010.338

36. Schreibing F, Anslinger TM, Kramann R. Fibrosis in pathology of heart and
kidney: from deep RNA-sequencing to novel molecular targets. Circ Res. (2023)
132:1013–33. doi: 10.1161/CIRCRESAHA.122.321761

37. Zhu C, Yuan T, Krishnan J. Targeting cardiomyocyte cell cycle regulation in heart
failure. Basic Res Cardiol. (2024) 119:349–69. doi: 10.1007/s00395-024-01049-x

38. Boulet J, Sridhar VS, Bouabdallaoui N, Tardif JC, White M. Inflammation in
heart failure: pathophysiology and therapeutic strategies. Inflammation Res. (2024)
73:709–23. doi: 10.1007/s00011-023-01845-6

39. Colombo PC, Ganda A, Lin J, Onat D, Harxhi A, Iyasere JE, et al. Inflammatory
activation: cardiac, renal, and cardio-renal interactions in patients with the cardiorenal
syndrome. Heart Fail Rev. (2012) 17:177–90. doi: 10.1007/s10741-011-9261-3

40. Nastase MV, Zeng-Brouwers J, Beckmann J, Tredup C, Christen U, Radeke HH,
et al. Biglycan, a novel trigger of Th1 and Th17 cell recruitment into the kidney.Matrix
Biol. (2018) 68-69:293–317. doi: 10.1016/j.matbio.2017.12.002

41. Chen Z, Yu J, Wang H, Xu P, Fan L, Sun F, et al. Flexible scaffold-based
cheminformatics approach for polypharmacological drug design. Cell. (2024)
187:2194–208 e22. doi: 10.1016/j.cell.2024.02.034

42. Satyanarayana A, Kaldis P. A dual role of Cdk2 in DNA damage response. Cell
Div. (2009) 4:9. doi: 10.1186/1747-1028-4-9

43. Volkart PA, Bitencourt-Ferreira G, Souto AA, de Azevedo WF. Cyclin-
dependent kinase 2 in cellular senescence and cancer. A structural and functional
review. Curr Drug Targets. (2019) 20:716–26. doi: 10.2174/138945012066618
1204165344

44. Su M, Wang J, Wang C, Wang X, DongW, QiuW, et al. MicroRNA-221 inhibits
autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell
Death Differ. (2015) 22:986–99. doi: 10.1038/cdd.2014.187

45. Barriere C, Santamaria D, Cerqueira A, Galan J, Martin A, Ortega S, et al. Mice
thrive without Cdk4 and Cdk2. Mol Oncol. (2007) 1:72–83. doi: 10.1016/
j.molonc.2007.03.001

46. Saritas T, Cuevas CA, Ferdaus MZ, Kuppe C, Kramann R, Moeller MJ, et al.
Disruption of CUL3-mediated ubiquitination causes proximal tubule injury and kidney
fibrosis. Sci Rep. (2019) 9:4596. doi: 10.1038/s41598-019-40795-0

47. Yang CC, Sung PH, Chen KH, Chai HT, Chiang JY, Ko SF, et al. Valsartan- and
melatonin-supported adipose-derived mesenchymal stem cells preserve renal function
in chronic kidney disease rat through upregulation of prion protein participated in
promoting PI3K-Akt-mTOR signaling and cell proliferation. BioMed Pharmacother.
(2022) 146:112551. doi: 10.1016/j.biopha.2021.112551

48. Wang A, Guo Y, Ding S, Yu Y, Yuan Z, Zhang H, et al. The investigation of the
molecular mechanism of morinda officinalis how in the treatment of heart failure. Front
Biosci (Landmark Ed). (2023) 28 34. doi: 10.31083/j.fbl2802034

49. Dehghani K, Stanek A, Bagherabadi A, Atashi F, Beygi M, Hooshmand A, et al.
CCND1 overexpression in idiopathic dilated cardiomyopathy: A promising biomarker?
Genes (Basel). (2023) 14:1243. doi: 10.3390/genes14061243
frontiersin.org

https://doi.org/10.1093/cvr/cvac013
https://doi.org/10.1016/S0140-6736(20)30045-3
https://doi.org/10.1016/j.amjmed.2014.08.024
https://doi.org/10.1093/eurheartj/eht386
https://doi.org/10.1159/issn.0302-5144
https://doi.org/10.1016/j.cjco.2022.06.011
https://doi.org/10.1016/j.cjco.2022.06.011
https://doi.org/10.1681/ASN.2006030209
https://doi.org/10.1681/ASN.2006030209
https://doi.org/10.1053/j.ackd.2018.08.004
https://doi.org/10.1016/j.jacc.2008.07.051
https://doi.org/10.1093/ndt/gfq136
https://doi.org/10.1155/2014/937398
https://doi.org/10.1155/2014/937398
https://doi.org/10.1038/nrcardio.2015.134
https://doi.org/10.1093/eurheartj/ehu320
https://doi.org/10.1093/eurheartj/ehu320
https://doi.org/10.3390/jcm10153433
https://doi.org/10.3390/jcm10153433
https://doi.org/10.1093/ndt/17.11.1890
https://doi.org/10.1113/jphysiol.2014.273078
https://doi.org/10.1007/s10741-011-9254-2
https://doi.org/10.1007/s10741-011-9254-2
https://doi.org/10.1093/nar/gki056
https://doi.org/10.1016/j.molp.2020.06.009
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1038/ng1180
https://doi.org/10.1088/0967-3334/35/11/2191
https://doi.org/10.1186/s12859-018-2451-4
https://doi.org/10.1016/j.neunet.22009.07.001
https://doi.org/10.1016/j.neunet.22009.07.001
https://doi.org/10.3390/molecules26133923
https://doi.org/10.1016/S0140-6736(10)60674-5
https://doi.org/10.1016/S0140-6736(10)60674-5
https://doi.org/10.1007/s11255-024-03989-8
https://doi.org/10.1016/j.cmet.2017.04.025
https://doi.org/10.1038/nrm.2016.27
https://doi.org/10.1172/JCI24569
https://doi.org/10.1161/CIRCULATIONAHA.121.057641
https://doi.org/10.1038/ki.2010.338
https://doi.org/10.1161/CIRCRESAHA.122.321761
https://doi.org/10.1007/s00395-024-01049-x
https://doi.org/10.1007/s00011-023-01845-6
https://doi.org/10.1007/s10741-011-9261-3
https://doi.org/10.1016/j.matbio.2017.12.002
https://doi.org/10.1016/j.cell.2024.02.034
https://doi.org/10.1186/1747-1028-4-9
https://doi.org/10.2174/1389450120666181204165344
https://doi.org/10.2174/1389450120666181204165344
https://doi.org/10.1038/cdd.2014.187
https://doi.org/10.1016/j.molonc.2007.03.001
https://doi.org/10.1016/j.molonc.2007.03.001
https://doi.org/10.1038/s41598-019-40795-0
https://doi.org/10.1016/j.biopha.2021.112551
https://doi.org/10.31083/j.fbl2802034
https://doi.org/10.3390/genes14061243
https://doi.org/10.3389/fimmu.2024.1456083
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Long et al. 10.3389/fimmu.2024.1456083
50. Jirawatnotai S, Hu Y, Livingston DM, Sicinski P. Proteomic identification of a
direct role for cyclin d1 in DNA damage repair. Cancer Res. (2012) 72:4289–93.
doi: 10.1158/0008-5472.CAN-11-3549

51. Schefold JC, Filippatos G, Hasenfuss G, Anker SD, von Haehling S. Heart failure
and kidney dysfunction: epidemiology, mechanisms and management. Nat Rev
Nephrol. (2016) 12:610–23. doi: 10.1038/nrneph.2016.113
Frontiers in Immunology 16
52. Laphanuwat P, Jirawatnotai S. Immunomodulatory roles of cell cycle regulators.
Front Cell Dev Biol. (2019) 7:23. doi: 10.3389/fcell.2019.00023

53. Wu D, Zhang C, Liao G, Leng K, Dong B, Yu Y, et al. Targeting uridine-cytidine
kinase 2 induced cell cycle arrest through dual mechanism and could improve the
immune response of hepatocellular carcinoma. Cell Mol Biol Lett. (2022) 27:105.
doi: 10.1186/s11658-022-00403-y
frontiersin.org

https://doi.org/10.1158/0008-5472.CAN-11-3549
https://doi.org/10.1038/nrneph.2016.113
https://doi.org/10.3389/fcell.2019.00023
https://doi.org/10.1186/s11658-022-00403-y
https://doi.org/10.3389/fimmu.2024.1456083
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Identification of novel biomarkers, shared molecular signatures and immune cell infiltration in heart and kidney failure by transcriptomics
	Introduction
	Materials and methods
	Study design
	Data collection
	Identification of shared DEGs
	Functional enrichment analysis
	Protein-protein interaction network and hub genes selection
	Machine learning and signature genes selection
	Expression level and Gene set variation analysis of signature genes
	Receiver operating characteristic curves
	Development and validation of the nomogram
	Molecular docking analysis of bifunctional compounds
	Immune infiltration and correlation analysis
	Statistical analyses

	Results
	Identification of DEGs in HF and KF and their functional enrichment analysis
	Unveiling common molecular signatures in HF and KF via PPI network and hub genes
	The role of signature genes CDK2 and CCND1 in HF and KF
	ROC curves analysis of signature genes in HF and KF
	Nomogram assessment and validation of diagnostic markers
	Evaluation of bifunctional CDK2/CCND1 modulators for candidate drug development
	Immune cell infiltration and correlation with signature genes

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


