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Background: T cell exhaustion is a state in which T cells become dysfunctional

and is associated with a decreased efficacy of immune checkpoint inhibitors.

Lung cancer has the highest mortality among all cancers. However, the roles of

genetic variants of the T cell exhaustion-related genes in the prognosis of non-

small cell lung cancer (NSCLC) patients has not been reported.

Methods: We conducted a two-stage multivariable Cox proportional hazards

regression analysis with two previous genome-wide association study (GWAS)

datasets to explore associations between genetic variants in the T cell

exhaustion-related genes and survival of NSCLC patients. We also performed

expression quantitative trait loci analysis for functional validation of the

identified variants.

Results: Of all the 52,103 single nucleotide polymorphisms (SNPs) in 672 T cell

exhaustion-related genes, 1,721 SNPs were found to be associated with overall

survival (OS) of 1185 NSCLC patients of the discovery GWAS dataset from the

Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial, and 125 of

these 1,721 SNPs remained significant after validation in an additional

independent replication GWAS dataset of 984 patients from the Harvard Lung

Cancer Susceptibility (HLCS) Study. In multivariable stepwise Cox model analysis,

three independent SNPs (i.e., LRRC8C rs10493829 T>C, OAS2 rs2239193 A>G,

and CCL25 rs3136651 T>A) remained significantly associated with OS with

hazards ratios (HRs) of 0.86 (95% confidence interval (CI) = 0.77-0.96, P =

0.008), 1.48 (95% CI = 1.18-1.85, P < 0.0001) and 0.78 (95% CI = 0.66-0.91, P =

0.002), respectively. Further combined analysis for these three SNPs suggested

that an unfavorable genotype score was associated with a poor OS and disease-
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specific survival. Expression quantitative trait loci analysis suggested that the

LRRC8C rs10493829 C allele was associated with elevated LRRC8C mRNA

expression levels in normal lymphoblastoid cells, lung tissue, and whole blood.

Conclusion: Our findings suggested that these functional SNPs in the T cell

exhaustion-related genes may be prognostic predictors for survival of NSCLC

patients, possibly via a mechanism of modulating corresponding

gene expression.
KEYWORDS

non-small cell lung cancer, T cell exhaustion, single-nucleotide polymorphism,
prognosis, immunotherapy
1 Introduction

Lung cancer is the most commonly diagnosed cancer and the

leading cause of cancer mortality worldwide (1). The incidence and

mortality rates of lung cancer are gradually declining in the

developed countries but still increasing in the developing

countries. In 2024, the data from the National Cancer Institute

estimate that there will be approximately 234,580 new diagnosed

cases and 125,070 deaths from lung cancer in the United States (2).

The most prevalent histological form of lung cancer is non-small

cell lung cancer (NSCLC) that makes up approximately 85% of all

lung cancer cases with high incidence and mortality rates (3). At the

time of diagnosis, the majority of NSCLC patients are in advanced

stages of the disease, and approximately 60% have some evidence of

distant metastases (4). With the improvement in early diagnosis

and the advent of new therapeutic methods including

immunotherapy, the survival rate of lung cancer continues to

improve. However, the 5-year relative survival rate is still poor

and even worse in the metastatic setting (5). Therefore, new

biomarkers for survival are urgently needed to improve the

prognosis of NSCLC.

The emergence of immunotherapy has fundamentally

transformed treatment landscape and revolutionized clinical

prognosis of solid tumors. Tumor microenvironment (TME)
curve; BFDP, Bayesian

okine Ligand 25; CI,

expression quantitative

WE, Hardy-Weinberg

HR, hazards ratio; LD,

containing 8 volume-
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elic frequency; NSCLC,
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Ps, single nucleotide
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refers to the surrounding environment where diverse cancer cells

develop and survive (6). Accumulating evidence indicates that TME

plays an important role in the initiation and progression of various

cancers (7, 8). Cancer immunotherapy stimulates immune

responses and modulates TME to activate T cells to exert an anti-

tumor effect (9). Cytotoxic T cells are prototypical anti-tumor

immune cell to recognize and eliminate tumor cells that present

tumor antigens (10). Moreover, T cells account for the majority of

tumor infiltrating lymphocytes that are often correlated with a

favorable prognosis and a better response to immunotherapy (11,

12). Despite some impressive progress has enhanced the efficiencies

and promising long-term responses, immunotherapy resistance is

inevitable for most patients (13). T cell exhaustion, a state in which

T cells become dysfunctional as a result of persistent antigenic

stimulation within the TME, is one of the potential mechanisms of

tumor immunotherapy resistance (14). During chronic infection or

cancer, naive T cell first differentiates into T cell exhaustion

precursor cells that are unable to fully clear antigens and then

into terminal T cell exhaustion that ultimately leads to cell death

(15–17). It has been shown that T cell exhaustion is associated with

a decreased efficacy of immune-checkpoint inhibitors, including an

increased expression of exhaustion markers, decreased effector

function, and compromised functionality of T cells (18).

Furthermore, T cell exhaustion is associated with immune

evasion, disease advancement, and poor survival across multiple

cancer types (19). However, up to now, the role of T cell exhaustion-

related genes in the survival of NSCLC patients is not

fully understood.

Accumulating evidence has suggested that genetic variants,

such as single-nucleotide polymorphisms (SNPs) in critical genes,

play crucial roles in NSCLC progression and prognosis (20, 21).

Genome-wide association studies (GWASs) have successfully

identified numerous susceptibility loci for complex diseases (22).

However, the roles played by genetic variants of the T cell

exhaustion-related genes in survival of NSCLC patients remained

unknown. Therefore, in the present study, we tested the hypothesis

that genetic variants in the T cell exhaustion-related genes are
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associated with survival of NSCLC patients in a two-stage analysis

using genotyping data from two public GWAS datasets.
2 Materials and methods

2.1 The discovery dataset

The Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer

screening trial is a randomized controlled trial designed to identify

the effectiveness of cancer screening for the four cancers (23, 24).

Briefly, a total of approximately 155,000 participants, aged 55-74,

were recruited from 10 study centers across the United States and

enrolled in the PLCO trial that commenced in November 1993 and

continued enrolling participants through July 2001. In the discovery

stage of the present study, a genotyping dataset of 1185 Caucasian

NSCLC patients with the detailed clinical evaluation including

lifestyle and medical history was obtained from the PLCO trial for

survival analysis. OS and disease-specific survival (DSS) were used as

the time-to-event outcomes, and the participants were followed up

from the date of diagnosis to the date of last follow-up or death.

Whole blood genomic DNA was genotyped using Illumina

HumanHap240Sv1.0 and HumanHap550v3.0 platforms (dbGaP

accession numbers: phs000093.v2.P2 and phs000336.v1.p1) (25, 26).
2.2 The validation dataset

The Harvard University Lung Cancer Susceptibility (HLCS)

study recruited pathologically confirmed NSCLC patients from

Boston at Massachusetts General Hospital since 1991 (27). The

GWAS dataset from the HLCS study of 984 Caucasian NSCLC

patients was used as the validation dataset to replicate the findings

of the PLCO dataset. In the HLCS study, genomic DNA from blood

samples was extracted with the Auto Pure Large Sample Nucleic

Acid Purification System (QIAGEN Company, Venlo, Limburg,

Netherlands) and genotyped using the Illumina Humanhap610-

Quad array. Genotyping data was subsequently used for imputation

by using the Minimac4 software based on the 1000 Genomes

Project (27).

The use of the two GWAS datasets was approved by the Internal

Review Board of Duke University School of Medicine (Project

#Pro00054575) and the dbGaP database (Project #6404). The

comparison of clinical characteristics between the PLCO trial and

the HLCS study is shown in Supplementary Table 1.
2.3 Gene selection and SNP imputation

The list of T cell exhaustion-related genes was obtained from a

previous study (28). After the removal of 11 genes on the X

chromosome, 672 remaining genes were considered candidate

genes for further analyses (Supplementary Table 2) and used for

imputation with the Minimac4 and the 1000 Genomes Project
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(phase 3) dataset. Then, we extracted SNPs located in these genes

and their ±2 kb flanking regions by the following criteria: r2 ≥ 0.3

(Supplementary Figure 1), a minor allele frequency (MAF) ≥ 0.05,

an individual call rate ≥ 95%, and the Hardy-Weinberg equilibrium

(HWE) ≥ 1 × 10−5. As a result, a total of 52,103 candidate SNPs

(6,526 genotyped and 45,577 imputed) were selected from the

PLCO trial.
2.4 Statistical analyses

In the single-locus analysis, we performed a multivariable Cox

proportional hazards regression analysis using the R package

GenABEL to estimate associations between 52,103 candidate

SNPs and NSCLC survival in the PLCO trial with an additive

genetic model (29). The Cox analysis was adjusted for available

covariates including age, sex, smoking status, histologic subtype,

tumor stage, chemotherapy, radiotherapy, surgery, and the top four

of the 10 principal components (PCs) in the PLCO dataset

(Supplementary Table 3). We chose OS as the primary endpoint

and also assessed DSS as an endpoint in the survival analysis. In

consideration of the high linkage disequilibrium (LD) among these

imputed SNPs, we applied Bayesian false discovery probability

(BFDP) with a cutoff value of 0.80 for multiple testing corrections

to filter the probability of potential false-positive results (30, 31).

Moreover, we assigned a prior probability of 0.10 to detect an upper

bound of 3.0 for an association with adverse genotypes or minor

alleles of each SNP with P < 0.05.

The significant SNPs in the PLCO dataset were then validated

with the HLCS dataset using a multivariable Cox regression model.

The combination of results from both PLCO trial and HLCS study

was also performed in the classical inverse variance weighted meta-

analysis, in which Cochran’s Q-test and the heterogeneity statistic

(I2) were used to assess the inter-study heterogeneity and to

determine the appropriate model. Because no inter-study

heterogeneity was found (Q-test P-value > 0.10 and the I2 <

50%), the combined meta-analysis was conducted with a fixed-

effects model.

Since many SNPs inherit together through disequilibrium and

thus may provide redundant information, tagger SNPs were

selected to represent groups of the correlated SNPs to reduce

both redundancy and the number of statistical tests to be

performed. In LD analysis (r2 < 0.8) using Haploview 4.1 with

data from the 1000 Genomes Project (32), potential functions of

these SNPs were predicted with two online bioinformatics tools,

RegulomeDB (http://www.regulomedb.org/) and HaploReg v4.2

(https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php)

(33, 34). Subsequently, a multivariable stepwise Cox regression

model with adjustment for demographic and clinical variables,

the top four PCs, as well as 54 previously published SNPs from

the same PLCO GWAS dataset, was performed to identify the

associations between independent SNPs and NSCLC survival.

Manhattan plots and regional association plots were generated

us ing Haploview4.1 and Locus Zoom (http : / /ht tp : / /
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locuszoom.sph.umich.edu) respectively to visualize these identified

SNPs (35).

Subsequently, the unfavorable genotypes of identified SNPs

were combined to evaluate their cumulative effects on NSCLC

survival. Stratified analysis by subgroups was performed to

calculate the inter-study heterogeneity and possible effect

modification or interaction. A survival prediction model,

constructed using the receiver operating characteristic (ROC)

curves and time-dependent area under the curve (AUC) with R

(version 3.6.3) package “Survival” and “time ROC”, was employed

to assess the prediction accuracy of the clinical and genetic variables

on NSCLC survival (36). To evaluate the genotype-phenotype

associations of identified SNPs with the corresponding mRNA

expression levels, expression quantitative trait loci (eQTL)

analyses with a linear regression model were performed using

data from two sources: normal lymphoblastoid cells from 373

European descendants in the 1,000 Genomes Project and the

genotype-tissue expression (GTEx) project (including 515

normal lung tissues and 670 whole blood samples) (https://

www.gtexportal.org/home, V8) (37).

Finally, we used the XIANTAO (https://www.xiantaozi.com)

online data analysis tool that helped analyze cancer omics data of

the Cancer Genome Atlas (TCGA) database. Here, we used

XIANTAO to compare the differences of mRNA expression levels

in NSCLC using paired or unpaired t-tests. The online survival

analysis platform Kaplan-Meier (http://kmplot.com/analysis/) was

also used to assess the correlation between the corresponding

mRNA expression levels and the probability of NSCLC survival

(38). All statistical analyses were performed using the SAS software

(Version 9.4, SAS Institute, Cary, NC, USA), unless specified

otherwise.
3 Results

3.1 Associations between SNPs in the T cell
exhaustion-related genes and
NSCLC survival

In the analysis, we used 1185 NSCLC patients from the PLCO

trial and 984 NSCLC patients from the HLCS study. The flow chart

of the present study is presented in Figure 1. In the discovery after

the BFDP correction, we found that 1,721 SNPs (250 genotyped and

1,471 imputed) out of the 52,103 SNPs in the 672 T cell exhaustion-

related genes were significantly associated with NSCLC OS (P ≤

0.05). These SNPs were then used for validation with the dataset of

the HLCS study, in which 125 SNPs in 12 genes remained

significant, five genes (MET, PLIN2, OAS2, IRF9, and PRKCH)

had only one SNP, and the other seven genes had 120 SNPs, of

which 15 SNPs (Supplementary Figure 2) together with the other

five SNPs were selected as the tagger SNPs. Biological function

prediction of these SNPs was conducted with two online

bioinformatics tools of the HaploReg and RegulomeDB projects.

As shown in Supplementary Table 4, most SNPs were located in the

intronic region of their genes and associated with enhancer histone

marks and protein motifs alteration.
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3.2 Identification of associations between
independent SNPs and NSCLC survival in
the PLCO trial

To assess the effect of independent SNPs on NSCLC survival in

the PLCO trial, we first performed stepwise multivariable Cox

regression analysis. Then, SNPs that remained significant were put

into a post-stepwise multivariable Cox model with adjustment for 54

previously reported SNPs in the same PLCO trial. Finally, three

independent SNPs (LRRC8C rs10493829 T>C, OAS2 rs2239193

A>G, and CCL25 rs3136651 T>A) remained significantly associated

with NSCLC OS (P = 0.008, P = 0.001, and P = 0.002, respectively)

(Figure 2). Moreover, the results of meta-analysis for these three

identified SNPs across the PLCO trial and HLCS study are presented

in Table 1, and no heterogeneity was observed. We also depicted the

locations of these three significant SNPs in Manhattan plots

(Figure 3) and regional association plots (Figure 4).

As shown in Table 2, the LRRC8C rs10493829 C allele and CCL25

rs3136651 A allele were associated with better NSCLC OS (Ptrend =

0.0005 and 0.003, respectively) and DSS (Ptrend = 0.0001 and 0.009,

respectively), while the OAS2 rs2239193 G allele was associated with

poor NSCLC OS and DSS (Ptrend = 0.002 for both). In a dominant

genetic model, compared with the reference genotype, NSCLC

patients had a poor survival associated with LRRC8C rs10493829

TT (OS: HR = 1.18, 95% CI = 1.01-1.37, P = 0.035), OAS2 rs2239193

AG+GG (OS: HR = 1.38, 95% CI = 1.11-1.70, P = 0.003; DSS:

HR = 1.43, 95% CI = 1.15-1.78, P = 0.001) and CCL25 rs3136651 TT

(OS: HR = 1.20, 95% CI = 1.02-1.40, P = 0.024; DSS: HR = 1.19, 95%

CI = 1.01-1.40, P = 0.037). As a result, those risk genotypes were

considered unfavorable genotypes. We also depicted these results in

Kaplan-Meier survival curves (Supplementary Figure 3). These

results suggested the three SNPs were independently associated

with NSCLC survival.
3.3 Combined analyses of the associations
between the three independent SNPs and
NSCLC survival in the PLCO dataset

To evaluate accumulative effect of the three independent SNPs on

NSCLC survival, we combined their unfavorable genotypes (i.e.,

LRRC8C rs10493829 TT, OAS2 rs2239193 AG+GG, and CCL25

rs3136651 TT) into a genetic score that was used to categorize all

NSCLC patients into four groups (i.e., 0, 1, 2, and 3) by the number of

their unfavorable genotypes (NUG). The results presented in Table 2

suggested that an increased NUG score was associated with a poorer

NSCLC survival for both OS (Ptrend < 0.0001) and DSS (Ptrend =

0.0002) in the multivariable Cox model. We further dichotomized all

NSCLC patients into two groups: 0-1 and 2-3 NUGs. Compared with

the 0-1 NUG group, the 2-3 NUG group had a significantly poorer

OS (HR = 1.35, 95% CI = 1.15-1.58, P = 0.0002) and DSS (HR = 1.39,

95% CI = 1.18-1.63, P < 0.0001). Furthermore, we also depicted these

results with Kaplan-Meier survival curves (Figures 5A–D). To sum

up, these combined analyses indicated that an increased NUG score

was associated with a poorer NSCLC survival.
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FIGURE 2

Three independent SNPs in a multivariate Cox proportional hazards regression analysis. (A) The characteristics of three SNPs and other covariates.
(B) Forest map indicated the result of stepwise analysis including age, sex, smoking status, tumor stage, histology, chemotherapy, radiotherapy,
surgery, PC1, PC2, PC3, PC4, and SNPs. (C) Forest map indicated the result of post-stepwise analysis with adjustment using 54 published SNPs for
NSCLC in the same PLCO genotyping dataset: rs779901, rs3806116, rs199731120, rs10794069, rs1732793, rs225390, rs3788142, rs73049469,
rs35970494, rs225388, rs7553295, rs1279590, rs73534533, rs677844, rs4978754, rs1555195, rs11660748, rs73440898, rs13040574, rs469783,
rs36071574, rs7242481, rs1049493, rs1801701, rs35859010, rs1833970, rs254315, rs425904, rs35385129, rs4487030, rs60571065, rs13213007,
rs115613985, rs9673682, rs2011404, rs7867814, rs2547235, rs4733124, rs11787670, rs67715745, rs922782, rs4150236, rs116454384, rs9384742,
rs9825224, rs261083, rs76744140, rs6939623, rs113181986, rs2568847, rs11225211, rs10841847, rs2519996, and rs36215.
FIGURE 1

The flowchart of the present study.
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FIGURE 3

Manhattan plot in the PLCO trial and HLCS study. (A) Manhattan plot for 52,103 SNPs of T-cell exhaustion related genes in the PLCO trial. (B) Manhattan plot
for 1,721 SNPs of T-cell exhaustion-related genes in the HLCS study. The blue horizontal line indicates P = 0.05 and the red line indicates BFDP = 0.80.
TABLE 1 Associations of three significant SNPs with of NSCLC overall survival in both discovery and validation datasets from two published GWASs.

SNPs Allele a Gene
PLCO (n=1,185) HLCS (n=984) Meta-analysis

EAF HR (95% CI) b P b EAF HR (95% CI) C P C P het
d I 2 HR (95% CI) e P e

rs10493829 T>C LRRC8C 0.44 0.84 (0.76-0.93) 0.001 0.47 0.87 (0.79-0.97) 0.011 0.597 0 0.86 (0.80-0.92) 1.58x10-5

rs2239193 A>G OAS2 0.06 1.38 (1.12-1.69) 0.002 0.06 1.23 (1.01-1.50) 0.043 0.425 0 1.30 (1.13-1.50) 3.41x10-4

rs3136651 T>A CCL25 0.17 0.82 (0.72-0.94) 0.004 0.14 0.81 (0.70-0.95) 0.008 0.935 0 0.82 (0.74-0.90) 9.47x10-5
F
rontiers in Im
munology
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 fron
SNPs, single-nucleotide polymorphisms; NSCLC, non-small cell lung cancer; GWAS, genome-wide association study; PLCO, the Prostate, Lung, Colorectal and Ovarian cancer screening trial;
HLCS, Harvard Lung Cancer Susceptibility Study; EAF, effect allele frequency; HR, hazards ratio; CI, confidence interval.
aReference/effect allele.
bAdjusted for age, sex, stage, histology, smoking status, chemotherapy, radiotherapy, surgery, identified SNPs, PC1, PC2, PC3, and PC4.
cAdjusted for age, sex, stage, histology, smoking status, chemotherapy, radiotherapy, surgery, PC1, PC2, and PC3.
dPhet: P value for heterogeneity by Cochrane’s Q test.
eMeta-analysis in the fix-effects model.
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3.4 Stratified analyses for the effect of NUG
on NSCLC survival in the PLCO dataset

To explore whether the effect of NUG on NSCLC survival was

influenced by other clinical covariates, we performed stratified

analyses by age, sex, smoking status, histology, tumor stage,

chemotherapy, radiotherapy, and surgery in the PLCO trial. As

shown in Supplementary Table 5, for the effect on NSCLC OS and

DSS, there were no significant interactions of NUGwith age, smoking

status, histology, tumor stage on DSS, chemotherapy, radiotherapy,

and surgery (all Pinter > 0.05). However, the interaction of NUG with
Frontiers in Immunology 07
sex (OS: P = 0.0004 and DSS: P = 0.0005) and tumor stage (P = 0.034)

was statistically significant (Pinter < 0.05).
3.5 Time-dependent AUC and ROC curves
to predict NSCLC survival for the three
independent SNPs

To further assess the predictive value of these three independent

SNPs, we performed the time-dependent AUC and ROC curves for

OS and DSS at the 12th, 36th, and 60th month with the clinical
FIGURE 4

Regional association plots for the three independent SNPs in the T-cell exhaustion related genes. Regional association plots included 50kb up or
downstream of (A) LRRC8C, (B) OAS2, and (C) CCL25. Data points are colored according to the level of linkage disequilibrium of each pair of SNPs
based on the hg19/1000 Genomes European population. The left-hand y-axis shows the association P-value of individual SNPs in the discovery
dataset, which is plotted as -log10 (P) against chromosomal base-pair position. The right-hand y-axis shows the recombination rate estimated from
HapMap Data Rel 22/phase II European population.
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variables in the PLCO trial. Time-dependent AUC for OS and DSS

are listed in Supplementary Figures 4A, B. With the addition of the

three SNPs to the predictive model, there were no significantly

improved NSCLC survival curves at 12th for OS (P = 0.087) and DSS

(P = 0.065) (Supplementary Figures 4C, D), 36th for OS (P = 0.607)

and DSS (P = 0.329) (Supplementary Figures 4E, F), 60th for OS (P =

0.090) (Supplementary Figure 4G). However, the predictive

performance of AUC curves at the 60th month for DSS was

significantly improved (P = 0.045) (Supplementary Figure 4H).
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These data suggested that the addition of the three SNPs to the

predictive model could only improve AUC at the 5-year DSS.
3.6 The result of eQTL analyses

To explore potential mechanisms underlying the associations of

three independent SNPs with NSCLC survival, we performed eQTL

analyses to investigate the correlations between these three
TABLE 2 Associations between the NUGs of three independent SNPs with NSCLC OS and DSS in the PLCO Trial.

Genotype Frequency
OS a DSS a

Death (%) HR (95% CI) P Death (%) HR (95% CI) P

LRRC8C rs10493829 T>C b

TT 372 257 (60.09) 1.00 – 229 (61.56) 1.00 –

TC 557 377 (67.68) 0.94(0.80-1.10) 0.442 337 (60.50) 0.94 (0.80-1.12) 0.502

CC 246 155 (63.01) 0.69 (0.56-0.84) 0.0003 143 (58.13) 0.72 (0.58-0.89) 0.003

Trend test 0.0005 0.0001

Dominant

TT 372 257 (60.09) 1.00 – 229 (61.56) 1.00 –

TC+CC 803 532 (66.25) 0.85 (0.73-0.99) 0.035 480 (59.78) 0.87 (0.74-1.02) 0.075

Or reverse

TC+CC 803 532 (66.25) 1.00 – 480 (59.78) 1.00 –

TT 372 257 (60.09) 1.18 (1.01-1.37) 0.035 229 (61.56) 1.16 (0.99-1.35) 0.075

OAS2 rs2239193 A>G c

AA 1029 682 (66.28) 1.00 – 609 (59.18) 1.00 –

AG 141 103 (73.05) 1.36 (1.10-1.68) 0.004 97 (68.79) 1.43 (1.15-1.78) 0.002

GG 3 2 (66.67) 2.62 (0.64-10.75) 0.180 1 (33.33) 1.76 (0.24-12.69) 0.575

Trend test 0.002 0.002

Dominant

AA 1029 682 (66.28) 1.00 – 609 (59.18) 1.00 –

AG+GG 144 105 (72.92) 1.38 (1.11-1.70) 0.003 98 (68.06) 1.43 (1.15-1.78) 0.001

CCL25 rs3136651 T>A d

TT 798 538 (67.42) 1.00 – 485 (60.78) 1.00 –

TA 330 224 (67.88) 0.89 (0.76-1.04) 0.149 199 (60.30) 0.88 (0.75-1.04) 0.139

AA 33 15 (45.45) 0.42 (0.25-0.71) 0.001 14 (42.42) 0.49 (0.29-0.85) 0.011

Trend test 0.003 0.009

Dominant

TT 798 538 (67.42) 1.00 – 485 (60.78) 1.00 –

TA+AA
Or reverse

363 239 (65.84) 0.84 (0.72-0.98) 0.024 213 (58.68) 0.84 (0.72-0.99) 0.037

TA+AA 363 239 (65.84) 1.00 213 (58.68) 1.00

TT 798 538 (67.42) 1.20 (1.02- 1.40) 0.024 485 (60.78) 1.19 (1.01-1.40) 0.037

(Continued)
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independent SNPs and their corresponding mRNA expression

levels. First, with RNA-Seq data of the lymphoblastoid cell lines

from 373 European descendants in the 1000 Genomes Project, the

LRRC8C rs10493829 C allele was significantly correlated with
Frontiers in Immunology 09
increased expression levels of LRRC8C mRNA in additive (P =

0.003, Figure 6A) and recessive models (P = 0.001, Figure 6B), but

not in the dominant model (Supplementary Figure 5A). The OAS2

rs2239193 G allele and CCL25 rs3136651 A allele showed no
TABLE 2 Continued

Genotype Frequency
OS a DSS a

Death (%) HR (95% CI) P Death (%) HR (95% CI) P

NUG e

0 226 143 (63.27) 1.00 – 133 (58.85) 1.00 –

1 590 393 (66.61) 1.13 (0.93-1.38) 0.206 342 (57.97) 1.05 (0.86-1.29) 0.616

2 312 217 (69.55) 1.45 (1.17-1.79) 0.0007 199 (63.78) 1.40 (1.12-1.75) 0.003

3 31 22 (70.97) 1.80 (1.12-2.89) 0.015 22 (70.97) 1.95 (1.21-3.13) 0.006

Trend test <0.0001 0.0002

Dichotomized NUG

0-1 816 536 (65.69) 1.00 – 475 (58.21) 1.00 –

2-3 343 239 (69.68) 1.35 (1.15-1.58) 0.0002 221 (64.43) 1.39 (1.18-1.63) <0.0001
SNP, single nucleotide polymorphism; NSCLC, non-small cell lung cancer; OS, overall survival; DSS, disease-specific survival. PLCO, Prostate, Lung, Colorectal and Ovarian cancer screening
trial; HR, hazards ratio; CI, confidence interval; NPA, number of protective alleles.
aAdjusted for age, sex, smoking status, histology, tumor stage, chemotherapy, surgery, radiotherapy and principal components.
b10 with missing data were excluded.
c12 with missing data were excluded.
d24 with missing data were excluded.
eUnfavorable genotypes were LRRC8C rs10493829 TT, OAS2 rs2239193 AG+GG, and CCL25 rs3136651 TT and their results are in bold.
FIGURE 5

Prediction of survival with combined unfavorable genotypes. Kaplan-Meier survival curves in the PLCO dataset for (A) OS with the combined
unfavorable genotypes, (B) OS with the dichotomized groups of the NUGs, (C) DSS with the combined unfavorable genotypes, (D) DSS with
dichotomized groups of the NUGs. Unfavorable genotypes were LRRC8C rs10493829 TT, OAS2 rs2239193 AG+GG, and CCL25 rs3136651 TT.
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correlation with their mRNA expression levels in additive,

dominant, and recessive models (Supplementary Figures 5B–G).

Then, using data from the GTEx project, we found that the LRRC8C

rs10493829 C allele was significantly correlated with high mRNA

expression levels of LRRC8C in normal lung tissues (P = 7.22e-4,

Figure 6C) and whole blood samples (P = 1.76e-3, Figure 6D). The

OAS2 rs2239193 G allele showed no correlation with OAS2 mRNA

expression levels in normal lung tissues and whole blood

(Supplementary Figures 5H, I). However, there was no data for

CCL25 rs3136651 A allele in the GTEx project. These data indicated

that the LRRC8C rs10493829 C allele might regulate the mRNA

expression levels of its corresponding gene.
3.7 The result of mRNA expression levels
and survival

To explore the mRNA expression levels of LRRC8C, OAS2, and

CCL25 with paired and unpaired tests, we input these three genes in

the module “paired samples” and “disease and non-disease” of the

XIANTAO online tool. Paired t-tests suggested that compared with

normal lung tissue, LRRC8C mRNA was significantly down-

regulated in combined lung squamous cell carcinoma (LUSC) +

lung adenocarcinoma (LUAD) (Figure 7A), LUSC, and LUAD (all P
Frontiers in Immunology 10
< 0.0001) (Supplementary Figures 6A, B). Similar results were also

observed with unpaired tests for combined LUSC + LUAD

(Figure 7B), LUSC, and LUAD (Supplementary Figures 6C, D).

Furthermore, survival analysis from the Kaplan-Meier Plotter

database suggested that high LRRC8C mRNA expression levels

were associated with a better NSCLC survival (HR = 0.62, 95%

CI: 0.51-0.75, log-rank P < 0.0001) (Figure 7C). Paired tests

suggested that OAS2 mRNA expression levels were down-

regulated in combined LUSC + LUAD (P = 0.004) (Figure 7D),

LUSC (P = 0.026), but not in LUAD (P = 0.066) (Supplementary

Figures 6E, F), and the unpaired tests indicated that mRNA

expression levels of OAS2 were lower in LUSC + LUAD (P =

4.6e-05) (Figure 7E), LUSC (P = 0.003), and LUAD (P = 0.006)

(Supplementary Figures 6G, H). Moreover, high OAS2 mRNA

expression levels were associated with favorable NSCLC survival

(HR = 0.77, 95% CI: 0.66-0.90, log-rank P = 8.6e-04) (Figure 7F).

Furthermore, paired and unpaired tests indicated that the mRNA

expression levels of CCL25 were up-regulated in combined LUSC +

LUAD, LUSC, and LUAD (Figures 7G, H, Supplementary

Figures 6–L). High mRNA expression levels of CCL25 were

associated with a poor NSCLC OS (HR = 1.17, 95% CI: 1.03-1.33,

log-rank P = 0.015) (Figure 7I). Taken together, these findings

suggested that LRRC8C and OAS2 might act as suppressor genes,

while CCL25 might function as an oncogene.
FIGURE 6

The results of eQTL analyses. The LRRC8C rs10493829 C allele was associated with high mRNA expression levels of LRRC8C in (A) additive model
and (B) recessive model in normal lymphoblastoid cells, (C) normal lung tissues and (D) whole blood samples in the GTEx project.
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4 Discussion

In the present study, we assessed the associations between

52,103 SNPs in the 672 T cell exhaustion-related genes and

NSCLC survival by using available NSCLC genotyping data from

two public GWAS datasets and clinical information from both the

PLCO trial and the HLCS study. We identified three SNPs (i.e., the

LRRC8C rs10493829 T>C, OAS2 rs2239193 A>G, and CCL25

rs3136651 T>A) that were independently associated with the

survival of NSCLC patients. Additionally, an increased NUG

score was associated with poorer NSCLC OS and DSS.

Furthermore, the addition of these three SNPs to the predictive

model significantly improved 5-year DSS, suggesting that these

three independent SNPs may be predictors for NSCLC survival. In

the functional SNP-mRNA analysis, we also found that LRRC8C

rs10493829 C allele was associated with significantly higher

LRRC8C mRNA expression levels. Moreover, high LRRC8C and
Frontiers in Immunology 11
OAS2mRNA expression levels were associated with a better NSCLC

survival, while high CCL25mRNA expression levels were associated

with a poorer NSCLC survival. These data indicated that LRRC8C

rs10493829 C allele could modulate the mRNA expression levels of

LRRC8C to influence NSCLC survival, which provided some

evidence for biological plausibility of the observed SNP-survival

associations, particularly for the LRRC8C rs10493829 T>C SNP.

Recent advances in immunotherapy have dramatically

improved the prognosis of NSCLC patients; however, the

acquired resistance limits the percentage of patients with durable

therapeutic responses (39). T cell exhaustion, a hypofunctional state

of T cells resulting from a prolonged exposure to antigenic

stimulation, is a key hallmark of the immunosuppressive TME

status and mechanism of the acquired resistance to immunotherapy

(40, 41). However, there was no reported role of genetic variants in

the T cell exhaustion-related genes on survival of NSCLC patients.

For the first time, in the present study, we identified three SNPs in T
FIGURE 7

The result of mRNA expression levels from XIANTAO and survival from Kaplan-Meier Plotter database for LRRC8C, OAS2, and CCL25. LRRC8C
mRNA was down-regulated in combined LUAD+LUSC with (A) paired and (B) unpaired tests, (C) high LRRC8C mRNA expression levels were
associated with a better NSCLC survival; OAS2 mRNA was down-regulated in combined LUAD+LUSC with (D) paired and (E) unpaired tests, (F) high
OAS2 mRNA expression levels were associated with a better NSCLC survival; CCL25 mRNA was up-regulated in combined LUAD+LUSC with (G)
paired and (H) unpaired tests, (I) high CCL25 mRNA expression levels were associated with a poor NSCLC survival.
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cell exhaustion-related genes, which collectively predicted

NSCLC survival.

LRRC8C, the leucine-rich repeat containing 8 volume-regulated

anion channel (VRAC) subunit C, is located on chromosome 1 and

composed of 803 amino acids. Previous studies of LRRC8C have

focused on the immune system. As an essential component for

VRAC, LRRC8Cmediates the transport of 2’3cGAMP and activates

STING and P53 to inhibit the enhanced T cell function, further

regulating T cell proliferation and survival (42). On the contrary,

the deletion of Lrrc8c enhanced the CD4+ and CD8+ T cell function

by down-regulating p53 signaling (42, 43). These discoveries added

to the evidence that LRRC8C-STING-p53 signaling axis may act as a

new inhibitory pathway that controls the function and adaptive

immunity of T cells.

However, what is not yet known is the role of LRRC8C in

NSCLC survival. To the best of our knowledge, the present study is

the first to to have identified the associations between genetic

variants of LRRC8C and NSCLC survival. Notably, LRRC8C

rs10493829 T>C showed a significant protective effect on the

survival of NSCLC patients and was associated with elevated

mRNA expression levels in normal lymphoblastoid cells, lung

tissue, and whole blood. Furthermore, LRRC8C mRNA expression

levels were upregulated in normal tissues and associated with

favorable NSCLC survival. These findings imply that LRRC8C

may act as a suppressor gene and that the LRRC8C rs10493829 C

allele may regulate the mRNA expression levels of its corresponding

gene to influence prognosis in NSCLC.

OAS2, 2’-5’-Oligoadenylate Synthetase 2, is located on

chromosome 12 and composed of 719 amino acids. Previous

studies have suggested that OAS2 regulates multiple cellular

processes, including cell proliferation, invasion, and autophagy.

For example, it was reported that OAS2 suppressed cell

proliferation and invasion and promoted autophagy in colorectal

cancer (44). Moreover, OAS2 overexpression was found to be

significantly associated with a favorable prognosis in various

cancers (44, 45). As for NSCLC, OAS2 was significantly down-

regulated in human gefitinib-resistant tissues, while up-regulation

of OAS2 reversed the resistance in gefitinib-resistant cell lines (46).

In the present study, we found that the OAS2 rs2239193 G allele was

associated with NSCLC survival. In addition, OAS2 mRNA

expression levels were increased in normal lung tissues than

NSCLC tissues, and up-regulation of OAS2 was associated with

favorable NSCLC survival. Consistent with previous studies, these

findings also suggested that OAS2 might function as a potential

suppressor gene in NSCLC. However, we did not find an association

between OAS2 rs2239193 G allele and mRNA expression levels

of OAS2. Taken together, additional experiments should be

designed to explore the potential mechanisms underlying the

observed associations.

CCL25, C-C Motif Chemokine Ligand 25, is located on

chromosome 19 and composed of 150 amino acids. CCL25 is the

natural ligand for C-C motif chemokine receptor 9 (CCR9). Data

from previous studies have established that CCR9/CCL25

interaction promote tumor proliferation, invasion, anti-apoptosis,

and migration in a variety of malignant tumors (47–49). In NSCLC,
Frontiers in Immunology 12
the CCR9/CCL25 interaction induced tumorigenesis and inhibited

apoptosis of tumor cells by activating the PI3K/Akt signaling

pathway (50). Similarly, another study demonstrated that CCL25

enhanced the phenotype of migration and invasion in NSCLC lines

and that NSCLC patients with lower CCL25 expression had a better

OS (51). Moreover, the CCR9/CCL25 chemokine axis plays an

important role in shaping TME by attracting immune cells in the

tumor, leading TME toward an immunosuppressive state (52). In

the present study, we found that the CCL25 rs3136651 A allele had a

significant protective effect on NSCLC survival and that CCL25

mRNA levels were markedly up-regulated in NSCLC tissues and

associated with a reduced survival. These results were consistent

with the above-mentioned previous studies, suggesting that CCL25

may function as an oncogene in NSCLC; however, additional

functional studies should be designed to investigate the

underlying molecular mechanisms.

There are several limitations in the present study. Firstly,

although the evidence showing that genetic variants in T cell

exhaustion-related genes are associated with NSCLC survival, the

molecular mechanisms underlying the observed associations are

still uncertain. Further experiments in vitro and in vivo should be

designed to investigate the potential mechanisms. Secondly, because

the two available GWAS datasets were of European descendants,

our results may not be generalized to other ethnic populations.

Thirdly, the detailed genotype and clinical outcome data were not

available from HLCS for us to replicate the results of the same

combined and stratified analyses performed with the PLCO

data only.

In conclusion, in the present study, we identified that three

independent SNPs were associated with NSCLC survival in both the

PLCO trial and the HLCS study. We also found that LRRC8C

rs10493829 C allele affected NSCLC survival possibly by regulating

the targeted mRNA expression. Our results indicate that these three

SNPs in the T cell exhaustion-related genes may be potential

biomarkers for NSCLC survival.
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