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As an effective treatment for diabetes, islet transplantation has garnered

significant attention and research in recent years. However, immune rejection

and the toxicity of immunosuppressive drugs remain critical factors influencing

the success of islet transplantation. While immunosuppressants are essential in

reducing immune rejection reactions and can significantly improve the survival

rate of islet transplants, improper use of these drugs can markedly increase

mortality rates following transplantation. Additionally, the current availability of

islet organ donations fails to meet the demand for organ transplants, making

xenotransplantation a crucial method for addressing organ shortages. This

review will cover the following three aspects: 1) the immune responses

occurring during allogeneic islet transplantation, including three stages:

inflammation and IBMIR, allogeneic immune response, and autoimmune

recurrence; 2) commonly used immunosuppressants in allogeneic islet

transplantation, including calcineurin inhibitors (Cyclosporine A, Tacrolimus),

mycophenolate mofetil, glucocorticoids, and Bortezomib; and 3) early and late

immune responses in xenogeneic islet transplantation and the immune effects of

triple therapy (ECDI-fixed donor spleen cells (ECDI-SP) + anti-CD20 + Sirolimus)

on xenotransplantation.
KEYWORDS

islet transplantation, immune response, immunosuppressants, xenotransplantation,
allogenic and xenogenic islet transplantation
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1 Introduction

Diabetes is a chronic metabolic disease characterized by high

blood glucose levels, affecting over 500 million people worldwide.

Type 1 diabetes (T1D) results from an autoimmune response that

destroys the insulin-producing b-cells in the body, resulting in the

inability to produce insulin to regulate blood glucose levels (1). Since

the discovery of insulin in 1922, insulin therapy has been used to treat

patients with T1D. This disease requires minute-to-minute regulation

of blood glucose levels, and measures such as exogenous insulin

supplementation and continuous glucose monitoring (CGM) can

have a certain delay in detecting and controlling blood glucose levels,

which insulin injections cannot achieve (2, 3). Only by transplanting

insulin-producing cells from donors can we precisely measure and

deliver the appropriate doses of insulin (4). Additionally, although

intensive insulin therapy can improve glycated hemoglobin levels, it

does not prevent diabetic complications (5). When patients face

severe metabolic complications, failure of exogenous insulin

treatment, or when insulin use fails to prevent acute complications,

islet transplantation becomes a necessary treatment measure (6). The

transplantation of pancreatic tissue, whether whole pancreas or islets,

is a clinical option for the treatment of labile type 1 diabetes. Pancreas

transplantation is usually performed as a multi-organ transplant

procedure; most of these (72%) are combined pancreatorenal

procedures. Therefore, it is particularly suitable for patients with

type 1 diabetes combined with end-stage renal disease. Open surgery

is required to transplant the entire pancreas into the abdominal cavity

of the recipient and connect the blood vessels and digestive tract. The

operation is complicated and traumatic, and the recovery time is long.

Whole organ pancreas transplants restore euglycemia almost

immediately following transplantation, and long-term graft survival

rates are excellent. Despite the need for immunosuppression,

recipient morbidity and mortality decreased significantly, as did the

risk of complications associated with poor glycemic control and a

better quality of life (7, 8). Islet transplantation refers to the isolation,

purification and transplantation of islets from the pancreas of the

donor into the recipient (detailed procedures are described below).

Islet transplantation is suitable for type 1 diabetes patients who have

experienced severe hypoglycemic events. Following Edmonton

protocol, the islets are injected directly into the recipient’s liver

portal vein under the ultrasound observation, and the operation is

less traumatic, the anesthesia time is shorter, the invasion is less, and

the recovery time is fast. Although many patients experience

significant improvements in blood sugar control after

transplantation, exogenous insulin may still be required, and long-

term success rates are relatively low.

As an alternative therapy, islet transplantation can sustainably

reverse T1D. Successful islet transplantation eliminates the need for

stringent blood glucose monitoring and prevents the progression of

diabetic complications. However, a significant challenge faced by islet

transplantation is the immune response of the body to the foreign

islets. When donor islets are exposed to the recipient’s immune

system, the implants can trigger a rapid immune response (9, 10).

Therefore, the survival rate of islets after isolation and transplantation

becomes a major issue. Immunosuppressive therapy is currently the

most popular immunomodulation method to ensure the survival of
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islet grafts. Clinical islet transplantation began in the 1970s (11), but

due to various reasons, its clinical efficacy was not ideal. It was not

until 1999 that Shapiro et al. (12) proposed and established a standard

set, including donor selection, islet equivalent transplantation, and

post-operative immunosuppressive regimens. They used a large

number of isolated islet cells for transplantation and implemented

a new regimen post-operatively, using a steroid-free regimen and

reduced doses of calcineurin inhibitors (sirolimus, low-dose

tacrolimus, and daclizumab), known as the “Edmonton Protocol”

(12). Once this protocol was promoted, clinical results improved

significantly, marking an important milestone in clinical IT. With the

promotion of the Edmonton clinical protocol and the continuous

improvement of islet cell isolation techniques, the survival rate of islet

transplantation has significantly improved but is still relatively low

compared to other organs. Moreover, it is known that the traditional

methods of using immunosuppressive drugs during and after islet

transplantation can cause many side effects, such as mouth ulcers,

peripheral edema, anemia, weight loss, and paroxysmal diarrhea (9,

13). Therefore, to improve the survival rate after islet transplantation,

many issues must be addressed, including islet viability, effective

implantation, and the application of immunosuppressants that lead

to islet damage (14). Therefore, the purpose of this article is to

summarize the immune responses and mechanisms of action of

immunosuppressants that occur after islet transplantation to better

guide islet transplantation and improve islet survival rates.
2 Immune response in allogeneic
islet Transplantation

2.1 Inflammatory response

Clinical islet transplantation requires four steps: perfusion of

the donor pancreas, digestion of the pancreas to separate the islets

from the exocrine tissue, purification of the islets, and

transplantation via the portal vein infusion of islet into the

recipient (15). When the prepared islets are infused into the

patient’s body through the portal vein, it triggers an inflammatory

response. Early inflammatory response leads to the early loss of islet

viability, posing a significant challenge to the long-term survival

rate of islet transplantation. This early inflammatory reaction

significantly affects islet viability, with estimates indicating that up

to 50% of transplanted islets may be lost during this initial phase

(16). Post-pancreas transplantation, ischemia-reperfusion creates

an inflammatory environment, where the Instant Blood-Mediated

Inflammatory Reaction (IBMIR) plays a crucial role. Injecting

purified islets into the recipient’s portal vein promotes an innate

immune-dependent inflammatory response, known as IBMIR.

IBMIR is initiated by the intense activation of the coagulation

cascade, where the negatively charged surface of the islets activates

the intrinsic coagulation pathway (17), and the tissue factor (TF)

expressed by the islets induces the extrinsic coagulation pathway (18).

Simultaneously, islets secrete inflammatory factors such as IL-8 and

MCP-1, which have chemotactic and pro-inflammatory effects on

macrophages and neutrophils (19, 20). Activated platelets can adhere

by binding to the extracellular matrix (ECM) and collagen on the
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surface of islets. Additionally, due to the rapid transient expression of

p-selectin on the membranes of activated platelet alpha granules and

vascular endothelial Weibel-Palade bodies, the p-selectin lectin-like

domain present on neutrophils and monocytes binds with sialyl

Lewis x and p-selectin glycoprotein ligand-1, mediating the rolling of

neutrophils and monocytes on endothelial cells and their adhesion to

platelets (21, 22). On the other hand, vascular endothelial cells secrete

IL-6 and IL-8, promoting the aggregation of neutrophils and

macrophages (19). Complement activation is triggered by natural

immune antibodies IgG and IgM. When isolated islets are exposed to

blood, the complement system is rapidly activated, leading to the lysis

of islet cells. Simultaneously, the production of anaphylatoxins C3a

and C5a further induces the aggregation of macrophages and

neutrophils, promoting the release of cytokines such as IL-1, IL-6,

IL-8, and TNF-a by monocytes (23). Granulocytes appear 8 hours

after islet transplantation, with extensive infiltration into the grafts

after 12 hours. Neutrophils are the main members of the granulocyte

family and the first line of defense in innate immunity. They contain

various cytokines that, when activated, are released and cause damage

to islets; neutrophils significantly contribute to the activation and

recruitment of macrophages at acute inflammation sites. Once

activated, they produce various chemokines to attract monocytes

and macrophages. Additionally, neutrophil infiltration leads to the

release of cytokines such as TNF-a and macrophage inflammatory

protein-1a by T cells and macrophages, which can expand IBMIR

and induce subsequent adaptive immunity, triggering and enhancing

cellular rejection (23, 24) (Figure 1). Aggregated macrophages

continuously secrete cytokines such as IL-6 and IL-8 to sustain the

inflammatory response and release pro-inflammatory factors such as
Frontiers in Immunology 03
IL-1b, IFN-g, and TNF-a. The IL1b secreted by macrophages and

neutrophils binds to IL-1b receptors on the surface of islet cells,

activating IL-1 receptor-associated kinases and TNF receptor-

associated factor 6, leading to the phosphorylation and degradation

of IkB, releasing NF-kB, which then enters the nucleus to regulate the

transcription of multiple genes, including IL-1, IL-6, TNF-a, and

iNOS. TNF-a produced by macrophages and islet cells binds to TNF

receptors, activating the NF-kB and MAPK pathways and inducing

apoptosis. Apoptosis is mediated by caspase-3 activation through the

MAPK pathway or by activating effector caspases, including FADD-

mediated caspase-3 activation. IFN-g produced by macrophages

binds to IFN-g receptors on islet cells, activating JAK1 and JAK2.

Activated JAK2 then activates Signal Transducer and Activator of

Transcription 1 (STAT1). STAT1 is then transferred to the nucleus

for gene regulation, ultimately leading to islet cell apoptosis. The pro-

apoptotic effect of STAT1may be partially mediated by the activation

of caspase-2, caspase-3, and caspase-7 (25). Under the combined

action of cytokines IL-1b, TNF-a, and IFN-g, the overexpression of

iNOS in b-cells and macrophages leads to excessive synthesis of NO.

Subsequently, NO loses electrons and combines with superoxide

radicals to form highly reactive peroxynitrite (ONOO-). The

cytotoxicity of ONOO subsequently induces islet cell apoptosis. On

the other hand, macrophages play an antigen-presenting role,

promoting the activation of T cells into CD8+ T cells and CD4+ T

cells. Activated T cells produce cytokines such as IFN-g, TNF-a, and

lymphotoxin, thereby inducing b-cell apoptosis. (Figure 1). Lisa

Özmen et al. (26) exposed human islets to ABO-compatible blood

and found that administering Melaglavin dose-dependently

eliminated IBMIR. In the absence of or at concentrations below 0.4
FIGURE 1

Immune mechanisms at three stages of allogeneic islet transplantation. The immune responses occurring during allogeneic islet transplantation
included three stages: inflammation and IBMIR, allogeneic immune response, and autoimmune recurrence. In the early stages of transplantation,
islets secrete pro-inflammatory factors and activate the complement system, promoting the recruitment of platelets, neutrophils, and monocyte
macrophages to the graft. Vascular endothelial cells secrete cytokines and release P-selectin, promoting the adhesion between monocytes/
neutrophils and platelets. Accumulated monocyte macrophages and neutrophils further enhance the recruitment of macrophages and the secretion
of cytokines. Green arrows indicate the process by which the complement system promotes cytokine secretion by monocytes. Red arrows indicate
the process by which neutrophils enhance cytokine secretion by macrophages. Purple arrows represent the process by which P-selectin promotes
the adhesion of monocytes and neutrophils to platelets. Within days after transplantation, the release of inflammatory signals leads to increased
cytokine production, with neutrophils signaling macrophages and dendritic cells to the site of islet phagocytosis, presenting antigens on their surface
and recruiting adaptive immune cells. The infiltration of helper and cytotoxic T cells further damages the islets, recruiting B cells that produce
antibodies against the allogeneic islets and differentiating T cells into memory T cells, ultimately leading to the rejection of the overall allogeneic
transplant. TNFa, tumor necrosis factor alpha; MIP1a, macrophage inflammatory protein-1 alpha; IFN-g, interferon; MCP-1, monocyte
chemoattractant protein-1; GAD65, glutamic acid decarboxylase 65; IA-2, insulinoma-associated protein 2; ZnT8, transporter 8. ROS, reactive
oxygen species; TH1, T helper 1 cells; TFH, follicular helper T cells; pTreg, peripheral regulatory T cells.
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mmol/l of Melaglavin, the integrity of islets exposed to blood was lost.

However, at concentrations of 1-10 mmol/l, Melaglavin inhibited

coagulation and complement activation, leading to reduced platelet

and leukocyte activation and consumption. This protective effect

indicates that thrombin plays a crucial role in IBMIR and suggests

that thrombin inhibition could improve the outcomes of clinical islet

transplantation (26). L. Moberg et al. perfused human islets with fresh

ABO-compatible blood for 30 minutes. In control samples

(containing either only islets or blood with non-inhibitory anti-TF

[4503]), coagulation occurred within 15 minutes. However, blood

containing inhibitory anti-TF [4509] inhibited coagulation

throughout the observation period. The study found that IBMIR is

initiated by TF and consistently occurs during clinical islet

transplantation, even in the absence of clinical symptoms like

portal vein thrombosis. Inhibiting this process may increase the

success rate of clinical islet transplantation and reduce the number

of donors required per patient (18).

IBMIR, characteristic of innate inflammatory responses and

thrombotic pathway, is driven by the activation of the coagulation

cascade, with negatively charged islet surfaces activating the

intrinsic coagulation pathway, and tissue factor (TF) expressed by

the islets triggering the extrinsic pathway.

The innate immune system is the body’s rapid response to an

initial infection or injury. In IBMIR, the following components are

mainly involved: Neutrophils: They are the first cells to arrive at the

transplant site, release inflammatory mediators and oxygen free

radicals, mediate local tissue damage and remove pathogens.

Monocytes and macrophages: Monocytes are recruited and

converted into macrophages, which further release cytokines

(such as TNF-a and IL-1) that intensify the inflammatory

response and enhance recruitment of immune cells. Cytokines

released by neutrophils and macrophages in IBMIR not only

promote local inflammatory responses, but may also affect T cell

activation and subsequent adaptive immune responses (27).The

activation of innate immune cells can lead to apoptosis or necrosis

of the transplanted islet cells, thus reducing the survival rate of the

grafts. The inflammatory response triggered by IBMIR may cause

more immune cells to aggregate, forming positive feedback and

further aggravating the damage. There is a close interaction between

IBMIR and congenital leukocyte response, which together affect the

success rate of islet transplantation.
2.2 Allogeneic immune response

The allogeneic immune response, which is adaptive immunity,

occurs later but leads to long-term functional reduction of b-cells,
resulting in a significant portion of islets losing their insulin

independence. Analysis of pancreatic sections from T1D patients

reveals significant immune infiltration within individual islets,

confirming the crucial role of CD4 and CD8 T cells in b-cell
destruction (14, 28). Despite high levels of systemic inflammation

markers in T2D patients, their islets do not exhibit similar T cell

infiltration, in stark contrast to the pancreatic sections of T1D

patients, making islet autoantibodies a differential diagnostic

marker between T1D and T2D (4). The presence or development
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of alloreactivity (against human leukocyte antigens, HLA) and its

impact on allogeneic graft survival is well-defined in the solid organ

transplantation literature. Donor-specific antibodies (DSA) binding

to endothelial cells or islets (which constitutively express Class I

HLA and aberrantly upregulate Class II HLA) can activate the

classical complement pathway. Even in the absence of complement,

some DSAs can promote antibody-dependent cellular cytotoxicity,

where innate immune cells bind to Fc fragments, triggering the

release of cytolytic enzymes by neutrophils and NK cells. C4d is a

degradation product of the classical complement pathway,

covalently bonded to the endothelium, serving as a marker for

antibody-mediated immunity (4). Transplanting allogeneic islets or

pancreas to T1D recipients expressing major and minor

histocompatibility antigens on endogenous islets and pancreas

can elicit complex adaptive B cell and T cell responses, leading to

classical allogeneic graft rejection.

Key effector immune cells include cytotoxic T cells (CD8+ T

cells), macrophages, plasma cells, and CD4+ T helper cells. In

human T1D, existing evidence from single-islet studies from the

Network for Pancreatic Organ Donors with Diabetes suggests that

b-cell destruction is largely mediated by direct contact between CD8

T cells and b-cells, as well as CD4 T cell-mediated M1 macrophage

polarization (29–31).

CD8+ T cells eliminate cells presenting non-self antigens by

inducing apoptosis through the release of cytotoxic molecules (such

as granzymes and perforin) or through cell-surface interactions (such

as the binding of Fas ligand (also known as CD95L) on T cells to Fas

receptors on the target cells) (32). Activated CD8+ T cells infiltrating

the graft also induce macrophage activation, particularly through the

expression of pro-inflammatory cytokines such as IFN-g (33).
Macrophages typically exhibit pro-inflammatory characteristics

and display M1 polarization during acute rejection, producing pro-

inflammatory cytokines that lead to direct cellular damage and

coordinate pro-inflammatory immune responses (34). Their

primary function is phagocytosis, recognizing damaged allogeneic

graft tissue through pattern recognition receptors such as Toll-like

receptors. As antigen-presenting cells, macrophages can present

allogeneic antigens on MHC class II molecules, thereby promoting

the adaptive immune response (35).

Plasma cells are another type of effector immune cell derived

from B cells and form the cornerstone of humoral immunity. They

enable the body to combat foreign invaders not only by neutralizing

pathogens but also by performing various effector functions,

including regulating hypersensitivity reactions, activating the

complement cascade, and modulating the mucosal microbiome.

However, their activity can be problematic in solid organ

transplantation (36). In transplantation, plasma cells can produce

donor-specific antibodies (DSAs), which lead to acute and chronic

rejection by activating the complement system, resulting in vascular

injury and graft loss. The impact of DSAs has been extensively

evaluated in various solid organ transplants (37–39).

CD4+ T helper cells play a critical role in immune rejection.

They coordinate the activation of other immune cells, such as B cells

and cytotoxic T cells, to enhance the immune response against

allogeneic material. These CD4+ T cells are capable of producing

and releasing various cytokines, including interferon-gamma (IFN-
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g) and interleukin-2 (IL-2). Additionally, CD4+ T cells actively

interact with B cells, promoting antibody production and thereby

strengthening humoral immunity (40, 41). CD4 T cells can provide

“help” to B cells and stimulate antibody production (as described

above), as well as promote effector CD8 T cell responses and

stimulate resident macrophages in the islets (42, 43).

Auto-reactive CD4 T cells interact with dendritic cells

presenting islet antigens (44) and can differentiate into T helper

1 (TH1) cells, follicular helper T cells (TFH), peripheral regulatory

T cells (pTreg), or anergic cells. TFH cells help B cells produce

high-affinity islet-specific antibodies (29). TH1 cells activate

dendritic cells and enhance antigen presentation to islet-specific

CD8 T cells (45), thereby inducing the proliferation of effector

CD8 T cells (45). TH1 cells migrate to the pancreas (46), secrete

pro-inflammatory cytokines interferon-g (IFNg) and TNFa, and
induce b-cell death (47). TH1-derived IFNg and TNFa stimulate

M1 macrophages in the islets to produce reactive oxygen species

(ROS), TNFa, and IL-1b (48), further amplifying the cycle of b-
cell death (30)The resulting inflammation leads to increased

infiltration of CD8 T cells, which directly kill b-cells via perforin
and granzyme B (49), while natural and peripheral regulatory T

cells (nTreg and pTreg) attempt to suppress this response through

TGFb and IL-10 (50).
2.3 Autoimmune recurrence

Patients with T1D and concurrent autoantibodies have a lower

success rate for islet transplantation due to the presence of memory

CD4+ and CD8+ T cells, which rapidly reactivate to target islet

antigens (IA-2, GAD-54, and ZnT8) and destroy the transplanted

islets (42, 43). Patients with T1D who have long-term b-cell
transplants still have the ability to destroy islets. Reviewing the

case of David Sutherland’s identical twin transplant surgery, where

the pancreas of an unaffected twin was transplanted into the twin

with long-term T1D without immunosuppression, resulted in the

loss of transplanted b-cell function and pancreatitis (51, 52). This is

because most individuals’ immune systems develop the ability to

distinguish self from non-self. In T1D, the loss of the ability to

recognize insulin-producing islet b-cells as self leads to an

autoimmune response, which destroys b-cells in the natural

pancreas (53, 54). This autoimmune response is primarily

mediated by T cells, which are the main effector cells in the b-cell
destruction process. Moreover, there is ample evidence that isolated

allogeneic islet transplants may cause autoimmune recurrence in a

small but significant proportion of patients. In the autoimmune

process, when islets or pancreas are transplanted into recipients

with T1D, donor b-cells express b-cell-specific antigens that are

attacked by T cells and B cells (55–58). These include insulin

(proinsulin), glutamic acid decarboxylase 65 (GAD65),

insulinoma-associated protein 2 (IA2), and zinc transporter 8

(ZnT8), which are highly antigenic to both B cells and T cells in

humans (59). This explains why islet autoantibodies sometimes rise

sharply within weeks after transplantation. This increase usually

occurs without any signs of allogeneic immunity (60). Therefore,

transplanting islets or pancreas into T1D recipients is a renewed
Frontiers in Immunology 05
challenge to the autoreactive memory response and may lead to the

recurrence of autoimmune function post-transplant.

In summary, when allogeneic islets are transplanted into T1D

patients, a comprehensive immune response is elicited against the

foreign tissue. Besides the classic rejection of the allogeneic graft, the

outcomes of islet or pancreatic transplantation may be severely

impacted by early intense inflammatory responses and the

reactivation of autoimmunity. In simple terms, the three stages of

immune response experienced are inflammation and IBMIR,

allogeneic immune response, and autoimmune recurrence. Within

days after transplantation, the release of inflammatory signals leads

to increased cytokine production, with neutrophils signaling

macrophages and dendritic cells to the site of islet phagocytosis,

presenting antigens on their surface and recruiting adaptive

immune cells. The infiltration of helper and cytotoxic T cells

further damages the islets, recruiting B cells that produce

antibodies against the allogeneic islets and differentiating T cells

into memory T cells, ultimately leading to the rejection of the

overall allogeneic transplant. The entire process of allogeneic

transplant rejection may be amplified in T1D patients because

they have effectively primed T cells specifically targeting b-cells.
3 Immunosuppressants in allogeneic
islet transplantation

A major issue in islet transplantation is transplant rejection. To

prevent this complication, immunosuppressive drugs such as

cyclosporine, tacrolimus, mycophenolate mofeti l , and

corticosteroids must be used (61). However, immunosuppressants

have severe side effects, including inducing diabetes, nephrotoxicity,

and carcinogenic effects (62–65).
3.1 Calcineurin inhibitors

There are many types of calcineurin inhibitors (CNIs), such as

the commonly used cyclosporine and rapamycin. The potent

immunosuppressive properties of cyclosporine were discovered in

1976. Cyclosporine blocks the clonal expansion of resting T cells by

inhibiting the transcription of genes encoding IL-2 and the high-

affinity IL-2 receptor, which is crucial for T cell activation (66).

Tacrolimus (FK506) was the first macrolide antibiotic explored

for its effective immunosuppressive properties in 1987 (67, 68). The

mechanism of toxicity of tacrolimus is as follows: tacrolimus binds

to the immunophilin FK506-binding protein 12 (FKBP12) to form a

complex that binds and inhibits the mammalian target of

rapamycin (mTOR) kinase, thereby exerting immunosuppressive

activity (69, 70). This kinase is a key regulator of cell metabolism,

growth, and proliferation. Importantly, inhibition of mTOR by

tacrolimus causes cell cycle arrest in the mid-to-late G1 phase, thus

potentially inhibiting tumor cell growth and, importantly, its

immunosuppressive function by inhibiting T cell and B cell

proliferation (71). However, FKBP12 and mTOR are ubiquitously

expressed. Therefore, there is a possibility of “off-target” effects on

cells other than tumor and immune regulatory cells.
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mTOR kinase exists in two distinct complexes: mTOR complex

1 (mTORC1) and mTOR complex 2 (mTORC2). They have

different substrates and are regulated differently (Figure 2).

Although they share some core components, such as mTOR,

mLST8, and DEPTOR, they also contain other unique proteins.

For example, a unique component of mTORC1 is RAPTOR

(regulatory associated protein of mTOR), which acts as a bridge

to bind mTOR to its downstream effectors (72, 73). An important

component of mTORC2 is the protein Rictor (rapamycin-

insensitive companion of mTOR), which is necessary for the

formation of the mTORC2 complex and its kinase activity (74,

75). Importantly, mTORC1 is highly sensitive to inhibition by

rapamycin, whereas mTORC2 was initially thought to be resistant

to rapamycin (74, 75), but in fact, it is sensitive to long-term

rapamycin treatment in some cell types (76–78). Therefore, both

complexes may play a role in the immunosuppressive and toxic

effects of rapamycin. Consistent with its role as a key regulator of

cell metabolism, proliferation, and growth, mTORC1 activity is

regulated by nutrients, growth factors, and cellular energy levels

(Figure 2). The best-characterized targets of mTORC1 are eIF4E-
Frontiers in Immunology 06
binding protein (4E-BP) and S6 kinase protein (S6K), both of which

play important roles in the regulation of protein synthesis.

The role of mTORC1 in B cell function is as follows. An

important aspect of maintaining glucose homeostasis is the

maintenance of pancreatic B cell mass and the ability of B cell

mass to increase in insulin-resistant states such as obesity. The

increase in B cell mass is due to increased neogenesis (progenitor

cell generation) and proliferation (hyperplasia), hypertrophy, and

reduced apoptosis. There is substantial evidence indicating that

rapamycin significantly reduces the proliferation of B cells and

progenitor cells, thereby affecting the maintenance of B cell mass.

The most compelling evidence for the role of mTORC1 in

regulating B cell mass comes from in vivo transgenic mouse

models (79). Overactivation of mTORC1 by selectively

overexpressing Rheb (80) or deleting TSC1 (81) or TSC2 (81, 82)

in B cells leads to increased B cell size and mass, along with

improved insulin secretion and glucose tolerance. These effects

may be partially mediated by S6K, as mice lacking S6K1 or rpS6

exhibit hypoinsulinemia and glucose intolerance with reduced B cell

size (83, 84). Additionally, transgenic mice overexpressing
FIGURE 2

The mTOR signaling pathway in islets. Upon stimulation by insulin and other growth factors, phosphoinositide 3-kinase (PI3K) converts
phosphatidylinositol 4,5-bisphosphate (PIP2) into phosphatidylinositol 3,4,5-trisphosphate (PIP3), which localizes PKB to the membrane and activates
it through PDK1 and mTORC2. Activated PKB phosphorylates and inhibits TSC1/2. Rheb, a small GTPase inhibited by TSC2, positively regulates
mTORC1 activity. mTORC1 phosphorylates S6 kinase 1/2 and 4EBP1, leading to increased mRNA translation. Amino acids activate mTORC1 through
Rag A/B and C/D. Under low energy conditions, the ratio of AMP to ATP increases, activating AMP-activated kinase (AMPK), which phosphorylates
and activates the TSC1/2 complex, thereby inhibiting mTORC1. mTORC2 activity is primarily mediated through unknown pathways. mTORC2
phosphorylates and activates PKB, serum- and glucocorticoid-induced kinase 1 (SGK1), and PKC. Arrows indicate stimulatory effects; block ends
indicate inhibitory effects; solid lines represent direct effects, and dashed lines represent indirect effects. Atg13, Autophagy-related protein 13; DAP1,
Death-associated protein 1; Deptor, DEP domain-containing mTOR-interacting protein; 4EBP, eIF4E-binding protein; GbL-G, Protein Gb-like; HIF1,
Hypoxia-inducible factor 1; IMP2, Insulin-like growth factor 2 mRNA-binding protein; mLST8, Mammalian lethal with Sec13 protein 8; PDK1,
Phosphoinositide-dependent protein kinase 1; Protor, Protein observed with Rictor; Raptor, Regulatory associated protein of mTOR; Rictor,
Rapamycin-insensitive companion of mTOR; Sin1, Stress-activated protein kinase-interacting protein 1; TFIIIC, Transcription factor 3C; ULK1, Unc-51
like kinase 1.
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constitutively active S6K exhibit improved glucose tolerance and

enhanced insulin secretion with increased B cell size (85). Although

these studies strongly suggest the critical role of mTORC1,

manipulation of mTOR upstream regulators (e.g., Rheb) may

affect pathways beyond mTORC1, so causality cannot be

definitively established. There is extensive work investigating the

role of mTOR in regulating cell proliferation in certain cell types,

but little is known about the exact mechanisms by which mTORC1

signaling regulates B cell cycle progression. However, it is known

that mTORC1 can regulate the synthesis and stability of cyclins D2

and D3 in B cells (86). These cyclins form complexes with cyclin-

dependent kinase 4, controlling cell cycle progression. In rat islets

treated with rapamycin, reduced levels of cyclins D1 and D2 were

observed, accompanied by decreased b-cell proliferation (87).

mTORC1 also appears to play a role in insulin secretion by

pancreatic B cells. Knockdown of TSC1 in mice results in

significantly increased insulin production, independent of B cell

mass (81). Additionally, long-term rapamycin treatment inhibits

glucose-stimulated insulin secretion (GSIS) in cloned B cell lines as

well as rodent and human islets. However, it is unclear whether this

effect is mediated by mTORC1 or mTORC2. The control of insulin

secretion in B cells involves many complex signaling pathways, and

the mechanism by which rapamycin regulates insulin secretion

remains unknown. One proposed mechanism is that inhibition of

mTORC1 reduces mitochondrial function, particularly the activity

of a-ketoglutarate dehydrogenase. This leads to reduced

carbohydrate metabolism, thereby decreasing mitochondrial ATP

production (88), which is known to regulate insulin secretion in B

cells (89). Another explanation is that rapamycin promotes

autophagy, a process primarily controlled by mTORC1 rather

than mTORC2, or intracellular degradation of cytoplasmic

proteins involved in insulin production, leading to inhibition of

insulin secretion (89).

It is not completely clear how the activity of mTORC2 is

regulated, but there is evidence that it can be stimulated by amino

acids and growth factors (90, 91). Downstream targets of mTORC2

include protein kinase C (PKC)-a (85–87) and protein kinase B

(PKB) (92), two serine/threonine kinases that play roles in the

regulation of key cellular processes such as apoptosis, proliferation,

motility, and differentiation, as well as serum- and glucocorticoid-

induced kinase 1 (93), which plays a role in the control of ion

transport (94) (Figure 2).

In mice, B cell-specific deletion of the Rictor gene (an important

component of mTORC2) is associated with reduced plasma insulin

levels due to decreased insulin secretion from islets, leading to

hyperglycemia (95). This is related to reduced B cell mass and

proliferation but does not increase B cell apoptosis. Research by

Adam D. Barlow et al. has demonstrated that knocking down Rictor

in rat islets using small interfering RNA results in increased B cell

apoptosis and reduced GSIS (76). These studies specifically

demonstrate that mTORC2 activity plays a dominant role in B cell

survival and function. Importantly, prolonged rapamycin treatment

(24 hours) of MIN6 cells, rat islets, or human islets leads to

dissociation of mTORC2, thereby inhibiting its expression. This

precedes the toxic effects of rapamycin on function and activity,

occurring simultaneously with reduced PKB phosphorylation and
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downstream signaling. Interestingly, the expression of constitutively

active PKB in MIN6 cells and rat islets can mitigate the harmful

effects of rapamycin on GSIS and cell viability (76). Overall, this

suggests that rapamycin B cell toxicity is primarily mediated through

inhibition of mTORC2 and its subsequent impact on PKB signaling.

However, this is based on in vitro experiments with B cells and needs

to be further confirmed in vivo.

Extensive research indicates that PKB, as a key downstream

effector of mTORC2, plays an important role in B cell survival and

function. These studies further reveal the potential role of mTORC2

in B cell homeostasis. For instance, transgenic mice expressing

constitutively active PKB in B cells show a significant increase in B

cell mass due to increased B cell number and size (96, 97). This is

manifested by significantly elevated plasma insulin levels, improved

glucose tolerance, and resistance to streptozotocin-induced diabetes.

In INS-1 cells, rat B cell lines, and primary rat B cells, expression of

constitutively active PKB has also been shown to protect against

lipotoxicity (98), cytokine-induced cytotoxicity (99), and AMPK-

mediated cytotoxicity (100). Conversely, studies in transgenic mice

lacking PKB show significantly elevated blood glucose levels, reduced

insulin levels, and impaired glucose tolerance.

Rapamycin is a key immunosuppressant, particularly in islet cell

and kidney transplantation. However, extensive in vitro and in vivo

evidence strongly suggests that rapamycin has harmful effects on

pancreatic B cells and peripheral insulin sensitivity. This toxicity is

mainly because rapamycin inhibits mTOR, which is part of complex

signaling pathways controlling many important cellular functions

(including mRNA translation, cell proliferation, cell growth,

differentiation, protein synthesis, angiogenesis, and apoptosis)

through mTORC1 and mTORC2 (71). In summary, rapamycin-

induced B cell toxicity and insulin resistance are likely mediated

primarily through mTORC2 rather than mTORC1 (76, 95).

In addition to the above mechanisms, although rapamycin is

structurally unrelated to cyclosporine, it shares many intracellular

pathways that inhibit calcineurin and subsequently block IL-2

production. It acts by limiting the dephosphorylation and

translocation of nuclear factor of activated T cells (NFAT).

NFATs play a critical role in T cell activation. When T cells are

stimulated by antigens, intracellular calcium levels rise rapidly,

activating calcineurin. Activated calcineurin dephosphorylates

NFATs, exposing nuclear localization signals and causing NFATs

to translocate from the cytoplasm to the nucleus. In the nucleus,

NFATs bind to specific DNA sequences, regulating the

transcription of related genes and participating in T cell

proliferation, differentiation, and cytokine production.

Calcineurin signaling is essential for insulin secretion and b-cell
proliferation (101), and specific inactivation of calcineurin in b-cells
is associated with age-related hyperglycemia (102). Apoptosis of

islet cells related to calcineurin inhibition is also thought to occur

through the limitation of cAMP response element-binding protein

(CREB), which reduces the expression of insulin receptor substrate-

2 (IRS-2), limits Akt phosphorylation, and affects insulin secretion

(103, 104). CNIs also reduce the expression of cell surface glucose

transporter 4 (GLUT4) and decrease insulin-stimulated glucose

uptake in adipocytes (105), potentially leading to peripheral

insulin resistance.
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Moreover, rapamycin promotes reduced mitochondrial Ca2+

uptake, which has been shown to impair respiration and ATP

production, leading to impaired glucose-stimulated insulin

secretion (GSIS) (106). CNIs, particularly rapamycin, enhance the

deleterious effects of glucolipotoxicity on b-cells, inducing the

expression of forkhead box protein O1 (FoxO1), thereby limiting

proliferation (107), and reducing insulin content and secretion (108).

Rapamycin causes reversible graft dysfunction, characterized by

amyloid deposition and macrophage infiltration in transplanted

islets (101), with no clear evidence of b-cell death. Ultrastructural
examination of the grafts shows reduced insulin granules,

accompanied by increased transcripts associated with extracellular

matrix deposition and inflammation. Heparin is primarily used to

reduce IBMIR-mediated cell destruction of islets, promoting the

fibrillation of human islet amyloid polypeptide (IAPP) and has

been shown to simultaneously promote amyloid deposition and

reduce b-cell apoptosis (109). Rapamycin exerts its antifibrotic

function by inhibiting JAK2/STAT3 signaling activation through

targeting JAK2, thereby inhibiting M2 macrophage polarization

(110). After transplanting human islets into NSG mice, rapamycin

inhibits b-cell function by activating islet-resident macrophages

through inhibition of the NFAT pathway and by stimulating

macrophages to produce IL-1b through increased amyloid

deposition in the transplanted islets (111). Heparinase treatment

significantly reduces amyloid deposition and subsequent b-cell
toxicity (112).

As two types of CNIs, cyclosporine and rapamycin have similar

mechanisms of action, but rapamycin has been shown to be 10-100

times more potent than cyclosporine in inhibiting mixed lymphocyte

cultures and the generation of cytotoxic T cells in vitro (66).
3.2 Mycophenolate Mofetil

In 1993, Mycophenolate Mofet i l (MMF), the 2-4

morpholinoethyl ester of the biologically active compound

mycophenolic acid, was introduced as a new immunosuppressant

(113). MMF reversibly inhibits inosine monophosphate

dehydrogenase (IMPDH), a key enzyme in the de novo synthesis of

the purine nucleotides in DNA (i.e., guanine and adenine) (114).

Lymphocytes play a crucial role in graft rejection, and without

IMPDH, they cannot produce sufficient amounts of purines (115).

Consequently, MMF can prevent the proliferation of T cells and B

cells, thereby inhibiting antibody production. Additionally, by

lowering intracellular GTP levels in lymphocytes, MMF inhibits

glycosylation and the expression of certain adhesion molecules,

thus reducing lymphocyte migration to the graft (116). However,

its effect on T cell proliferation has garnered more attention due to

the critical role of T cells in the allogeneic response (117). MMF is

considered a safe drug, with the most commonly reported side effects

being mild and primarily involving the gastrointestinal system

(diarrhea, abdominal pain, nausea, and vomiting) (118–120). Its

main advantage is the lack of nephrotoxicity and diabetogenic

effects, making MMF an important drug in kidney and

islet transplantation.
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3.3 Glucocorticoids

T1D is secondary to the initial autoimmunity of islets, resulting

from the inflammatory destruction of b-cells (74). Inflammatory

macrophages are key in maintaining islet injury (121). Pro-

inflammatory cytokines, partly derived from macrophages and

damaged b-cells, further inhibit b-cell function by inducing nitric

oxide production (122, 123). As T1D progresses, pro-inflammatory

cytokines inhibit b-cell regeneration, stimulate peripheral insulin

resistance, and maintain insulin inflammation (124).

Glucocorticoids (GC) are used clinically for their powerful anti-

inflammatory and immunosuppressive effects (125), but high doses

of glucocorticoids promote peripheral insulin resistance and inhibit

b-cell function (62, 63, 126), thus discouraging their use in T1D

treatment and transplantation protocols (12). However, the general

notion that GC’s effects on b-cells are purely harmful has been

increasingly challenged (127–131). It has now been demonstrated

that selective GC regeneration within b-cells can prevent

inflammatory b-cell destruction, suggesting that GC-targeting

therapy with 11b-hydroxysteroid dehydrogenase type 1 (11b-
HSD1) may improve the course of T1D and islet transplantation

aggravated by high-dose hormones.
3.4 Bortezomib

In addition to the health risks posed by infections and cancer

due to broad immunosuppression, numerous studies report that

widely used immunosuppressants such as glucocorticoids or

calcineurin inhibitors are cytotoxic to islet b-cells (71, 132). Thus,
there has been a need to develop tolerance-promoting regimens that

can retain the viability and function of islets post-transplantation.

Bortezomib, a selective inhibitor of the 26S proteasome, has been

FDA-approved for treating relapsed multiple myeloma (133, 134).

Bortezomib’s mechanism of action involves inhibiting the

proteasomal degradation of IkB, thereby inhibiting the activation

of nuclear factor kB (NF-kB) (135, 136). Since NF-kB is a key

transcription factor involved in the expression of various genes

related to immune responses, numerous studies have demonstrated

the immunosuppressive effects of bortezomib. It selectively depletes

alloreactive T cells in vitro and reduces the secretion of T helper 1

(Th1) cell cytokines (137). Additionally, bortezomib can modulate

the function of dendritic cells (DCs): treatment with bortezomib

induces a skewed phenotypic maturation of DCs in response to

lipopolysaccharides (LPS) and other endogenous stimuli while

reducing cytokine production (138). Other studies have also

reported that bortezomib can prevent graft-versus-host disease

(GVHD) and allograft rejection in mouse models of allogeneic

stem cell and cardiac transplantation (139, 140). Furthermore,

bortezomib can inhibit the activation of rapamycin-resistant

memory T cells without affecting the viability of regulatory T cells

(Tregs) in non-human primates (141). Overall , these

immunomodulatory effects suggest that bortezomib has the

potential to be a promising immunosuppressant candidate in

islet transplantation.
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So-Hee Hong et al. (142) conducted a related study using

BALB/c spleen cells to pre-sensitize C57 BL/6 mice, administering

low-dose bortezomib (0.1 mg/kg) for 4 consecutive days to observe

its immunosuppressive effects in vivo. Since NF-kB is the primary

transcription factor for DC maturation, DC maturation status was

detected by measuring the expression levels of MHC class II

molecules and other co-stimulatory molecules in CD11c+ DCs.

The conclusions suggested that low-dose bortezomib only reduced

the expression of MHC class II molecules without affecting other

co-stimulatory molecules expressed on DCs. Unlike other studies

showing bortezomib’s inhibitory effect on alloreactive T cells with

high-dose treatment, short-term low-dose bortezomib treatment

did not significantly affect the percentage of splenic effector memory

cells (CD4+CD44 and CD8+CD44) and the number of T cells

producing allogeneic antigen-specific interferon-g. Based on these

results, it was speculated that low-dose bortezomib might inhibit

DCs in vivo by altering their MHC class II expression.

Additionally, some studies suggest that high-dose rapamycin

treatment impairs b-cell regeneration and reduces islet engraftment,

adversely affecting islet transplantation (143, 144). Therefore, So-

Hee Hong et al. (142) developed a new combination therapy based

on low-dose bortezomib and rapamycin, which is highly tolerable

and minimally cytotoxic to b-cells, as a potential alternative and

tolerance-promoting immunosuppressive regimen in allogeneic

islet transplantation. They tested the efficacy of low-dose

bortezomib alone or in combination with rapamycin in an islet

transplantation model. Low-dose (0.1 mg/kg) bortezomib treatment

groups showed longer graft survival rates compared to control

groups (0.05 mg/kg group: P=0.1, 0.1 mg/kg group: P=0.0036).

Low-dose (1 mg/kg) rapamycin was added to the same

transplantation environment. Compared to the control group, the

0.05 mg/kg bortezomib + rapamycin group (P=0.0011) and the 0.1

mg/kg bortezomib + rapamycin group showed significantly

prolonged islet graft survival (P=0.001). Although not statistically

significant, the combination of rapamycin and bortezomib

increased graft survival compared to the bortezomib-only

treatment group. In the 0.1 mg/kg bortezomib plus rapamycin

treatment group, 4 out of 6 mice maintained normoglycemia for

100 days, while 2 out of 6 mice in the 0.1 mg/kg bortezomib-only

treatment group maintained normoglycemia for 100 days.

Additionally, the mean graft survival period increased from 24

days to 58 days after adding rapamycin to the 0.05 mg/kg

bortezomib treatment group. To determine whether low-dose

bortezomib + rapamycin treatment induces immune tolerance,

grafts were removed from recipient mice that maintained

normoglycemia for over 100 days, and a second graft (islets from

BALB/c donors) was transplanted into the contralateral kidney.

Interestingly, mice with the second graft maintained

normoglycemia for 50 days without any immunosuppression. To

determine whether this tolerance was systemic, BALB/c and C3H

(third-party) as well as C57 BL/6 (control) skin grafts were

transplanted into the flank of the second transplant recipients.

The C3H skin grafts were rejected on day 14 post-transplant (DPT).

The rejection of BALB/c skin grafts was somewhat delayed but

ultimately rejected on DPT 18. Unexpectedly, the rejection of

BALB/c skin appeared to result in the rejection of the second islet
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graft, as blood glucose levels returned to hyperglycemia 20 days

after the skin rejection reaction. Thus, it was concluded that this

combination therapy induced tolerance to islet-specific antigens,

and its inhibitory effect was insufficient to prevent strong skin graft

rejection. Many studies have shown that Th1 cells are major

participants in graft rejection in various transplant models, with

interferon-g playing a key role by activating cytotoxic CD8+ T cells

(145, 146). So-Hee Hong et al. investigated whether bortezomib

alone or in combination with rapamycin could reduce Th1 and

interferon-g-producing cells. Splenocytes from allogeneic islet

transplant mice that maintained normoglycemia for over 60 days

were stimulated in vitro with irradiated BALB/c splenocytes,

followed by ELISPOT analysis. The combination therapy group

showed almost no detectable interferon-g-producing cells.

Although a reduction in interferon-g-producing cells was also

observed in the bortezomib-only group, it was not as pronounced

as in the combination therapy group. Moreover, no significant

changes were observed in other cytokine-producing cells in the

combination therapy group. MLR assays were used to detect BALB/

c-specific T cell responses in recipient mice treated with bortezomib

+ rapamycin. The results indicated that the mice’s T cells had a

lower proliferative response to BALB/c antigens but not to third-

party C3H antigens. Therefore, these results suggest that low-dose,

short-term combination therapy with bortezomib and rapamycin

significantly increases graft survival and induces tolerance to islet

antigens while inducing severe BALB/c-specific T cell

hyporesponsiveness, increased Tregs, and reduced inflammatory

cytokines (142).
4 Xenotransplantation

The increasing number of patients in need of organ transplants

has made xenotransplantation of islets a potential future treatment

option for diabetic patients due to the shortage of organ donors.

According to recent advances in preclinical studies on non-human

primates, porcine islets may be the ideal choice among various

animal organs and tissues for xenotransplantation (147), mainly

due to the biochemical compatibility of porcine and human insulin

and the potential to obtain a large number of donor pigs through

relatively short turnover breeding strategies. Additionally, another

theoretical advantage of porcine islets is their potential resistance to

autoimmune recurrence against human b-cells (148). The main

barrier to interspecies transplantation is the preformed xenogeneic

antibodies that cause hyperacute rejection. Hyperacute rejection

(HAR) is a rapidly occurring rejection in islet transplantation and

other organ transplants, usually occurring within minutes to hours

after transplantation. This condition arises from the interaction

between pre-existing antibodies from humans or non-human

primates (NHP) and the antigens present in the graft

(149).Among these antibodies, the most common are IgMs and

IgGs that identify galactose-a1,3-galactose (a-Gal) residues, which
are attached to glycoproteins and glycolipids by the a1,3
galactosyltransferase (a1,3GT) found in non-primate genomes.

Humans and apes do not have a-Gal epitopes (150).

Furthermore, approximately 70–90% of these antibodies
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specifically target a-Gal epitopes (151). As a result, when an organ

from a pig is transplanted into a human or a non-human primate

(NHP), the existing anti-Gal antibodies attach to the a-Gal epitopes
found on the graft’s vascular endothelium. This interaction triggers

the production of complement component 3b (C3b), activates the

complement system (152), and leads to the formation of a

membrane attacking complex (MAC).These responses result in

the lysis of endothelial cells, damage to the vasculature, and

ultimately, rejection of the graft (153, 154). Additionally, the

disruption of endothelial vascular integrity leads to interstitial

hemorrhage, tissue ischemia, and necrosis (155, 156).

Additionally, the failure of the graft is exacerbated by thrombotic

occlusion of capillaries, fibrinoid necrosis in arterial walls, and the

accumulation of neutrophils (157). The histopathological

characteristics of hyperacute rejection (HAR) include

compromised vascular integrity, edema, thrombi rich in fibrin

and platelets, as well as interstitial hemorrhage accompanied by

extensive deposition of immunoglobulins and terminal

complement products on the walls of vessels (157). In order to

reduce the occurrence of hyperacute rejection, the following

measures can be taken: first, immunosuppressants mentioned in

this paper are the main measures; knocking out the a1,3GT gene in

pigs (GTKO pigs) (158).With the identification of carbohydrate

xenoantigens (159) and advances in genetic engineering, it is

possible to eliminate these xenoantigens (160) to prevent

hyperacute rejection. However, T-cell-mediated xenogeneic

immune responses are very intense and more challenging to

control compared to immune responses against allogeneic

antigens (161).

The xenogeneic T-cell response to porcine islets can be triggered

through both direct and indirect antigen presentation (162). Once

activated, T cells can mediate graft destruction through direct

cytotoxicity (163) or by differentiating into cytokine-producing

helper T cells that assist B cells in class switching and antibody

production, or by activating innate cells such as macrophages and NK

cells involved in xenotransplant rejection (164, 165). Th1 and Th2

cytokines, such as IFN-g and IL-4, play significant roles in this

process (166–168). It has been experimentally demonstrated that

the infusion of carbodiimide-fixed donor splenocytes (ECDI-SP) can

exert effective immunoregulatory effects through the silent clearance

of apoptotic cells, effectively inducing donor-specific tolerance

(169–172).
4.1 Early acute inflammatory response

Islet xenotransplantation represents a promising therapeutic

alternative for treating type 1 diabetes. However, shortly after

transplanting donor islets into the recipient, a robust innate

immune response is triggered, including an IBMIR, which

adversely affects the functionality of the islet transplant (153).

IBMIR is triggered by the xenogeneic contact between blood

and islets, involving the activation of coagulation and complement

systems, as well as complex interactions between leukocytes and

platelets, which significantly impact the function and survival of

xenografts, thereby adversely affecting the outcomes of islet
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xenotransplantation (17, 173) (Figure 3). Therefore, the following

section explains the mechanisms of IBMIR components.

Research for IBMIR found that platelet-independent

complement activation was observed 30 minutes after porcine

islets were exposed to plasma, and the formation of membrane

attack complexes could be observed in porcine islet tissue pathology

sections 60 minutes later, with up to 40% of islets losing their

function (174). Complement system activation occurs through

three different pathways (known as the classical pathway, lectin

pathway, and alternative pathway), depending on the nature of the

initial trigger. Regardless of the activation pathway, all pathways

converge at the cleavage of C3 by C3 convertase. C3 convertase

cleaves the central component C3 into the anaphylatoxins C3a and

C3b (175), with the primary function of C3b and its cleavage

product iC3b being opsonization for phagocytosis. Additionally,

iC3b can bind to complement receptors CR3 and CR4, leading to

immune cell adhesion and activation (176, 177). Since complement

activation is associated with the proteolytic cleavage of its

components, proteases represent another “non-traditional”

pathway of complement activation (178, 179).

The classical pathway (CP) is triggered by antigen-antibody

complexes recognized by C1q. A major process in this pathway is

the production of CP C3 convertase C4b2b, generated by the

cleavage of C4 into C4a and C4b, followed by the splitting of C2

into C2a and C2b (180). Activation of the lectin pathway (LP) is

initiated by the binding of mannose-binding lectin (MBL) or

ficolins to pathogen surfaces, involving the participation of MBL-

associated serine proteases MASP-1 and MASP-2, which is

significantly similar to CP activation (181).

The spontaneous hydrolysis of C3 to C3(H2O) accounts for the

constitutive and continuous low-level activation of the alternative

pathway (AP) (182). The generated C3b assembles the APC3

convertase C3bBb together with factor B and factor D (183). The

APC3 convertase complex is stabilized by the binding of properdin

(184–186).

In all three pathways, the cleavage of C3 to produce C3b is a

major component of C5 convertase, which cleaves C5 into the

anaphylatoxins C5a and C5b (187). C5b participates in the

formation of the membrane attack complex (MAC) by recruiting

complement components C6, C7, C8, and C9, with the primary

function of mediating the lysis of pathogens or target cells (188).

On the other hand, C3a and C5a anaphylatoxins, by interacting

with G-protein-coupled C3a and C5a receptors, are highly effective

chemoattractants, promoting the recruitment of inflammatory cells

to sites of injury or infection. Furthermore, C3a and C5a can

activate immune cells, upregulating the expression and release of

inflammatory cytokines and mediators (175, 189).

The coagulation cascade is involved in both hemostasis and

thrombosis (190). The tissue factor of the so-called extrinsic

pathway is a core participant in coagulation (191), involved in the

pathology of thrombosis, including cardiovascular diseases (192,

193) and biomaterial-related processes (194). Inflammatory stimuli

or endothelial cell activation produce the extrinsic factor X complex

composed of TF and activated coagulation factor VII (FVIIa) (195).

The extrinsic factor X complex, in turn, promotes the activation of

factor X (FX), which, together with activated FVa and Ca2+, forms
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the prothrombinase complex that mediates the conversion of

prothrombin to thrombin (196). Thrombin can activate platelets,

cleave prothrombin into thrombin, leading to the formation of

insoluble thrombin (197).

Coagulation and thrombosis are involved in acute reactions to

both allogeneic and xenogeneic islet transplantation (18) (198).

Notably, exposure of human or porcine islets to human blood

results in rapid activation of coagulation, evidenced by upregulated

TF levels (199) and significant thrombin generation (26). Moreover,

allogeneic islet transplantation is associated with thrombotic

manifestations, such as fibrin deposition and the localization of

transplanted islets within thrombi (198). Therefore, endogenous

antithrombotic agents are significant as potential beneficial

modulators of IBMIR. The fine-tuning of the coagulation cascade

(200) is mediated by antithrombin III (ATIII), which inactivates

thrombin, FXa, and FIXa (201); activated protein C (APC), which,

along with protein S, blocks FVa and FVIIIa (202); tissue factor

pathway inhibitor (TFPI); and thrombomodulin (TM). TFPI binds

and inhibits FXa or the TF/FVIIa complex (203). TM’s anticoagulant

activity is mediated by binding to thrombin. The TM-thrombin

complex further promotes the generation of APC (204). However,

thrombin bound to TM can cleave and activate thrombin-activatable

fibrinolysis inhibitor (TAFI) (205), conferring procoagulant

properties by blocking fibrinolysis. In the context of xenogeneic

islet transplantation, transgenic pigs overexpressing hemostasis-

regulating molecules have been generated. For this purpose, the

expression of hTFPI protected the xenografts, promoting the

achievement of normoglycemia after xenotransplantation. Porcine

TM has been shown to be a poor cofactor for human thrombin,

resulting in the loss of its protective function and increased
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coagulation (206). Thus, transgenic overexpression of hTM in pigs

can avoid the thrombotic manifestations observed after

xenotransplantation of porcine islets (207).

The contact of host blood with transplanted islets rapidly

triggers a series of thrombo-inflammatory responses, including

upregulation of TF expression (199) and thrombin generation

(26). Additionally, the induction of TAFI further propagates the

procoagulant effect (208). Intravascular coagulation is induced

(209), forming thrombi that capture the islets (198).

Concurrently, activation of CP and AP of the complement system

occurs, generating anaphylatoxins that lead to the recruitment of

inflammatory cells to the graft. Moreover, active complement

fragments deposit on the graft, promoting complement-

dependent islet lysis (210). Platelets and leukocytes infiltrate the

transplantation site and adhere to the islet surface (26, 211).

Consequently, the integrity of the islet grafts is compromised,

leading to substantial early loss of transplanted islets (212, 213).

The acute destruction of a significant proportion of transplanted

islets by IBMIR is the primary reason why a high number of islets

are required for effective islet transplantation (214). Interestingly,

the degree of islet damage increases with the decreasing

compatibility between donor and recipient species. Therefore, in

the case of xenogeneic islet transplantation, IBMIR becomes more

relevant because the recipient cannot control IBMIR induced by

xenogeneic islet transplantation due to incompatibility between

regulators and effectors, respectively, for the IBMIR of xenografts

and recipient cells (215). Furthermore, regulatory proteins are

considerably lacking in porcine islet preparations (216). Thus,

developing effective treatment regimens targeting the regulatory

parameters of IBMIR is imperative (173) (Figure 3).
FIGURE 3

Overview of key steps in the IBMIR process during islet xenotransplantation. The contact between xenogeneic blood and islets triggers the activation
of the extrinsic coagulation pathway mediated by tissue factor (TF). Consequently, downstream effector thrombin is produced, leading to fibrin
deposition and thrombosis. The attachment of platelets to the islets further supports the pro-coagulant effect. Activated complement fragments
(iC3b) deposit on the islet surface, and the anaphylatoxins C3a and C5a activate and attract leukocytes. The formation of the membrane attack
complex (MAC) mediates islet lysis (FVIIa, activated coagulation factor VII; MAC, membrane attack complex).
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In further studies targeting IBMIR, Bennet et al. cultured

isolated islets in whole blood in the presence of soluble CR1

(sCR1). They demonstrated that sCR1 treatment blocked

complement activation associated with IBMIR and protected the

islets from damage. Simultaneous inhibition with sCR1 and heparin

eliminated the adverse effects of IBMIR by reducing the activation

of coagulation, complement, and leukocytes. Interestingly, in vivo

experiments confirmed the protective effect of sCR1, as the use of

this inhibitor supported islet integrity, which could be evaluated by

the reduction in insulin release shortly after transplantation (198).

Notably, isolated islets can act as a source of procoagulant

factors. TF, the main trigger of coagulation in vivo, has been found

in isolated islets (18, 199), and its knockout (217, 218) or inhibition

with specific antibodies (219) has been shown to be beneficial in

blocking IBMIR. Interestingly, nicotinamide (a vitamin B

derivative) has been used to reduce the expression levels of TF

and coagulation, thereby improving IBMIR (20), and leading to

improved islet function after transplantation (220).

Islet xenografts can be considered as foreign biological surfaces,

and exposure to recipient blood triggers a strong innate immune

response. Therefore, an emerging strategy to eliminate the adverse

effects of IBMIR is to coat the surface of isolated islets with

inhibitory molecules, thereby locally inhibiting the coagulation

and complement systems at the transplant site. A 14-patient

Phase 1/2a study in New Zealand showed that neonatal porcine

islets encapsulated with alginate-poly-L-ornithine-alginate (APA)

were safe and reduced unawareness of hypoglycemia in patients

with type 1 diabetes (221). Strategies such as donor-specific

hematopoietic progenitor cell transplantation (mixed chimerism)

and concomitant donor-specific thymus transplantation showed

great promise for improving immune tolerance (221, 222).
4.2 Early acute rejection

Studies have shown that during early acute rejection of porcine

islet xenografts, the rejecting host graft exhibits direct and indirect

anti-donor T cell IL-17 responses and produces strong anti-pig

antibodies with severe B cell infiltration (148). IL-17 produced by

the early donor stimulus dominates the early acute rejection

response rather than IFN-g production. Treatment with porcine

ECDI-SP inhibits the host anti-pig IL-17 response, and when

combined with transient B cell depletion (such as anti-CD20

monoclonal antibody) and short-course sirolimus, this triple

therapy significantly and durably suppresses the host anti-pig IL-

17 response and significantly prolongs the survival time of porcine

islet xenografts (223). During early acute rejection, B cells may help

induce the differentiation of IL-17-producing T cells and the

production of xenogeneic antibodies by plasma cells. Studies have

shown that B cell antigens presented by B1 B cells can effectively

promote Th17 differentiation (224–226). Conversely, Th17 cells are

effective B cell helper cells that can induce B cell proliferation in

vitro and trigger their class switching in vivo (227). It can be

imagined that the induced xenogeneic IL-17 response feeds back

to promote B cell proliferation and differentiation, establishing a
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positive feedback loop between B cells and Th17 cells, effectively

promoting early acute rejection of islet xenografts.
4.3 Late rejection

In the context of late rejection initially protected by porcine

ECDI-SP + anti-CD20 + sirolimus triple therapy, it was found that

late rejection appeared to be entirely cell-mediated, as xenogeneic

antibodies could not be detected after the rejection of the islet

xenografts. Secondly, the phenomenon of late rejection seemed to

always be associated with highly aggressive B cell infiltration in the

graft. Thirdly, indirect xenogeneic IFN-g responses appeared before

the late rejection after B cell reconstitution (148). It can be imagined

that newly emerged B cells directly acquire xenogeneic antigens in

the graft and induce indirect anti-donor IFN-g responses. Graft-

infiltrating B cells may also directly initiate cytotoxic T lymphocytes

within the graft, leading to the in situ destruction of the graft (228).
5 Strategies for treating the immune
response to xenogeneic
islet transplantation

5.1 Islet encapsulation

Islet encapsulation is an advanced method of islet

transplantation, where isolated islets from humans or pigs can be

transplanted without the need for toxic immunosuppression. This

proves particularly beneficial for porcine islet xenotransplantation.

Encapsulating islets with a semipermeable barrier allows for the

exchange of nutrients and hormones, including insulin, while

maintaining immune isolation, thus overcoming one of the major

obstacles of xenotransplantation. Although clinical trials of porcine

islets have achieved some success in New Zealand and Argentina,

more research may be needed to develop optimal encapsulation

methods and materials before this technology is ready for larger

clinical trials in the United States. Key factors influencing

encapsulation technology include:

1. Capsule size and material: Traditionally, smaller capsules

are believed to be more effective due to easier material exchange

through the capsule (229). However, recent studies suggest that

spherical materials with diameters ≥1.5 mm exhibit significantly

better biocompatibility compared to smaller or differently shaped

counterparts (230). An in vivo study demonstrated that 1.5 mm

alginate-encapsulated rat islets could restore blood glucose control

in streptozotocin-induced diabetic C57 BL/6 mice for up to 180

days. This indicates that biocompatibility might be more crucial

than material exchange efficiency in terms of effectiveness. Alginate

consists of linear binary copolymers of b-D-mannuronic acid and

a-L-guluronic acid. The length and sequence of mannuronic and

guluronic acid chains in alginate hydrogels, as well as the

mannuronic to guluronic acid ratio (M

ratio), determine alginate’s mechanical strength, elasticity,

durability, permeability, and swelling properties. The use of
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1455691
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yue et al. 10.3389/fimmu.2024.1455691
multivalent cations (Ca²+, Ba²+) and polycations (poly-L-lysine or

poly-L-ornithine) during alginate synthesis alters its properties (231).

For example, alginate-poly-L-ornithine capsules provide high

biocompatibility, better stability, and improved mechanical strength

but induce excessive pericapsular cell overgrowth and macrophage

activation, leading to capsule fibrosis. Multivalent cations like barium

can avoid such fibrosis but reduce molar selectivity.

2. Transplantation site: Since the early 1970s, the liver infused

via the portal vein has been widely accepted as the optimal site for

islet transplantation in rodents. This principle, due to the prevalence

and importance of rodent studies, has been extended to most animal

models and nearly become the preferred site for microencapsulated

islet transplantation (232). However, subsequent studies have

identified several reasons why the liver is not the best site,

including: (1) interaction with blood flow causing IBMIR, reducing

islet mass by up to 50%; (2) the possibility of thrombosis during

infusion; (3) relatively lower oxygen tension compared to the

pancreas (233, 234). Intraperitoneal transplantation is also

common, mainly due to its low volume limitation on grafts.

However, this site has several drawbacks, including lack of close

contact with blood flow, uncertain distribution of encapsulated islets,

and the tendency for capsules to stack in the pelvic cavity of bipedal

animals, making them difficult to retrieve. Subcapsular kidney

transplantation is often used in animal models, considering the

large number of encapsulated islets used for clinical transplantation

and the lack of aggregation at this site. The subcutaneous space can be

used for large numbers of encapsulated islets; however, this site is

notoriously poor for blood access. Prevascularized subcutaneous

spaces seem promising for both device and device-free methods

(235), though this area requires two surgeries for prevascularization

and actual transplantation. The omental pouch can also be used

without two surgeries, potentially making it an ideal site for

encapsulated islet implantation. In fact, studies using

immunocompetent diabetic rat models have shown long-term

function of encapsulated islets in the omental pouch (236).

Researchers have also explored potential sites such as the gastric

submucosa, peritoneal space, spleen, bone, and muscle. Animal

models have identified specific advantages of several alternative

sites, such as low blood contact to reduce IBMIR or the ability to

biopsy the site after islet delivery, but to date, these positive results

have been offset by equally compelling negative factors such as

insufficient oxygen supply, surgical difficulty, or the need for more

islets to correct blood glucose imbalance. Ongoing research may

eventually yield a better site for islet infusion, though the liver

remains the best choice for clinical islet transplantation despite its

recognized limitations.

Porcine and microencapsulated islets have both been used

clinically without significant side effects. However, compared to

allogeneic naked islet transplantation, this method’s effectiveness is

still suboptimal. Improving islet quality, enhancing capsule

biocompatibility, and determining suitable implantation sites are

crucial for the implementation of this therapy (237). Further

research should make this method as effective as allogeneic naked

islet transplantation, representing a real breakthrough in

overcoming donor shortages and avoiding or mitigating the side

effects associated with immunosuppressive drugs.
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5.2 Immunosuppressants
for xenotransplantation

In 1994, CG Groth reported the first xenotransplantation of

porcine fetal islet-like cell clusters in a T1D patient. This study

demonstrated the feasibility of porcine islet transplantation but did

not show improvement in the patient’s condition (238). Over the

following decades, porcine islet xenotransplantation has been more

thoroughly explored in preclinical trials with non-human primates

(239, 240). Humoral rejection is the main obstacle to the success of

xenotransplantation. The a1,3Gal epitope, present on the surface of

almost all animals except humans and some primates, is the

primary antigen causing hyperacute rejection in pig-to-human

and pig-to-non-human primate islet xenotransplantation. The

University of Pittsburgh and Revivicor, Inc. designed Gal

knockout (GTKO) pigs that do not express Gal (158). This

proved to be a significant milestone in the development of

xenotransplantation. Although other xenogeneic antigens were

later discovered, Gal remains the most relevant, and GTKO pigs

are considered a potential choice for eventual clinical translation.

However, Gal knockout does not prevent islet rejection, and other

genetic manipulations have been explored. In 2009, the Pittsburgh

islet team first demonstrated long-term function (up to one year) of

islet grafts in streptozotocin-induced diabetic non-human primates

transplanted with porcine islets genetically modified to express

human complement regulatory protein (hCD46). hCD46

expressed on porcine islets limited antibody-mediated rejection,

allowing for the reduction of immunosuppression to maintain

sufficient islet mass for long-term normal function. However, it

did not reduce the initial islet loss associated with IBMIR as

expected (241). This led to the further development of multigene

pig islet donors capable of providing multifaceted protection to

enhance islet transplantation. Five years later, the same group

achieved similar success, long-term transplantation of islets from

multigene pigs for the first time. A pig with four modified genes, (i)

GTKO, and (ii) hCD46, (iii) human tissue factor pathway inhibitor

(hTFPI) for antithrombotic and anti-inflammatory effects, and (iv)

CTLA4-Ig to inhibit cellular immune responses, demonstrated

improved success rates in retaining is let mass early

postoperatively and maintaining islet implantation and function

for up to one year during transplantation (242). This study also

provided preliminary insights into glucose metabolism in pigs

expressing human genes regulated by the insulin promoter,

demonstrating that multiple islet-targeting transgenes inserted

into pigs were not harmful to islet function and opened the door

to further experiments and genetic manipulation for islet

xenotransplantation (243). Multigene donor pigs have been

shown to be a reproducibly effective source of islets for pig-to-

non-human primate xenotransplantation (209). CG Park and

colleagues at Seoul National University in Korea are conducting

ongoing research of great significance for islet xenotransplantation,

successfully maintaining normal blood glucose levels in diabetic

primates within 600 days post porcine islet transplantation (244). A

common feature of these successful long-term porcine-to-non-

human primate islet studies is the use of CD154 monoclonal

antibody (mAb)-based immunosuppression to prevent rejection.
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Although there is evidence that anti-CD154 mAb is effective and

safe in pig-to-non-human primate islet transplantation models

(245), it is associated with thromboembolic complications in

humans and is not clinically translatable.

Despite promising data on the use of anti-CD40 antibody (co-

stimulatory blockade) in organ xenotransplantation (246, 247), the

islet xenotransplantation community is still searching for a clinically

translatable immunosuppressant that can successfully prevent

rejection without causing excessive side effects. New techniques for

targeted genomic editing, particularly clustered regularly interspaced

short palindromic repeats (CRISPR)-associated protein-9 nuclease

(Cas9), offer hope that further genetic manipulation of porcine islets

can improve compatibility between host and donor, thus allowing

successful control of rejection with previously unfeasible

immunosuppression. The field of islet xenotransplantation is

steadily advancing and may soon approach clinical-grade

experience and technology to begin clinical trials (248).
6 Conclusion and perspectives

6.1 Affirming islet transplantation

Islet transplantation holds great promise for the treatment of

T1DM, as it offers the potential to restore euglycemia in a reliable

manner, protects against hypoglycemia and glycemic liability in a

way that exogenous insulin administration has thus far been unable

to achieve. It has reduced many complications of diabetes and

greatly improved patient healing.
6.2 Role and limitations
of immunosuppressants

Limited islet survival after implantation hinders the success of

IT due to innate immune attack through IBMIR, recurrent

autoimmune islet destruction, or alloimmune rejection. The need

for lifelong immunosuppressive therapy and the attendant risks of

infection, cancer, and nephrotoxicity pose their own unique

additional challenges, making this treatment unattractive to all

but those at risk of severe brittle hypoglycemia. Optimizing new

blood vessel formation by better controlling angiogenesis,

suppressing inflammation, and reducing oxidative stress can all

further improve outcomes.
6.3 Challenges and difficulties

The number of islets available for transplantation is a major

limitation for both autoislet and alloislet approaches to b-cell
replacement therapy. Therefore, the establishment of an

unlimited source of islet tissue for transplantation has been a

long-sought-after goal.
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6.4 Future research directions

Stem cells: Significant progress has been made in the science

and application of pluripotent stem cells, which are now entering

early-stage pilot clinical trials. The possibility that cell

transplantation can be accomplished with less need for

immunosuppressants remains a real possibility, and progress is

being made in immunomodulatory control through Treg infusion,

MSC co-transplantation, and other innovative approaches.

Porcine islet xenotransplantation: Porcine islets have the

advantage of targeting normal insulin similar to that present in

humans, as well as the physiological ability to handle the heavy

demands of insulin secretion. Importantly, porcine IAPP contains

amino acid substitutions in the region corresponding to residues 20

to 29 that prevent the formation of fibrils (249, 250). Disadvantages

include the larger immunologic barrier of xenogeneic than allogeneic

tissue that presents an additional risk for hyperacute rejection and

requires more intensive immunosuppression (239, 240),

Islet encapsulation technology: Islet encapsulation provides a

barrier to protect transplanted islets, mainly by preventing excessive

fibrosis, promoting local vascularization, and preventing future

chronic immunosuppressive rejection. The latest data from NOD

mice appear to confirm that agarose microencapsulated islets protect

against autoimmune reactions (251). A recent paper published in

PNAS shows that large encapsulated islets placed in the omentum

protect grafts from immune attack and improve glucose metabolic

control (252). These data demonstrate the potential of this technique

as a safe method for successful islet transplantation.
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