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Although blood autoantibodies were initially associated with autoimmune diseases,

multiple evidence have been accumulated showing their presence in many types of

cancer. This has opened their use in clinics, since cancer autoantibodies might be

useful for early detection, prognosis, and monitoring of cancer patients. In this

review, we discuss the different techniques available for their discovery and

validation. Additionally, we discuss here in detail those autoantibody panels verified

in at least two different reports that should bemore likely to be specific of each of the

four most incident cancers. We also report the recent developed kits for breast and

lung cancer detectionmostly based on autoantibodies and the identification of novel

therapeutic targets because of the screening of the cancer humoral immune

response. Finally, we discuss unsolved issues that still need to be addressed for the

implementation of cancer autoantibodies in clinical routine for cancer diagnosis,

prognosis, and/or monitoring.
KEYWORDS

humoral immune response, autoantibodies, cancer autoantibodies, colorectal cancer,
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1 Introduction

The first reports describing the existence of a link between an immune response and

cancer through autoantibodies were published in the 1950s. Since then, there has been

growing interest in cancer autoantibodies. They are not only used as biomarkers to indicate

the occurrence and development of cancer, disease response, and progression (1–3), but

also to characterize the humoral immune response. This response is useful for identifying

druggable targets and developing new cancer therapies. These therapies include potential
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immunotherapy drugs, tumor-infiltrating B cells, and stimulation of

the intrinsic humoral immune system with radiation in metastatic

disease, known as the abscopal effect (4–7).

This humoral immune response acts against self-proteins that are

altered during the formation and progression of cancer. These

alterations in self-proteins can include point mutations, frameshifts,

chimeras, differential protein expression, or aberrant modifications,

such as aberrant glycosylation, aberrant degradation, hyper-

activation, and altered post-translational modifications, among

other changes (8, 9). This autoimmune response to cancer occurs

early in tumor formation and progression. As a result, the detection of

blood autoantibodies should enable earlier cancer diagnosis than

other techniques. Studies using murine models of colorectal cancer

showed that a very early immune response against cancer lesions

requires only a few tumor cells for local antigen processing by the

immune system and the production of detectable cancer

autoantibodies in serum samples useful for diagnosis (10). Although

the role of autoantibodies in cancer is largely unclear, they have been

suggested to have a cancer-promoting role, an antitumor effect, or to

be an epiphenomenon associated with inflammation and tumor

progression (11). In addition, autoantibodies are useful for cancer

screening and preclinical diagnosis because their measurement in

plasma or serum samples includes easy and minimally invasive

sample collection, making their identification and validation a

major approach in biomarker discovery in recent years (Figure 1).

Since the first reports identifying tumor-associated autoantigens

(TAAs) as targets of cancer autoantibodies (TAAbs) in melanoma

(12–14), technology has significantly evolved. Novel high-throughput

approaches based on protein, phage, and peptide microarrays, phage

display, next-generation sequencing (NGS), and mass spectrometry

methods have been developed and applied for the discovery of novel

autoantibodies and their respective TAAs in recent years. These

advances in high-throughput strategies have increased the number

and quality of candidate TAAs and facilitated the identification and

validation of cancer-specific autoantibodies (15–23).
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In this context, in this systematic review, we describe these

novel methodologies for the identification and validation of cancer

autoantibodies. We focus on those autoantibodies specific to the

most common cancers worldwide (breast cancer -BC-, colorectal

cancer -CRC-, lung cancer -LC-, and prostate cancer -PC-). These

should be useful in obtaining validated autoantibody profiles for

clinical use. We also discuss the potential of the protein targets of

cancer autoantibodies as therapeutic intervention targets.
2 Methodologies for the identification
and validation of
cancer autoantibodies

The initial studies that identified cancer autoantibodies and

their corresponding target autoantigens were published in the late

1970s and early 1980s. These studies utilized autologous serologic

typing to identify circulating melanoma autoantibodies, using

cultured tumor cells and sera from the same patients (12–14).

Since then, several low-to-medium and high-throughput

methods have been applied to different cancers. These include 2-

DE (two-dimensional gel electrophoresis), SEREX (serological

analysis of tumor antigens by recombinant cDNA expression

cloning), SERPA (serological proteome analysis), NGS, and

immunoprecipitation coupled to liquid chromatography tandem

mass spectrometry (LC-MS/MS) (Figure 2). For 2-DE, proteins

from the cancer of interest are separated by their isoelectric point

(first dimension) and, subsequently, by their molecular weight

(second dimension). Then, the most intense spots in pathological

samples in comparison with healthy samples are selected as

potential autoantigens, and the corresponding proteins identified

by LC-MS/MS. Finally, the seroreactivity of candidate autoantigens

must be validated by complementary techniques. For SEREX

analyses, a cDNA library is generated from RNA extracted from
FIGURE 1

Schematic of the different uses of autoantibody detection according to cancer stages. The image was partially created using Servier Medical Art
(https://smart.servier.com, accessed on February 26, 2024), provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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the source of interest, which is then cloned in a bacteriophage

phagemid as fusion proteins to the bacteriophages’ capsid (i.e. M13

phage). Then, recombinant phages are used to infect Escherichia coli

bacteria cultures, which allow for the expression and the display of

the recombinant proteins by the phages. Finally, these proteins are

transferred to a membrane, and incubated with healthy and

pathological plasma/serum samples to identify the seroreactive

clones. Sequencing of positive clones is required to identify the

seroreactive proteins. Finally, for SERPA analyses, after a first 2-DE

with the protein extracts of interest, proteins are transferred to a

nitrocellulose membrane and incubated with plasma/serum

samples from healthy individuals and patients, followed by the

incubation with a horseradish peroxidase (HRP) or fluorescence

labeled anti-human IgG antibody (Ab). Then, a second 2-DE is

performed with the same samples and the most seroreactive spots

are isolated to identify the reactive proteins by LC-MS/MS. Despite

the use of SEREX and SERPA over the years, these techniques have

their challenges. The main issue with SEREX is the identification of

mimotopes that have no sequence identity to known proteins but

mimic the epitope of an altered protein. This makes the

identification of the actual target protein of autoantibodies

challenging. SERPA, on the other hand, tends to identify high- or
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medium-abundant proteins due to the sensitivity of the technique,

but it allows for the identification of post-translational

modifications (PTMs) and proteoforms autoantigens. However,

SEREX and SERPA remain viable economic alternatives for

research groups with limited budgets.

In recent years, the use of SEREX and SERPA has declined due to

the superior performance of protein arrays, NGS, and mass

spectrometry methods. Protein arrays consist of commercial or

custom-made arrays containing the proteins of interest, which are

then incubated with plasma/serum samples from healthy individuals

and patients. Subsequently, the incubation of arrays with an HRP- or

fluorescence-labeled anti-human IgG antibody reveals the most

seroreactive spots to patients’ samples in comparison with healthy

individuals, which are then selected as candidate cancer autoantigens.

For NGS, B cells are isolated from plasma/serum samples from healthy

individuals and patients. Then, the DNA is isolated and fragmented

into manageable sizes. These fragments are then ligated to adapters to

generate the sequencing library, and thus individual DNA molecules

are sequenced. After a sequencing run, each sequence read is aligned

to the reference genome to identify seroreactive candidates specific of

patients. Finally, mass spectrometry methods for the identification of

seroreactive autoantigens are mainly based on immunoprecipitation
FIGURE 2

Screening methods for the identification of novel autoantigens and autoantibodies as blood-based cancer biomarkers. Representative workflow of
the most widely used screening methods: 2-DE (two-dimensional gel electrophoresis) coupled to liquid chromatography tandem mass
spectrometry (LC-MS/MS) for protein identification; SEREX (serological analysis of tumor antigens by recombinant cDNA expression cloning), which
combine cDNA library generation, cloning, and protein expression in bacteriophages (i.e. M13 phage) as fusion proteins to the bacteriophages’
capsid, and transference to a membrane for incubation with the samples of interest; SERPA (serological proteome analysis), which combine 2-DE,
protein transference to nitrocellulose membrane for incubation with samples of interest, and a second 2-DE coupled to LC-MS/MS for the
identification of seroreactive proteins; Arrays, consisting of commercial or custom-made protein microarrays containing the proteins of interest,
which are incubated with the samples of interest; NGS (Next-generation sequencing), which consists of the isolation and fragmentation of B cells’
DNA for sequencing to identify seroreactive candidates specific of patients; and Immunoprecipitation coupled to LC-MS/MS, which consists of the
isolation of patient’s seroreactive proteins and LC-MS/MS for protein identification.
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coupled to LC-MS/MS. Proteins from the source of interest are first

incubated with IgGs from healthy individuals previously anchored to

Protein G agarose beads to remove non-specific reactive proteins.

Subsequently, non-reactive proteins (supernatants) are incubated with

IgGs from patients previously anchored to Protein G agarose beads.

Then, seroreactive proteins to both healthy and pathological IgGs are

eluted and analyzed by LC-MS/MS to identify potential autoantigens

specific of the disease.

Protein microarrays are a valuable tool for autoantibody

discovery. Their key advantages include minimal sample and

reagent consumption, and that the proteins under study are known

in advance, which facilitates subsequent result verification (24).

Currently, there are commercially available high-density protein

microarrays (HUProt) containing about 21,000 human proteins,

isoforms, and fragments from 16,794 unique genes. Of these,

15,889 are among the 19,613 canonical human proteins described

in the Human Protein Atlas, making their use primarily limited by

laboratory budget (22, 25–27). In addition to these protein

microarrays, there are also microarrays of protein fragments that

essentially cover the entire proteome, with one protein fragment of

each gene (21, 23). This last alternative has been developed in recent

years by the Human Protein Atlas platform (www.proteinatlas.org),

which has produced antibodies and protein fragments -PrESTs

(Protein-epitope signature tags)- for almost every human protein

(without distinguishing between their isoforms) (28, 29). Phage

microarrays provide an inexpensive, homemade alternative to

commercial protein microarrays for discovering pathology-specific

autoantibodies and their respective TAAs. This approach, which has

been successfully used in various diseases, especially in cancer (30–

32), involves enriching phage libraries, typically T7 phage, which

display peptides of a specific pathology on their surface using sera/

plasmas from pathological patients compared to controls. Individual

phages are then printed on nitrocellulose slides and screened with

patient and control sera or plasma to identify those phages that

present the specific immunoreactive peptides (autoantigens) to a

specific pathology. Regarding the limitations of protein microarrays,

despite the potential to print the entire proteome on protein

microarrays, considering one protein per gene without the presence

of proteoforms of the same protein, the highest densities achieved so

far are about 80% of the human proteome for recombinant protein

microarrays and about 90% for PrESTs protein microarrays.

Regarding cons of protein microarrays, some authors have

raised concerns that the 3D structure of the proteins might be

lost during printing, which is especially important for PrEST

protein microarrays where 3D non-linear relevant epitopes might

be lost during screening since medium to large peptides without

equivalent 3D structure to that of their corresponding native

proteins are printed in this approach. In this context, another

approach that combines immunoprecipitation directly coupled to

LC-MS/MS has attempted to overcome these limitations. As

autoantigens are immunoprecipitated in solution using IgGs

isolated from patients and healthy individuals’ sera or plasma

samples, and no SDS-PAGE gels are used for the identification of

TAAs, the reactive proteins maintain their 3D conformation. This is

crucial for the identification of autoantibodies against 3D

discontinuous epitopes that might be missed in other approaches
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(19, 20, 22, 23, 33–36), potentially allowing for the completion of

the cancer autoantibodyome.
3 Validation techniques for
cancer autoantibodies

Usually, there is a poor coincidence between different studies.

This discrepancy in the identification of TAAs may be attributed to

several variables. These include the varying sensitivities of the

techniques and platforms used for screening, the different protein

repertoires printed on the microarrays, different expression systems

for protein production, different PTMs in the proteins printed on

microarrays relative to the cancer forms, or the use of different

cancer cohorts from various populations (i.e., Asian, African,

American, Hispanic, etc.), which could indicate the existence of

cancer autoantibodies specific of ethnicity.

Many of these issues could be addressed by performing

validation assays with independent patient’s cohorts that differ

from those used in the discovery phase, and by including samples

from various ethnic groups. Although this validation is still lacking

in many reports, several approaches have been developed for the

validation of cancer autoantibodies and their protein targets

(Figure 3). These include ELISA (enzyme-linked immunosorbent

assay), low-density protein microarrays, Luminex, HaloTag-based

immunoassays, HaloTag-based biosensors, and single molecule

counting approaches, such as SIMOA or SMCx (19, 20, 36–40).

Validation experiments should be conducted with the highest

quality proteins, which mimic the actual target as closely as possible.

In this regard, HaloTag fusion proteins represent a good alternative

to other methodologies. HaloTag allows for their covalent binding to

any Haloalkane-modified surface (20, 38, 41), and fusion proteins

can either be expressed in vitro or in vivo in a mammalian

environment. This means that the highest quality tumor-associated

antigen becomes oriented in the assay surface, allowing for a better

recognition of the autoantibodies to their target proteins. This

contrasts with ELISA or Luminex, where the proteins can be

partially denatured as a result of immobilization to the plates or to

the covalent immobilization to the Luminex magnetic beads (37, 39).

However, Luminex allows for the simultaneous detection and

quantification of multiple autoantigens (up to 500) at the same

time and in a single experiment, thus reducing the amount of sample

required and the time of analysis, which makes this technique an

interesting tool for the detection of autoantibodies. Additionally,

SIMOA or SMCx single molecule counting approaches are less

explored alternatives that should be considered for the validation

of cancer-specific autoantibodies. Meanwhile, biosensors represent a

really interesting alternative as point-of-care (POC) and affordable

devices for their implementation into clinical routine (20, 38, 41, 42).

Finally, ROC (Receiver Operating Characteristic) curves are

useful for the determination of the diagnostic ability of candidate

biomarkers or a panel of biomarkers, as they provide information

about the probability to classify a patient as a diseased subject and a

healthy individual as a non-diseased subject (area under the curve

-AUC-), and the ability of the test to detect true positives

(sensitivity), and true negatives (specificity). Thus, those
frontiersin.org
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autoantibodies showing higher AUCs, sensitivities, and specificities

are the best diagnostic biomarkers of a disease (43, 44). In addition,

diagnostic panels including several autoantibodies are needed to

increase the capacity of the test to discriminate between healthy

individuals and patients, as not all patients might possess

autoantibodies against all autoantigens. Thus, multiplexed

bioplatforms for the simultaneous detection of these

autoantibodies in plasma or serum are of high interest.
4 Humoral immune response for the
detection of the four most incident
cancers worldwide

Autoantibodies in serum or plasma of healthy and pathological

individuals are mainly IgM and IgG isotypes. Natural IgM
Frontiers in Immunology 05
autoantibodies are produced by a mechanism of positive selection

of self-antigens to clean-up cellular debris, and to maintain the

tissue and immune homeostasis. Most self-reactive IgMs are

polyreactive and possess a moderate affinity to their antigens (45,

46). On the contrary, IgGs autoantibodies are high affinity

antibodies produced as a consequence of a breakdown in self-

tolerance due to a pathology (46–48). Because self-reactive IgGs

reflect a pathological process, the use of autoantibodies for cancer

diagnosis or prognosis is focused on the identification of IgGs in

human samples.

In this context, the most widely known cancer autoantibody is

that produced against p53. Autoantibodies against p53 have been

widely described in different types of cancer, such as CRC, BC,

ovarian, or gastric cancers, among others, and their production has

been mainly associated to missense mutations and p53

accumulation in cancer patients (49, 50). Despite the high

specificity of p53 autoantibodies (> 96%), they possess a very low
FIGURE 3

Validation methods for the identification of novel autoantigens and autoantibodies as cancer blood-based biomarkers. Representative workflow of
the most widely used methods for the validation of the seroreactivity of candidate autoantigens. Once autoantigens have been selected, their
seroreactivity must be confirmed in a larger cohort of plasma/serum samples from healthy individuals and patients using different techniques, such
as: ELISA (enzyme-linked immunosorbent assay), by coating the plates with candidate autoantigens in vitro expressed or expressed in mammalian,
bacterial, or insect cells; Microarrays with candidate autoantigens printed on their surface; Luminex, consisting in the immobilization of candidate
autoantigens fused to a tag (i.e. 6xHis or HaloTag) onto a specific color-coded magnetic bead previously activated with the corresponding ligand;
HaloTag technology, in which candidate autoantigens are cloned as HaloTag fusion proteins for their covalent anchored to magnetic beads coated
with a Haloalkane (HaloTag ligand); Biosensors, which consist of the capture of HaloTag fusion proteins immobilized on magnetic beads on the
surface of screen-printed carbon electrodes (SPCEs) and allows the development of electrochemical signals in presence of the hydroquinone (HQ)/
H2O2 system; and Single molecule counting (SIMOA/SMCx), ultrasensitive ELISAs that used capture Ab-coated beads for the anchoring of the
autoantigens of interest. Quantification is possible if a standard curve is performed. Some of the image elements were created using Servier Medical
Art (https://smart.servier.com), accessed on February 26, 2024, provided by Servier, licensed under a Creative Commons Attribution 3.0
unported license.
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sensitivity (< 35%), as not all cancer patients show high serum or

plasma levels of autoantibodies against this protein. Thus,

autoantibody panels and their target proteins have been identified

and investigated as diagnostic or prognostic tools for different

cancer types.

In this review, validated autoantibodies with promising

diagnostic potential, those appearing in at least two different

reports with high diagnostic ability, or those autoantibodies with

prognostic potential of the four most common cancers worldwide

(breast, lung, colorectal, and prostate) have been summarized.
4.1 Autoantibodies in breast cancer

Breast cancer (BC) is the most common cancer worldwide, with

a 12.5% global incidence in both genders in 2020, and the fifth cause

of cancer-related death worldwide (51). According to the World

Health Organization (WHO), male BC accounts only for < 1% of

total cases. In the last years, deaths associated to BC have

significantly decreased due mainly to early diagnosis by

mammography imaging. However, the sensitivity of this

technique is reduced to 50% in women with dense breasts, which

is a main characteristic of most BCs. Despite the high sensitivity of

magnetic resonance imaging (MRI), even in dense breast tissues

(90-93% sensitivity), this technique is not recommended for

screening due to its low specificity, resulting in numerous false

positive cases. Thus, MRI for early screening is recommended only

in women at a high risk of BC (e.g. reproductive and hormonal risk

factors, lifestyle risk factor, or genetic predisposition) (52–54). The

treatment of BC patients depends on the molecular subtype, the

tumoral burden, and the risk of recurrence. Breast-conserving

surgery is always the first option, but mastectomy can be

oncologically required even for prevention. In addition,

neoadjuvant or adjuvant therapies might be also recommended,

based on chemotherapy or endocrine therapies, and radiotherapy

before or after surgery or mastectomy is sometimes needed to

reduce the risk of recurrence and BC mortality (52, 53).

Since the first report in 1982 on BC autoantibodies, different

autoantigens have been identified by different techniques, including

ELISA, phage or protein microarrays, or nucleic acid programmable

protein arrays (NAPPA) (55–58). Additionally, it has been

described that the presence of these autoantibodies in the blood

of BC patients can be detected long before their target autoantigen.

Among the 26 individual autoantigens of BC described to date (55–

58), only 11 (MUC1 (CA 15.3), IMP2/p62, HSP60, Her2/Neu,

Survivin, CDKN2A (p16), c-MYC, BRCA1, BRCA2, Cyclin B1,

and NY-ESO-1 -which have been also described to be overexpressed

in BC tissue samples-) out of them have been described as BC

autoantigens in two or more studies, although their diagnostic

ability (AUC, sensitivity, and specificity) was not calculated in all

of them (Table 1) (58–61, 64–75).

Serum levels of autoantibodies against TOPO48, described by

He et al. in 2020 by ELISA, possess the best individual diagnostic

ability to discriminate early BC patients from healthy and benign

breast disease (BBD) individuals, with an AUC, sensitivity, and

specificity of 80.1%, 100%, and 76%, respectively (77). In addition,
Frontiers in Immunology 06
autoantibodies against HNRNPF and FTH1 were also identified in

BC by phage display and ELISA, showing these autoantibodies,

together with autoantibodies against MUC1, one of the best

individual BC diagnostic abilities -higher than 65%- with

sensitivities and specificities higher than 80% and 55%,

respectively (76). However, autoantibodies against TOPO48,

HNRNPF, and FTH1 in BC have been only described in one

study, and thus, more research is needed to establish this

biomarker panel for BC clinical diagnosis (Table 1). In contrast,

the other individual autoantibodies described previously possess

very low diagnostic abilities and sensitivities (lower than 60% and

34%, respectively), but high specificities (higher than 90%).

Among these autoantibodies, MUC1, Her2/Neu, c-MYC, and

NY-ESO-1 autoantibodies have been demonstrated to be useful as

early diagnostic biomarkers of BC. Nevertheless, autoantibodies

against MUC1 and c-MYC were described to significantly

discriminate not only BC patients from healthy individuals but

from patients with BBD. Additionally, autoantibodies against p53

have also been described in BC, but with a lower sensitivity than

that of other autoantibodies previously described (62, 63). However,

higher levels of p53 autoantibodies have been mainly associated

with a worst prognosis of the disease than with an early stage of BC

and to many different cancers, as well as NY-ESO-1 autoantibodies,

and thus, the individual measurement of these autoantibodies in

plasma or serum is not enough for the specific diagnosis of BC.

Due to the low diagnostic ability of identified individual

autoantibodies, most studies have been focused on the study of

panels of autoantibodies for the diagnosis of BC (Table 2). It has

been demonstrated that the combination of most of them

significantly increase the diagnostic ability of the disease. In the
TABLE 1 Individual autoantibodies described in BC with diagnostic
ability of the disease.

Autoantigen
AUC
(%)

Sensitivity
(%)

Specificity
(%)

Reference/
s

p53 63-68 34.9 90.0 (59–63)

MUC1
(CA 15.3)

72-78 11-20 96-98 (64, 65)

IMP2/p62 65.1 – – (59, 66)

HSP60 63.7 31.8 95.7 (61, 67, 68)

Her2/Neu 60.0 17-18 94.0 (60, 69, 70)

Survivin 59.0 21.8 90.0 (59, 71–73)

CDKN2A (p16) 74.0 30.3 90.0 (74, 75)

c-MYC – 13-22 97-100 (59, 60)

BRCA1 – 8.0 91.0 (57, 58)

BRCA2 – 34.0 92.0 (57, 58)

Cyclin B1 68.0 – – (60, 61)

NY-ESO-1 – 26.0 94.0 (57, 60)

HNRNPF 72.0 84.2 60.8 (76)

FTH1 68.0 81.2 56.1 (76)

TOPO48 80.1 100 76.0 (77)
f
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last years, more than 25 panels of BC autoantibodies have been

described. The combination of the previously described individual

autoantigens significantly increased their sensitivity for the

diagnosis of the disease to 43.9% (CDKN2A, c-MYC, p53), 64%

(p53, c-MYC, NY-ESO-1, BRCA2, Her2/Neu, MUC1), or 89.3%

(FTH1, HNRNPF, MUC1) (58, 74, 76). However, other authors

have performed different strategies, such as NAPPA arrays or 2-DE

gel analysis coupled to mass spectrometry, and ELISA, for the

identification of diagnostic panels of autoantibodies. As a result,

large autoantibody panels (combining 5, 13, or 28-autoantibodies)

with promising characteristics for early BC diagnosis have been

described (78–80). In addition, in 2017, eleven of these

autoantibodies were selected for clinical trials to develop a test for

the daily diagnosis of BC in clinical routine by liquid biopsy (82). As

a consequence of the high sensitivity and specificity obtained during

the trials (87.5% sensitivity and 83.8% specificity), the Videssa

Breast test, combining the detection of 11 proteins and 33

autoantigens, was launched in 2023 in the United States as a tool

for the blood detection of BC, irrespective of breast density, with a

98% accuracy (81, 83).

Regarding prognosis, autoantibodies against HER2, different

MUC1 glycoforms, and SELENOP have been associated with BC

patients’ prognosis. In this sense, high HER2 autoantibody levels

have been described to possess a protective effect in BC, associated

to a reduced risk of HER2+ BC subtype, and a better recurrence-

survival rate after a 6-3686 day interval follow-up study of BC

patients (84). Furthermore, high plasma autoantibody levels against

two MUC1 glycoforms (core3MUC1 (GlcNAcb1-3GalNAc-

MUC1) and STnMUC1 (NeuAca2,6GalNAc-MUC1)) have been

described to reduce the incidence and increase the metastatic time

in BC patients after a 15-year follow-up (64). In contrast, a 4-9 year

follow-up study of BC patients associated high plasma levels of

SELENOP autoantibodies with a high risk of poor prognosis of BC,

with higher recurrence, and mortality rates (85). Moreover, high

TOPO48 and p53 autoantibodies have been associated with a

favorable prognosis at early stages and with shorted 5-year
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interval rates, respectively (77, 86). Finally, thyroid autoimmunity

autoantibodies have been postulated as predictive parameters of BC.

Specifically, higher levels of anti-TG and anti-TPO autoantibodies

in BC patients have been related to a low risk of axillary

involvement and of ki67 proliferation index of breast tumoral

cells (87–89).
4.2 Autoantibodies in lung cancer

Lung cancer (LC) is the leading cause of cancer-related death

worldwide mainly due to its late diagnosis and consequent poor

prognosis (90–92). As with many cancer types, its 5-year survival

rate greatly depends on the stage the cancer is diagnosed, evidencing

the need to find new efficient early diagnostic tools. Particularly,

when diagnosed early (stage I), LC patients have reported 5-year

survival rates between 75-60%, while advanced LC patients’ 5-year

survival rate reports are of approximately 15-5% (93, 94). However,

most LC patients (57% of all cases) are diagnosed when they have

developed metastasis while only 15% of all cases correspond to

patients with localized disease (94). Currently, low-dose computed

tomography (LDCT) is used as a LC diagnostic tool. This screening

approach shows great sensitivity for eligible patients, but it also

produces a high number of false-positive cases (95). Thus, the

particularities of autoantibodies make them an interesting

diagnostic tool choice, and several studies have been focused on

finding a diagnostic signature that could aid in the management of

the disease.

A previous study found 67 reported works that evaluated the

diagnostic capability of either single or multiple autoantibodies for

LC (96). On the other hand, another study focusing on relevant data

from more than three reports, found 53 relevant articles through

which they evaluated the use of single autoantibodies against p53, c-

MYC, Survivin, NY-ESO, Cyclin B1, CAE, GBU 4-5, p16, HuD, and

SOX2 (97) (Table 3). Unsurprisingly, the use of single

autoantibodies showed low sensitivity for LC detection, while the
TABLE 2 Autoantibody panels reported in more than one study for the detection of BC patients with high sensitivity and specificity.

Autoantigen panel AUC (%)
Sensitivity

(%)
Specificity

(%)
Reference/s

CDKN2A+c-MYC+p53 – 43.9 97.6 (74)

p53+c-MYC+NY-ESO-1
+BRCA2+Her2/Neu+MUC1

(early detection)
– 64 85 (58)

FTH1+HNRNPF+MUC1 93.1 89.3 93.8 (76)

GAL3+PAK2+PHB2+RACK1+RUVBL1 81 66 84 (78)

CTAG1B+CTAG2+TP53+RNF216+PPHLN1+PIP4K2C+ZBTB16+TAS2R8+WBP2NL
+DOK2+PSRC1+MN1+TRIM21

68 33 98 (79)

ATP6AP1+PDCD6IP+DBT+CSNK1E+FRS3+RAC3+HOXD1+SF3A1+CTBP1
+C15ORF48+MYOZ2+EIF3E+BAT4+ATF3+BMX+RAB5A+UBAP1+SOX2+GPR157

+BDNF+ZMYM6
+SLC33A1+TRIM32+ALG10+TFCP2

+SERPINH1+SELL+ZNF510

75.6 80.8 61.6 (80)

Videssa Breast test (11 proteins + 33 autoantigens) – 88-92 81-87 (81–83)
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use of multiple autoantibodies could detect LC with high sensitivity

and specificity differently according to LC stage, making the

stratification of patients possible (98, 99) (Table 4). Among the

single autoantibodies described for LC, NY-ESO-1 has shown

promising results since, despite its low sensitivity, it has been

proven to have great specificity and its inclusion in different

autoantibody panels or diagnostic signatures greatly increases

their strength (99, 105, 106).

It is interesting to note that currently, the China Food and Drug

Administration has approved a 7 autoantibodies (p53, GAGE7,

PGP9.5, CAGE, MAGEA1, SOX2, and GBU4-5) kit for the specific

detection of LC in the Chinese population using serum samples

(100). Moreover, a recent study has evaluated the use of this

particular kit alongside LDCT to diagnose cases worldwide (92).

These researchers found that the TAAbs panel worked better than

individual autoantibodies and had great specificity (88.5%) and

promising sensitivity (61.5%). Furthermore, the combination of
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LDCT and TAAbs screening was a far better diagnostic tool than

LDCT alone. When testing the 7 TAAbs panel in the real-world

cohort, the panel showed comparable results for patients at stages I

and II-IV regardless of gender or age, highlighting its usefulness as

an early detection platform (92). Other studies have defined

different signatures comprised of only autoantibodies or

combination of autoantibodies and proteins. Remarkably, there

are TAAbs common to some of the described signatures and the

7 autoantibody signature approved in China (p53, CAGE, GBU4-5)

(101–103, 107), while other autoantibody signatures remain unique

(107). Among the other diagnostic panels described, the EarlyCDT-

Lung panel of 6 (p53, NY-ESO-1,CAGE, GBU4-5, Annexin I, and

SOX2) or 7 (p53, NY-ESO-1, CAGE, GBU4-5, SOX2, HuD, and

MAGE A4) autoantibodies released by Oncimmune Inc. showed

high specificity and could detect elevated autoantibodies in 40% of

LC (both non-small cell and small cell LC) independently of cancer

stage (101–104, 108). Although the percentage of patients detected

still needs improvement, the fact that it can detect LC regardless of

its type and stage with the same strength makes the panel a

promising tool for the screening of the disease. Regarding the

diagnostic signatures based on the detection of proteins and

autoantibodies, the PAULA (Protein Assay Using Lung Cancer

Analytes) test from 20/20 Genesystems uses a panel of 4 TAA (CEA,

CA-125, and CYFRA 21–1) and one autoantibody (NY-ESO-1) to

discriminate between LC patients and controls with high sensitivity

and specificity (109). Further studies validated the use of this panel

for the discrimination of non-small cell LC from normal patients

and patients with benign pulmonary diseases (99).

Despite the fact that most studies focused on the detection of

the LC autoantibodies in serum or plasma samples, other studies

have focused on their detection on other advantageous biological

samples such as sputum, which is easy to collect and it is secreted

directly from the lower airways and deep lungs where tumors reside,

making it a direct source of autoantibodies (110). In sputum,

autoantibodies against DDX6, ENO1, and 14-3-3q could detect

LC with high sensitivity (81%) and specificity (83%) independently

of race, gender, and tumor stage and type; however, their combined

detection with serum autoantibodies, other molecular markers, or
TABLE 3 Diagnostic performance of individual autoantibodies for LC
detection (97).

Autoantigens AUC (%)
Sensitivity

(%)
Specificity

(%)

LC vs controls

p53 82 19 98

NY-ESO-1 90 17 98

Survivin 96 19 99

c-MYC 45 14 98

Cyclin B1 91 18 98

GBU4-5 91 7 98

CAGE 90 14 98

p16 91 8 97

SOX2 93 14 99

HuD 82 17 99
TABLE 4 Diagnostic performance of the combination of autoantibodies for LC detection.

Autoantigens AUC (%) Sensitivity (%) Specificity (%) Reference

LC vs controls

p53, GAGE7, PGP9.5, CAGE, MAGEA1, SOX2, and GBU4-5 80.6 61.5 88.5 (92)

p53, GAGE7, PGP9.5, CAGE, MAGEA1, SOX2, and GBU4-5 – 61.5 88.5 (100)

p53, NY-ESO-1, CAGE, GBU4-5, Annexin 1, and SOX2 63 39 89 (101)

p53, NY-ESO-1, CAGE, GBU4-5, Annexin 1, and SOX2 64 37 90 (101)

p53, NY-ESO-1, CAGE, GBU4-5, Annexin I, and SOX2 – 39 89 (102)

p53, NY-ESO-1, CAGE, GBU4-5, SOX2, HuD, and MAGE A4 – 41 91-93 (102)

p53, NY-ESO-1, CAGE, GBU4-5, Annexin I, and SOX2 – 46 83 (103)

p53, NY-ESO-1, CAGE, GBU4-5, SOX2, HuD, and MAGE A4 – 37 91 (103)

p53, NY-ESO-1, CAGE, GBU4-5, Annexin 1, and SOX2 – 38 88 (104)
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LDCT was not reported, and further testing should be performed to

evaluate the usefulness of this panel in a clinical setting.

Taken together, these results seem promising in the

development of a non-invasive diagnostic tool based on the

detection of autoantibodies capable of assisting the current

methodologies in the early screening and recognition of LC

patients. However, despite that there are at least three

commercially available kits that could aid in the early detection of

LC patients, their use in a medical setting is still limited and efforts

should be made to encourage it.

Finally, regarding the prognostic ability of autoantibodies for

LC, and although they have not been already established in clinical

routine, there have been several studies focusing on their

importance (111). In this sense, autoantibodies against p53,

PGP9.5, SOX2, and MAGEA1 have been described to correlate

with the overall survival of NSCLC patients (112), while a highly

predicted autoantibody panel composed of 13 autoantibody

biomarkers against SPATA19, TSPY3, GLS2, TCEA2, TSGA10,

HMGN5, LUZP4, HDAC4, SPACA3, IMPDH1, TXN2, TFG, and

PPP2R1A has been described to predict postoperative survival of

LC patients (113).
4.3 Autoantibodies in colorectal cancer

Colorectal cancer (CRC) is the third most common cancer and

the second cause of cancer-related death worldwide, whose

development can take between 10 to 15 years. CRC development

has been described as the adenoma-adenocarcinoma transition, as

most CRC cases develops from polyps (premalignant lesions -low-

and high-grade colorectal adenomas) restricted to mucosa that start

to proliferate and invade different layers of the intestinal epithelium

(adenocarcinoma) (114, 115). In addition, four different CRC stages

have been described according to the size of the primary carcinoma

and the spread of cancerous cells to other organs. Thus, CRC stages

can be divided into early non-metastatic stages I and II, and

advanced metastatic stages to lymphatic nodes (stage III) or to

distal organs (stage IV), being the liver and lung the main organs of

colonization of CRC metastasis. Because CRC is usually

asymptomatic at early stages of the disease, currently most CRC

patients (> 60%) are diagnosed at advanced stages of the disease,

when the 5-year survival rate of patients decrease to 70-10% in

comparison with its diagnosis at early stages (80-90%). In addition,

the clinical symptoms of CRC (occult fecal blood and changes in the

bowel habits) might be related to other pathologies not associated to

cancer, thus delaying its diagnosis (116).

The current diagnosis of CRC involves an initial screening of

fecal occult blood, which is not specific of the disease and is mainly

associated to advances stages of CRC, and colonoscopy, which is a

very sensitive but an invasive technique that requires bowel

preparation and sedation, and thus, it cannot be performed

routinely for diagnosis. Finally, surgery is always the first option

for the treatment of the disease, which allows for the removal of all

malignancies, whereas metastases are only resected in those patients

with a good response to chemotherapeutic agents. In addition,

chemotherapy and/or radiotherapy treatments might be also
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applied to patients after surgery to prevent for recurrences, and in

cases of unresectable tumors to suppress the progression and

growth of cancerous cells (117–119). Therefore, with the objective

to improve the early diagnosis of CRC, novel biomarkers, and

mainly blood based biomarkers that might be easily measured in

clinical routine are mandatory.

Among the most common biomarkers of CRC (carcinoembryonic

antigen (CEA), CA-19.9, and CA125), CEA protein has been widely

described as a significant diagnostic and prognostic CRC biomarker

(120–122). CEA expression is significantly higher in CRC tumoral

tissues than in healthy tissues (< 60 times higher). In addition, these

higher levels of CEA in tissues have been associated with a poor

prognosis of the disease. Furthermore, CEA serum levels have been

also found increased in CRC patients in comparison to healthy

individuals, which was also associated with a poor prognosis of the

disease, demonstrating that the measurement of CEA levels in serum

is not useful for the early diagnosis of the disease, but as a prognostic

biomarker of CRC (123–126). Due to the increased expression of CEA

in CRC, autoantibodies against this protein have been also

investigated in several works (127–129). Most of these studies were

focused on CRC patients at advanced stages of the disease and healthy

individuals, highlighting its high specificity (from 59.5% to 98%)

but low sensitivity (from 21% to 63.8%) for advanced CRC

diagnosis (Table 5).

Since 1995, more than 80 studies regarding autoantibodies in

CRC with diagnostic ability of the disease have been published,

describing more than 200 proteins as potential autoantigens of the

disease identified and validated by different techniques, such as

SERPA, protein microarrays, or phage display (39, 128, 143, 151,

152). Autoantibodies against p53 have been widely associated to

CRC due to its highly mutation rate in CRC (33). Several studies

revealed the high specificity of p53 autoantibodies in advanced CRC

(89-100%), whereas its sensitivity varies from 8.8% to 46.3%, which

significantly reduces its diagnostic ability of the disease (138, 143,

153–156). Although most of these studies were focused on advanced

stages of the disease, some studies revealed that p53 autoantibodies

also possess a high diagnostic ability of the disease at early stages

and in individuals with premalignant lesions, with a sensitivity

ranging from 10% to 45.2% (130, 138, 157). Interestingly, recent

works have supported the diagnostic ability of autoantibodies

against other proteoforms of the p53 family (composed of p53,

p63, p73, and the different proteoforms of these proteins due to

alternative splicing and alternative promoters in the DNA

sequence) (126, 130). These proteoforms have been described to

regulate (activate or inhibit) different proteins of the p53 protein

family, and some of them have been described to be dysregulated

and/or mutated in the disease, which might contribute to the

production of specific autoantibodies against these proteoforms

(125, 158). In this context, autoantibodies against p73, DNp73a,
and DNp73b were found to possess a high diagnostic value for CRC

patients (AUC > 65%), with sensitivities and specificities higher

than 49% and 86%, respectively, highlighting their ability to

discriminate individuals with premalignant lesions from healthy

individuals, with AUCs, sensitivities, and specificities higher than

69%, 57%, and 88%, respectively (Table 5) (126). In another work

from the same groups, the seroreactivity against the different p53
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TABLE 5 Individual autoantibodies described in CRC and individuals
with premalignant lesions with diagnostic potential of the disease.

Autoantigen AUC (%)
Sensitivity

(%)
Specificity

(%)
Reference/

s

Diagnosis of CRC patients

CEA 80-92 13-85 60-100 (127–129)

p53 50-69 15-62 13-100
(19, 20, 38,
126, 130)

p73 65.3 53.8 88.3 (126)

DNp73a 67.4 48.7 91.7 (126)

DNp73b 61.9 46.2 95.0 (126)

p53g 61.3 64.5 58.3 (130)

D40p53b 67.5 93.5 41.7 (130)

D133p53g 80.1 77.4 75.0 (130)

TAp63a 74.1 51.6 87.5 (130)

TAp63d 73.7 58.1 79.2 (130)

DNp63a 74.7 80.6 64.6 (130)

DNp63d 67.7 41.9 89.6 (130)

MUC1 – 7-48 83-95 (131, 132)

c-MYC – 4-22 95-100
(74,

133–135)

Survivin – 4-57 64-100 (135–137)

ANXA4 – 6-15 90-98 (138, 139)

p62 – 19-23 97-99
(134, 135,
140, 141)

RPH3AL – 7-72 84-98
(138,

139, 142)

NY-CO-16 – 18-41 90-100
(138,

143, 144)

koc – 9-15 98-100
(134,

135, 141)

HDAC5 – 3-22 90-100
(138,

144, 145)

IMP1 – 13-22 98-100 (134, 135)

NY-ESO-1 – 7-17 98-100 (145, 146)

MAGEA3 – 3-8 98-100 (139, 145)

Cyclin B1 – 16-33 98.0 (133, 135)

SEC61b – 30-79 75-80 (138, 147)

CCCAP – 22-35 90-96 (138, 144)

IMPDH2 – 8-32 98-100 (139, 148)

GRP78 – 16-20 100 (149, 150)

PIM1 64-85 13-64 83-93 (37–39, 128)

MAPKAPK3 73-77 31-73 74-90 (37–39, 128)

STK4 69-74 22-72 42-90
(30, 37–
39, 128)

SRC 68-71 72-67 62-73 (38, 39, 128)

(Continued)
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TABLE 5 Continued

Autoantigen AUC (%)
Sensitivity

(%)
Specificity

(%)
Reference/

s

Diagnosis of CRC patients

ACVR2B 66-67 59-60 76 (39, 128)

SULF1 63-69 50-88 47-79 (30, 38, 39)

TALDO1 65.4 48.4 90.0 (19, 20)

GTF2B 63-72 13-56 60-90 (37, 38)

ACTR3 66.9 68.4 65.8 (19, 20)

MT-CO2 67.7 63.2 65.8 (19, 20)

Phage-
expressed
peptide
NHSL1

52-60 52-57 50-52 (30, 39)

Phage-
expressed
peptide
SREBF2

53-61 48-55 61-70 (30, 39)

Phage-
expressed

peptide GRN
52-62 58-55 57-59 (30, 39)

Phage-
expressed
peptide
GTF2i

57-60 58-60 52.0 (30, 39)

Diagnosis of individuals with premalignant lesions

p53 53-61 36-53 80-92
(19, 20, 38,
126, 130)

p73 78.9 70.0 88.3 (130)

DNp73a 79.1 70.0 93.3 (126)

DNp73b 69.0 56.8 96.7 (126)

p53g 69.5 54.8 83.3 (130)

D40p53b 69.5 64.5 70.8 (130)

D40p53g 68.1 67.7 72.9 (130)

D133p53g 81.7 90.3 77.1 (130)

D160p53g 69.2 45.2 85.4 (130)

TAp63a 78.7 74.2 75.0 (130)

TAp63d 79.1 71.0 79.2 (130)

DNp63a 81.0 74.2 79.2 (130)

DNp63d 76.9 90.3 52.1 (130)

PIM1 85.5 76.9 93.3 (38)

MAPKAPK3 76.0 65.4 90.0 (38)

STK4 74.3 73.1 73.3 (38)

SRC 68.8 73.1 73.3 (38)

SULF1 70.4 88.5 46.7 (38)

TALDO1 71.9 83.3 63.3 (19)

GTF2B 70.3 53.8 83.3 (38)

(Continued)
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1455602
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Montero-Calle et al. 10.3389/fimmu.2024.1455602
and p63 proteoforms in CRC was investigated. Regarding p53,

D40p53b, D133p53g, and D160p53g proteoforms showed a high

diagnostic ability of CRC patients in comparison to healthy

individuals (AUC > 70%), with sensitivities and specificities

higher than 67% and 77%, respectively, whereas p53g, D40p53b,
D40p53g, D133p53g, and D160p53g proteoforms showed a

sensitivity, specificity, and diagnostic ability to discriminate

individuals with premalignant lesions from healthy individuals

higher than 58%, 51%, and 70%, respectively (Table 5). Regarding

p63, the TAp63a, TAp63d, DNp63a, and DNp63d proteoforms

were able to discriminate both, CRC patients and individuals with

premalignant lesions from healthy individuals, with AUCs,

sensitivities, and specificities higher than 67%, 42%, and 52%,

respectively (Table 5) (130). These two works highlighted the

significant diagnostic ability of autoantibodies against different

p53, p63, and p73 proteoforms, which was higher than that of

CEA and autoantibodies against the canonical p53 protein, for both

CRC patients and individuals with premalignant lesions, suggesting

a potential role of these autoantibodies for the early detection of

the disease.

Other autoantibodies have also been identified mainly by ELISA

or protein microarrays with diagnostic ability of CRC patients.

Among them, 17 have been described in two or more studies

(MUC1, c-MYC, Survivin, ANXA4, p62, RPH3AL, NY-CO-16,

koc, HDAC5, IMP1, NY-ESO-1, MAGEA3, Cyclin B1, SEC61b,
CCCAP, IMPDH2, and GRP78), and they have been described to

possesses a sensitivity and specificity ranging from 3-79% and 64-

100%, respectively (Table 5) (131–150).

Furthermore, plasma samples from CRC patients and healthy

individuals were investigated by protein and phage microarrays to

identify novel autoantigens with potential diagnosis of the disease.

In addition, immunoprecipitation coupled to mass spectrometry

analyses were also performed using plasma samples from CRC

patients and healthy individuals to investigate novel sources of

autoantigens and, thus, to identify novel autoantibodies and their

target proteins with potential diagnostic ability of the disease (19,

20, 30, 37–39). From these analyses, ten proteins (PIM1,

MAPKAPK3, STK4, SRC, ACVR2B, SULF1, TALDO1, GTF2B,

ACTR3, and MT-CO2) and 4 phage-expressed peptides (NHSL1,

SREBF2, GRN, and GTF2i) were identified and validated in

subsequent works as potential diagnostic autoantigens of CRC,

with AUCs higher than 65% (>52% in the case of phage-

expressed peptides), and sensitivities and specificities higher than

48% and 62%, respectively. In addition, SPCS2 and RAB2A were

also identified in two works as seroreactive to CRC patients

although their diagnostic ability of CRC was not estimated by
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complementary techniques. In addition, ten of these proteins

(PIM1, MAPKAPK3, STK4, SRC, SULF1, TALDO1, GTF2B,

ACTR3, RAB2A, and MT-CO2) were also found to possess a

high diagnostic ability of individuals with premalignant lesions in

comparison to healthy individuals, with AUCs, sensitivities, and

specificities about 65%, 49%, and 65%, respectively.

Despite that, most of these studies focused on the use of plasma

or serum samples from CRC patients (stage I to IV) in comparison

to healthy individuals, without taking into account individuals with

premalignant lesions. Thus, the inclusion of this group of patients in

the validation analyses would be of high interest, as it would

highlight those autoantibodies with an early diagnostic capacity of

the disease. In addition, the diagnostic capacity of some of these

autoantibodies might increase in the early stages, as previously

reported for other autoantibodies (19, 20, 38, 126, 130).

However, although most of these described CRC autoantibodies

possessed a high specificity (higher than 80%), the individual CRC

diagnostic capacity of most of them was very low due to their low

sensitivity (lower than 45% in most cases). For this reason, more

than 50 panels of autoantibodies combining previously described

autoantigens with the best diagnostic abilities of the disease have

been proposed as potential diagnostic tools, highlighting the

presence of autoantibodies against p53, MUC-1, Cyclin B1, c-

MYC, Survivin, PIM1, GTF2B, STK4, and MAPKAPK3 in most

of them (151, 152). It is worthy to highlight 15 autoantibody panels

including three or more autoantigens with a sensitivity to

discriminate CRC patients from healthy individuals higher than

60% (Table 6), such as i) STK4 + SULF1 + phage-expressed

peptides NHSL1, SREBF2, GRN, GTF2i (AUC: 86%, sensitivity:

82.6%, and specificity: 70%), ii) CHCHD3 + CTTNBP2NL + FKBP4

+ MGST3 + THSD7A + TRIM29 (AUC: 99.7%, sensitivity: 96.9%,

and specificity: 100%), iii) MAPKAPK3 + ACVR2B + PIM1 (AUC:

85%, sensitivity: 84.4%, and specificity: 71.4%), iv) p53g + D40p53b
+ D133p53g + TAp63a + TAp63d + DNp63a + DNp63d (AUC:

86.6%, sensitivity: 96.8%, and specificity: 64.6%), v) Tn- + STn +

Core3-MUC1, TnMUC4 (sensitivity: 86%, and specificity: 89.3%),

and vi) c-MYC + p53 + Cyclin B1 + p62 + koc + IMP1 + Survivin

(sensitivity: 88%, and specificity: 88%) (19, 30, 37–39, 128, 130,

132–134, 138, 143, 159).

Additionally, four panels of autoantibodies have been also

described to discriminate individuals with premalignant lesions

from healthy individuals with a high AUC (>83%), sensitivity

(>77%), and specificity (>75%), suggesting that these panels could

be useful for early and preventive diagnosis of CRC (Table 6).

Finally, although there are few works performing a follow-up of

CRC patients to evaluate the prognostic ability of autoantibodies, it

has been postulated that some of them have CRC prognostic

capacity. Autoantibodies against ADAM10 were demonstrated to

possess a high diagnostic ability of CRC (AUC > 65%), whereas the

follow-up of stage III CRC patients from 2 to 73 months revealed

the association of high ADAM10 plasma autoantibodies with an

increased recurrence-free survival rate (from 23 to 55 months)

(160). In addition, TOPO48 autoantibodies were also shown to have

high diagnostic capacity in individuals with premalignant lesions

(AUC 83.5%), and the 3 to 36 months follow-up of CRC patients

showed an increased overall survival rate of patients when TOPO48
TABLE 5 Continued

Autoantigen AUC (%)
Sensitivity

(%)
Specificity

(%)
Reference/

s

Diagnosis of individuals with premalignant lesions

ACTR3 66.6 69.4 65.8 (20)

RAB2A 66.9 38.9 92.1 (20)

MT-CO2 64.6 61.1 68.4 (20)
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plasma autoantibodies at early stages were high (161). In contrast,

although high p53 autoantibody levels have been associated with

adenocarcinoma and invasive carcinomas, no differences based on

clinical stage, overall survival, or disease-free survival were found

associated to p53 autoantibodies during the follow-up of CRC

patients. Additionally, high p53 autoantibody levels in plasma

have been considered a risk factor of CRC recurrence (157, 162,

163). In this sense, some autoantibodies have been also postulated

as associated to the progression of the disease, with high

autoantibody levels against VTI2 and p53 associated to CRC

metastasis, or against GRP78 and SPAG9 to early stages of the

disease (15, 149, 164).
4.4 Autoantibodies in prostate cancer

Among men, prostate cancer (PC) is one of the most prevalent

cancer types. More prevalent in developed countries, its incidence is
Frontiers in Immunology 12
also higher among men of African descent. The incidence rates

increase with age, with most cases diagnosed in men over 65 years

old. For its diagnosis and management, the detection of the prostate

specific antigen (PSA) offers an interesting alternative as an initial

screening method followed by confirmatory techniques (59).

However, since patients with benign prostatic hyperplasia also

show elevated PSA levels, PSA detection produces an elevated

number of false positives, raising concerns about overdiagnosis

and overtreatment. Furthermore, it is worth noting that not all

PC patients show elevated PSA levels, limiting even more its use as a

single diagnostic marker. Such low specificity for PC detection

indicates the need for a better, less stressful alternative to be

described for PC detection, since overtreatment of the disease has

been widely described (165). In this context, the U.S. Preventive

Services Task Force (USPSTF) recommended in 2020 against PSA

screening. This recommendation was based on negative results, as

well as evidence of potential harms arising from PSA testing. These

harms include overdiagnosis and treatment of small, benign-
TABLE 6 Autoantibody panels reported in more than one study for the detection of CRC patients and individuals with colorectal premalignant lesions
with high sensitivity and specificity.

Autoantigens panel AUC (%)
Sensitivity

(%)
Specificity

(%)
Reference

Diagnosis of CRC patients

EDIL3+GTF2B+HCK+p53+PIM1+STK4 86.8 65.7 90.0 (37)

EDIL3+GTF2B+HCK+p53+PIM1+STK4
(early stages I and II)

85.9 61.7 90.0 (37)

STK4+SULF1+phage-expressed peptides NHSL1, SREBF2, GRN, GTF2i 86.0 82.6 70.0 (30)

CHCHD3+CTTNBP2NL+FKBP4+MGST3+ THSD7A+TRIM29 99.7 96.9 100 (19)

PIM1+MAPKAPK3+FGFR4 79.7 79.6 84.8 (39)

MAPKAPK3+ACVR2B+PIM1 85.0 84.4 71.4 (128)

GTF2B+MAPKAPK3+PIM1+PKN1+SRC+STK4+SULF1 91.8 76.0 98.6 (38)

p73+DNp73a+DNp73b 61.5 59.0 90.0 (126)

p53g+D40p53b+D133p53g+TAp63a+TAp63d+ DNp63a+DNp63d 86.6 96.8 64.6 (130)

SLP2+p53+SEC61b+PLSCR1 – 64.0 80.0 (138)

SLP2+p53+SEC61b+PLSCR1
(early stages I and II)

– 66.7 80.0 (138)

p53+c-MYC+Cyclin B1+Cyclin D1+Calnuc – 65.4 93.7 (133)

koc+p63+IMP3+c-MYC – 60.9 89.7 (134)

AFP+p53+k-ras+NY-CO-16+RAF1+Annexin – 75.0 78.0 (143)

Tn-+STn+Core3-MUC1, TnMUC4 – 86.0 89.3 (132)

STn-MUC1, Tn-MUC4-1-Tn-MUC4-5 – 79.3 95.1 (132)

c-MYC+p53+Cyclin B1+p62+koc+IMP1+Survivin – 88.0 88.0 (159)

Diagnosis of individuals with premalignant lesions

CTTNBP2NL+FKBP4+TALDO1 88.9 83.3 71.4 (19)

MAPKAPK3+PIM1+PKN1+SRC+STK4+SULF1 83.0 84.0 75.7 (38)

p73+DNp73a+DNp73b 79.7 73.3 93.3 (126)

p53g+D40p53b+D40p53g+D133p53g+D160p53g+TAp63a+TAp63d+DNp63a+DNp63d 91.3 77.4 91.7 (130)
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appearing cancers that are unlikely to spread or lead to death.

Therefore, due to this low detection specificity and PSA controversy

worldwide, the measurement of PSA levels for PC detection is

accompanied by complimentary detection techniques such as

digital rectal examination, trans-rectal ultrasonography, or

multiparametric magnetic resonance imaging (166). Additionally,

numerous tests are commercially available for the stratification of

patients according to the disease’s outcome (167). Nowadays, there

are numerous studies focused on the development of diagnostic

platforms that can increase PSA PC specificity, demonstrating the

combined measurement of its levels coupled to the detection of

other markers possess higher diagnostic ability of the disease.

As with other cancer types, PC patients have been shown to

develop TAAbs against numerous proteins able to discriminate

between patients and healthy controls (Table 7). Moreover, the

presence of these antibodies has been used as clinical confirmation

of the disease in diagnosed patients and numerous studies have

detected potential autoantibodies that could aid in PC diagnosis and

patient stratification (167, 172–178). However, not all of the

described autoantibodies have been validated in two or more

independent studies, so further analysis is required. In a study

involving protein microarrays, autoantibodies against AMACR, a

tissue biomarker for PC, was found to discriminate between PC

patients and healthy controls with 71.8% sensitivity and 61.6%

specificity (168). Another study reported an AUC of 74% when

detecting AMACR autoantibodies in PC patients, but no sensitivity

or specificity was reported (179). However, no information

regarding its selectivity against other cancer types is specified in a

humoral immune response scenario, so AMACR autoantibody

detection currently resides more as a confirmation marker instead

of initial PC diagnosis. Moreover, autoantibodies against HIP1, a

protein up-regulated in PC when comparing its levels to benign

prostatic epithelia and overexpressed in advanced PC (180), could
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discriminate between patients and controls with up to 64%

specificity and 88% sensitivity (169). However, to our knowledge,

only one study has reported their usefulness in PC diagnosis, and

further evaluation should be carried. Moreover, in this study the

same samples tested for the presence of HIP1 autoantibodies were

tested for AMACR autoantibodies, and values of 67% specificity

and 64% sensitivity were obtained. When combining the detection

of both autoantibodies, the specificity increased to 97%, suggesting

that the combined detection of both autoantibodies, together with

PSA, could serve as a better diagnostic tool for PC than when

analyzed individually. It is interesting to note that some

autoantibodies have been described in PC patients in more than

one study, but their diagnostic potential remains to be clarified.

Such are the examples of autoantibodies against NY-ESO-1 (167,

181) and GAG-HERV-K (167, 182, 183). On the other hand,

another report centered on previous studies in which cyclin B1

autoantibodies were found in PC patients and its inclusion in

autoantibody panels could detect the pathology (135, 159, 184)

concluded that the combined presence of autoantibodies against

cyclin B1 and elevated PSA levels could identify 65.7% of patients

with early PC (170). This same study also concluded that the

combined presence of autoantibodies against cyclin B1, Survivin,

p53, RalA, DFS70/LEDGFp75, MDM2, and NPM1 could

discriminate between PC patients and healthy controls with

80.5% sensitivity and 91% specificity, although follow-up studies

are needed to verify its diagnostic value.

Regarding the distinction between patients with PC and

patients with benign prostate hyperplasia, autoantibodies against

cyclin B1 were found present in 31.0% of sera from patients with

pancreatic cancer while only in 4.8% of patients with benign

prostatic hyperplasia (170). Other microarray studies showed that

a signature comprised of autoantibodies against TARDBP, TLN1,

PARK7, LEDGD, and CALD1 could distinguish between groups

with 95% sensitivity and 80% specificity (AUC = 95%), making

them an interesting choice for patient stratification (171) and

highlighting, once more, the importance of multiple autoantibody

detection for a better discrimination of individuals. Further studies

developed a sensor for PC diagnosis that could detect

autoantibodies against four of the previous proteins (TARDBP,

PARK7, TLNQ, and CALD1) and total PSA and free-PSA (AUC =

91.6%) (185). Another study employing microarrays containing

more than 37,000 recombinant human proteins identified 174

autoantibodies found only in sera from PC in comparison to

healthy individuals and individuals with benign disease. Different

autoantibody profiles were validated as capable of discriminating

between cancer and benign patients, with TTLL12 autoantibodies as

the most effective (186).

Autoantibody detection has also been proven as an interesting

alternative to detect PC patients that show normal PSA levels.

Autoantibodies against cyclin B1, an antigen found to be very

reactive in this type of cancer, were found in 31% of evaluated

patients, and 29% of the patients with normal PSA levels had these

autoantibodies (170). Therefore, autoantibodies in PC seem to be

independent of PSA levels, making them an interesting alternative

to detect patients that might be overlooked due to their normal PSA

levels. Therefore, the combined detection of autoantibodies and
TABLE 7 Autoantibodies reported for the detection of PC patients.

Autoantigen
(s) detection

AUC (%)
Sensitivity

(%)
Specificity

(%)
Reference

PC vs healthy controls

AMACR 66.3 71.8 61.6 (168)

AMACR – 64 67 (169)

HIP1 – 88 64 (169)

AMACR
+ HIP1

– 55 97 (169)

Cyclin B1 +
Survivin + p53

+ RalA +
DFS70/

LEDGFp75 +
MDM2
+ NPM1

94.2 80.5 91 (170)

PC vs benign prostate hyperplasia

TARDBP +
TLN1 +
PARK7 +
LEDGD
+ CALD1

95 95 80 (171)
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PSA levels would then allow for an ampler identification of

PC individuals.

Finally, regarding the prognostic ability of PC autoantibodies,

individual autoantibodies against GRP78 (187), fetuin-A (175), and

GAG-HERV-K (183) have been demonstrated to predict a more

aggressive outcome of PC. High throughput methods based on

peptide microarrays have also identified different signatures of

autoantibody combinations that vary according to disease stage,

making them an interesting alternative for the study of prognosis of

PC (172).
5 Leveraging the humoral immune
response to discover potential
druggable therapeutic targets in
cancer patients

The immune system, being an extremely sensitive detector for

identifying altered self-proteins during the neoplastic process, can

aid in identifying plasma membrane proteins that could serve as

therapeutic targets. Indeed, several reports have highlighted the

identification of such potential therapeutic targets.

Two protein families, kinases and phosphatases, have been

reported as target of autoantibodies with potential therapeutic value.

Kinases are common targets for therapeutic drugs, and the presence of

autoantibodies against kinases in CRC, hematological cancers, non-

small cell LC (30, 128, 188–191), among others, suggests that at least

part of the humoral immune response occurs against cancer targets

druggable proteins. For instance, FGFR4, a target of autoantibodies

with significant diagnostic ability for CRC, has been reported to be

druggable using CRC cells with either broad-spectrum kinase

inhibitors like TKI-258 or more selective FGFR inhibitors like

PD173074, or specific antibody inhibitors in phase III (128, 192).

Subsequent studies have demonstrated the potential of FGFR4 as a

therapeutic target in BC and hepatocellular cancer (193, 194). Given

that FGFR4 inhibitors are currently in early-stage clinical trials for

treatment, this protein, a target of autoantibodies, is of interest as a

druggable target in BC, CRC, and hepatocellular cancers (195). In

addition to FGFR4, other kinases such as IRAK4, CKMT1B, PKN1,

MAPKAPK3, Pim1, and STK4 in CRC, ALK in LC, CSNK1A1L and

Her2/Neu in BC, and ECPKA in Non-Hodgkin’s lymphoma, breast,

colon, and most highly incident cancers have been observed both as

target of autoantibodies with diagnostic ability and as potential targets

for therapy (30, 128, 190, 196, 197). In this sense, PIM1, STK4,

CSNK1A1L, ALK, and ECPKA, are currently under investigation as

therapeutic targets with specific inhibitors under development, or

commercialized drugs have been developed, as for ALK (28, 198,

199). On the other hand, tyrosine kinase signaling is switched off by

tyrosine-phosphatases. The phosphotyrosine phosphatase receptor

(PTPR) protein family, which comprises 21 members, is frequently

altered in cancer, with some members exhibiting oncogenic and tumor

suppressor features (200, 201). Although oncogenic PTPRs are

attractive molecules for the development of targeted therapies, the

development of PTPR inhibitors remains challenging due to the high

level of conservation in the active site of tumor suppressor and
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oncogenic PTPRs (201). Notably, among the 21 members of the

family, PTPRN and PTPRA have been reported to induce a humoral

immune response in CRC and BC patients, respectively. These proteins

are not only included in interesting autoantibody panels for diagnosis

but also proposed as therapeutic targets in both cancers (196, 202). In

this regard, PTPRN overexpression has been reported in advanced

CRC andmetastatic CRC cells to the liver. The fact that the depletion of

this protein abrogates the liver colonization properties of CRC cells

makes PTPRN an interesting therapeutic target for metastatic

CRC (202).

Finally, with the aim to enhance tumor autoantibody potential to

develop specific antigenic/antibody repertoires as cancer vaccines

based on the observation that mutated tumor suppressors such as

p53 served as primers for T cell–mediated and antibody driven

responses (203), several therapeutic pan-cancer vaccines based on

TAAs have been evaluated in different phases of clinical trials

addressing different cancer malignancies, as NY-ESO-1, Survivin, or

MAGEA1 in different cancer types (204, 205). In BC, the majority of

TAAs studied as BC vaccines are the HER2 protein and other HER2-

derived peptides (204), MUC-1 (206), and a number of cancer testis

antigens including KK-LC-1, NY-ESO-1, and MAGEA1 (204), with

NY-ESO-1, andMAGEA1 asmajor TAAs also in LC (99, 105, 106). In

LC, immunotherapy has emerged as a standard of care for stage III-IV

non-small cell LC (207). Regarding vaccines based on specific LC

TAAs, besidesNY-ESO-1 andMAGEA1 analyses,MAGEA4has been

analyzed as a universal immunoprevention cancer vaccine (208), and

Survivin has been the target of long synthetic peptide (205). In PC,

several vaccines based on autoantigens target of autoantibodies have

also undergone clinical trials. In this sense, although several vaccines

composed of peptides against TAAs highly expressed in PC have been

clinically analyzed in phase I and phase II studies, it has been preferred

the analysis of individualized polypeptide vaccines (209). Regarding

vaccines based on specific PCTAAs target of autoantibodies, although

PC vaccines should be particularly promising treatment options

because PC develops slower than most cancers (209), only the

analyses of NY-ESO-1 or Survivin have been also reported as cancer

vaccines based onTAAs target of autoantibodies, with noother studies

related to the TAAs discussed here as more specific of PC. Finally, in

CRC several TAAs target of autoantibodies have been widely explored

in clinical trials as cancer vaccines as CEA, andMAGE (210), together

withother pan-exploredTAAs indifferent cancers asMUC1,EGFR,or

Survivin (211).

However, till now these approaches have shown little

correlation with favorable clinical outcomes (212). This suggests

more personalized treatments should be tried based on the

individual autoantibody profiles of the patients, or by using those

TAAs appearing in multiple reports as cancer-type specific

vaccines, besides current therapeutic strategies. Alternatively,

these results could also importantly suggest using the humoral

immune response in cancer patients to identify those target proteins

of cancer autoantibodies prone to become cancer-specific

therapeutic targets for development of more personalized

therapies or for the development of autoepitope immunotherapies

approaches for personalized therapy. Therefore, there is still room

for the development of cancer specific vaccines based on TAAs

target of autoantibodies.
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6 Conclusions/emergent diagnostic
platforms and future prospects

Although the identification of TAAs is yet to be completed by

combining the various approaches described here, especially for the

most prevalent cancers (BC, LC, CRC, and PC), cancer autoantigens

are currently a viable strategy for cancer diagnosis and prognosis,

particularly at very early stages of the disease. Moreover, an

important point to have also in mind is that several autoantibodies

exist in different cancer malignancies, as p53, NY-ESO-1, MUC1,

MAGEA1, or Survivin, and thus autoantibodies and their target

TAAs should be tested using plasma or serum samples from a battery

of different cancer malignancies to determine their exact specificity.

In this sense, few studies demonstrate the specificity of different

TAAs using samples from different malignancies (20, 38), and thus

demonstrating the specificity of the TAAs to a specific cancer type.

The immune system’s ability to detect minor protein alterations

makes the strategy of monitoring the humoral immune response of

individuals at high risk of developing cancer very promising. In this

sense, it should be recommendable to include in the same diagnostic/

prognostic panel, promiscuous cancer specific autoantibodies as p53,

MUC1, NY-ESO-1, MAGEA1, and Survivin, among others, together

with specific autoantibodies of different cancer types as HER2 or

BRCA2 in BC, SOX2, or GBU4-5 in LC, AMACR, or PARK7 in PC,

and CEA, PIM1, or GTF2B in CRC to be able to detect not only

cancer but its exact localization. Thus, this strategy could be used for

the classification of cancer patients and for defining potential

individual targets of intervention as a first step towards

personalized medicine. The minimal invasiveness required for

obtaining serum or plasma should facilitate the implementation of

cancer autoantibodies in routine health analyses.

This is of particular relevance when measured through novel

multiplexed methodologies that are POC-like and compatible with

clinical settings, as they require low volumes of biological samples and

are not time-consuming (20, 38, 41, 42). These latter methodologies as

SIMOA or biosensing approaches as electrochemical bioplatforms are

at the forefront of modern detection techniques. Their high selectivity

and sensitivity, ease of use and low cost together with their fast

response time and feasibility to operate at the multiplexed and

multiomics level either in centralized or field settings owed the

possibility to implement them in clinics for the analyses of

autoantibody panels. Indeed, in this sense, biosensing approaches

for autoantibody detection in chronic diseases have been reported (42,

213, 214), including CRC (20, 38, 41). Therefore, it is expected that in

the following years multiplexed biosensing approaches will be

implemented for population screening and/or clinical routine to

detect different cancer types with just a blood test. This would allow

to identify patients at early clinical stages to improve cancer patient

survival rates, resulting at the same time in significant savings for

National Health Systems, as it is considerably cheaper to treat cancer

patients at early and curable stages than at advanced stages where

patient survival is compromised. This is in contrast to other invasive

or costly screening methods, such as imaging approaches as

mammography, or colonoscopy -among others-, which cannot be

implemented for global population screening.
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Finally, the ultimate endorsement for the use of autoantibodies for

cancer diagnosis and monitoring will come from clinical trials. In this

regard, there are currently in the market kits based on the identification

of LC autoantibodies for early detection of LC (104, 215), and one

recently approved in the US for the detection of BC -the Videssa Breast

test- through the detection of serum protein biomarkers and TAAbs

with >98% accuracy in women with suspicious imaging findings (81,

83). Therefore, it is expected the arrival to the market of other tests

based on autoantibodies or in combination with other multiomic

markers for the detection of the most prevalent cancers. Moreover,

although more research is still needed in these areas, completing the

cancer autoantibodyome, irrespective of diagnosis, monitoring, or

patient prognosis, should also aid in identifying therapeutic targets

for intervention and therapy monitoring.
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