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Enrichment of novel CD3+F4/80
+ cells in brown adipose tissue
following adrenergic stimulation
Hee-Don Chae* and Jelena Levi*

CellSight Technologies Incorporated, San Francisco, CA, United States
Macrophages play a multifaceted role in maintaining tissue homeostasis, fighting

infections, and regulating cold-induced thermogenesis. The brown adipose

tissue (BAT) is crucial for maintaining body temperature during cold exposure.

Cold stress triggers the sympathetic nervous system to release norepinephrine

(NE), which activates BAT via b3-adrenergic receptors, initiating lipolysis and

glycolysis. BAT-infiltrating macrophages can either hinder or enhance

thermogenesis by controlling the interplay between BAT cells and sympathetic

nerves. In this study we report on a unique population of CD3+F4/80+ dual

lineage co-expressing (DE) cells within the interscapular BAT (iBAT), that

increased following chronic adrenergic stimulation. In forward scatter/side

scatter plots, they formed a cluster distinct from lymphocytes, appearing larger

and more complex. These CD3+F4/80+ DE cells demonstrated the lack of T cell

markers CD62L and TCRb and expressed higher levels of Ly6C, F4/80, and CD11b

markers compared to T cells and CD3- macrophages. Furthermore, analysis

revealed two subpopulations within the CD3+F4/80+ DE population based on

MHCII expression, with the proportion of MHCII-low subset increasing with

adrenergic stimulation. This novel DE population within iBAT, unequivocally

identified by the its unique surface marker profile, warrants further

invest igat ion into the intr icate mechanisms governing adapt ive

thermogenesis regulation.
KEYWORDS

macrophage, dual lineage, brown adipose tissue, thermogenesis, sympathetic nerve
Introduction

Adipose tissue (AT), primarily composed of adipocytes (fat cells), serves as a dynamic

immune and endocrine organ, while also playing essential roles in controlling energy and

glucose homeostasis. Within AT, a diverse array of cell populations, including connective

tissues, stromal vascular cells, endothelial cells, nerve tissue, lymphocytes, and other

inflammatory cells, contribute to its various immunological and physiological functions

(1–4). White adipose tissue (WAT), distributed throughout the body, predominantly

functions in energy storage. Conversely, brown adipose tissue (BAT), found in specific
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highly vascularized and innervated deposits like the interscapular

region, is specialized for energy dissipation through non-shivering

heat production. This thermogenic process is vital for maintaining

body temperature homeostasis (1, 5). BAT adipocytes are

characterized by small multilocular lipid droplets and a higher

abundance of cristae-dense, fragmented mitochondria expressing

uncoupling protein 1 (UCP1). These features enable increased rates

of lipolysis and oxidative energy production. UCP1 functions by

uncoupling respiration from ATP synthesis, dissipating the proton

gradient across the inner mitochondrial membrane and generating

heat. Cold exposure stimulates the thermogenic activity of BAT by

triggering the release of norepinephrine (NE) from sympathetic

nerve terminals. NE activates BAT thermogenesis via the b3-
adrenergic receptor on adipocytes, thereby promoting lipolysis

and UCP1 activation (3, 6, 7).

BAT harbors a diverse spectrum of immune cells, including

macrophages, monocytes, neutrophils, eosinophils, dendritic cells,

mast cells, T cells, B cells, natural killer cells, and innate lymphoid

cells (3, 5). These immune cells play an active role in regulating the

thermogenic activity of BAT, and metabolic stress has been shown

to alter the immune landscape within BAT (5, 8–10). Prolonged

cold exposure-induced BAT adipogenesis is associated with the

recruitment of myeloid cells, particularly macrophages, into BAT

(3, 9, 10).

Macrophages, crucial tissue-infiltrating immune cells, play

pivotal roles in innate immunity, inflammation, homeostasis,

tissue repair and remodeling, clearance of cellular debris, and

metabolic regulation owing to their heterogeneity, plasticity, and

polarization (11–13). In obesity, macrophages become the

predominant infiltrating cells in WAT, driving inflammation and

influencing systemic energy homeostasis (14). Macrophages

constitute a major portion of the immune cells in BAT that

accumulate during BAT expansion by cold exposure (7, 9, 15).

Recent findings indicate that macrophages regulate the thermogenic

activity of BAT through various mechanisms (7, 16). The

accumulation of pro-inflammatory M1 macrophages, for instance,

suppresses the induction of thermogenic adipocytes in obese

adipose tissues via TNFa (17). CD206-positive BAT macrophages

were found to eliminate damaged mitochondria during cold

exposure, ensuring optimal BAT thermogenesis (15).

Interestingly, macrophages have been shown to control

thermogenesis by modulating the interaction between BAT cells

and sympathetic nerves (18–21). The roles of macrophages in

controlling the sympathetic nervous system and b3- adrenergic

receptor activation are complex and context-dependent.

Macrophages expressing solute carrier family 6 member 2

(Slc6a2) play an inhibitory role in thermogenesis by eliminating

NE through the NE transporter Slc6a2 and the NE-degrading

enzyme monoamine oxidase A (18, 20). On the other hand,

macrophages expressing methyl-CpG-binding protein 2 are

critical for the local NE signaling, supporting optimal UCP1

expression and BAT thermogenesis (21). Since BAT activation

triggers dramatic changes in the composition of its macrophage

subsets (9, 15, 22), understanding the phenotypes and functions of

these distinct populations is essential to elucidate the regulatory

mechanisms of adaptive thermogenesis. To this end, we performed
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in-depth immunophenotyping of BAT-infiltrating immune cells

following the prolonged activation of b3-adrenergic receptor.
In this study, we identified a novel CD3+F4/80+ dual lineage

co-expressing (DE) population in the interscapular BAT (iBAT)

using multi-parameter flow cytometry. Notably, CD3+F4/80+ DE

cells were found to be enriched following prolonged

adrenergic stimulation.
Materials and methods

Cell preparation

C57BL/6J mice, aged 6 to 9 weeks, were procured from The

Jackson Laboratories in Bar Harbor, ME. The ß3-adrenergic receptor

agonist BRL37344 (Tocris Bioscience, Minneapolis, MN) or PBS was

administered intraperitoneally to mice at a dose of 10 mg/kg body

weight for four consecutive days. Two hours after the last

administration, the animals were euthanized. Murine experiments

were reviewed and approved by the University of California, San

Francisco Institutional Animal Care and Use Committee. For

preparing cells from iBAT, the tissue was finely minced with scissors

in M199 buffer (M199 media from Life Technologies, Grand Island,

NY, containing 2% BSA and 2.5 mM glucose). Subsequently, the

chopped iBAT samples were subjected to digestion with 1 mg/ml

collagenase D (Sigma, St. Louis, MO) and 20 U/ml DNase I (Sigma) at

37°C in a shaking incubator for 30 minutes. The digested tissue was

then filtered through a 150-mm cell strainer, and the resulting cell

suspension was centrifuged at 350 × g for 5 minutes. The pelleted

stromal vascular fraction (SVF) cells were treated with red blood cell

lysis buffer (Invitrogen, Eugene, OR). Bone marrow (BM) cells were

collected from the femur. Whole BM was flushed by centrifugation at

3,000g for 1 minute. The pellet was suspended in red blood cell lysis

buffer to remove red blood cells for 1 minute at room temperature.

Cells were washed again with M199 buffer.
Flow cytometry

Single-cell suspensions were Fc-receptor blocked with Fc-

receptor blocker (BioLegend, San Diego, CA) before staining with

fluorochrome-conjugated antibodies. The following fluorochrome-

conjugated antibodies were used: Alexa Fluor® 488 anti-mouse

CD3e (#100321), Brilliant Violet 510™ anti-mouse CD4 (#100449),

PerCP/Cyanine5.5 anti-mouse CD8a (#100734), PerCP/Cyanine5.5

anti-mouse CD9 (#124818), Brilliant Violet 711™ anti-mouse

CD11c (#117349), Brilliant Violet 785™ anti-mouse CD25

(#102051), APC anti-mouse CD31 (#102410), PE/Cyanine7 anti-

mouse CD34 (#119326), Alexa Fluor® 700 anti-mouse CD45.2

(#109822), PE anti-mouse CD69 (#104508), PE/Cyanine7 anti-

mouse CD127 (IL-7Ra) (#135014), PE/Dazzle™ 594 anti-mouse

F4/80 ($123156), Brilliant Violet 650™ anti-mouse Ly-6C

(#128049), PE anti-mouse Ly-6G (#127607), Brilliant Violet

605™ anti-mouse NK-1.1 (#108753), Brilliant Violet 650™ anti-

mouse NK-1.1 (#108736), Brilliant Violet 605™ anti-mouse CD279

(PD-1) (#135220), Brilliant Violet 711™ anti-mouse TCR b chain
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(#109243, Biolegend). Cells were stained with DAPI (100ng/ml,

Sigma) to exclude dead cells. Samples were acquired with Attune

NxT flow cytometer (Invitrogen, Carlsbad, CA). Flow cytometry

data were analyzed using FlowJo software (v10.01, TreeStar,

Ashland, OR, USA). t-distributed stochastic neighbor embedding

(tSNE) plots were generated with default FlowJo setting.
Statistical analysis

All data were reported as the mean ± standard deviation (SD). P

values for statistical significance were obtained by using an unpaired

Student t test or one-way ANOVA using Prism software (GraphPad

Software, La Jolla, CA, USA). P ≤ 0.05 was considered significant. In

the figures, asterisks denote statistical significance (* P ≤ 0.05, ** P ≤

0.01, *** P ≤ 0.001, **** P ≤ 0.0001).
Results

Enrichment of novel CD3+F4/80+ DE
population in adrenergically
stimulated iBAT

We explored changes in the immune landscape of iBAT that occur

after prolonged adrenergic stimulation using multi-parameter flow

cytometry. Notably, we identified a previously unreported CD3+F4/80

+ DE cells among live CD45-positive iBAT SVF hematopoietic cells.

Along with percentages of CD3-F4/80+ macrophages and CD3+F4/

80- T cells, the frequency of CD3+F4/80+ subset in iBAT SVF

increased approximately threefold after adrenergic stimulation

(Figure 1A). Our analysis extended to examination of the expression

of surface T cell markers (TCRb, CD4, and CD8) on CD3+F4/80+

cells. While CD3+F4/80- T cells were identified as TCRb+CD4+ or

CD8+ single positive (SP) T cells, CD3+F4/80+ DE population was

characterized as TCRb-CD4+CD8+ cells (Figure 1B). Given that

regulated BM adipocytes respond to various physiological

conditions in the red marrow, including b-adrenergic stimulation

(23, 24), we also investigated the presence of CD3+F4/80+ DE cells in

the femur BM. The BM also harbored a population of CD3+F4/80+

DE cells, but both this population and the CD3-F4/80+ macrophage

population declined with b-adrenergic stimulation (Supplementary

Figure 1A). Notably, only one third of the BM CD3+F4/80+

population consisted of TCRb-CD4+CD8+ cells, exhibiting the

highest F4/80 surface expression (Supplementary Figure 1B).

Interestingly, CD3+F4/80+TCRb-CD4+CD8+ subpopulation

decreased following b-adrenergic stimulation, whereas CD3+F4/80

+TCRb+ cells did not (Supplementary Figure 1C).
The CD3+F4/80+ DE population exhibits a
distinct flow cytometry profile compared
to T cells

The iBAT CD3+F4/80+ DE cells were verified to be positioned

within the size and granularity characteristics of monocytes/
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macrophages/granulocytes (Top plot, Figure 2A). Macrophages

lacking CD3 expression exhibited the formation of two distinct

clusters in the forward scatter and side scatter plot. Within these,

CD3+F4/80+ DE cells clustered, displaying bigger and more

granular cellular structures compared to lymphocytes (Top plot,

Figure 2A). To confirm that CD3+F4/80+ DE cells constitute a

distinct population separate from normal T cells and macrophages,

we further examined the expression of surface markers

characteristic of T/NK cells on CD3+F4/80+ DE cells.

Multidimensional flow cytometry analysis of CD45+ iBAT SVF

hematopoietic cells was performed, and subsets of CD3+F4/80+ DE

cells, CD4+ T cells, CD8+ T cells, and CD3- macrophages were

visualized in a tSNE plot with a set of 12 T/NK cell-associated

markers (CD45, CD3, CD4, CD8, CD62L, CD44, CD25, CD127,

CD69, PD1, NK1.1, and F4/80), demonstrating distinct clusters in a

tSNE plot (Bottom plot, Figure 2A). The CD3+F4/80+ subset was

characterized by positive expression of CD45.2, CD3, F4/80, CD4,

CD8, and the absence of TCRb, as shown in tSNE plots overlaid

with heatmaps of each marker (Figure 2B). This finding was

consistent with two-dimensional dot plot analysis (Figures 1A, B).

Further supporting their distinct identity, CD3+F4/80+ DE cells

displayed expression levels of CD45.2, a ubiquitous pan-leukocyte

marker, comparable to T cells and CD3- macrophages (Figure 2B).

The absence of significantly elevated CD45.2 expression in CD3

+F4/80+ DE cells disfavors the hypothesis that they represent mere

aggregates of T cells and macrophages. Population overlays revealed

differential marker expression, with higher NK1.1 median

fluorescence intensity (MFI) in CD3+F4/80+ DE cells compared

to T cells and CD3- macrophages. Notably, CD3+F4/80+ DE cells

exhibited a significant decrease in CD127 and CD62L expression

compared to T cells. The MFI for CD44 was increased in CD3+F4/

80+ DE cells compared to T cells, but slightly lower than in CD3-

macrophages (Figure 2C). CD3+F4/80+ DE cells did not express

CD25, PD1, and CD69.
CD3+F4/80+ DE cells display a unique
expression pattern of myeloid cell markers

To further characterize the CD3+F4/80+ DE subset, we

conducted a comprehensive analysis of differential expression

involving surface markers commonly associated with myeloid/

lymphoid cells (CD45, F4/80, CD11b, CD11c, CD9, CD31, CD34,

Ly6C, Ly6G, MHCII, CD3 and NK1.1). tSNE gating overlays and

density plots for CD11b, Ly6C, and MHCII revealed distinct

segregation of iBAT CD3+F4/80+ DE cells (CD45+CD3+F4/80

+CD11b+MHCII+) from T lymphocytes and CD3- macrophages

(Figures 3A, B). Additionally, CD3+F4/80+ DE cells displayed

distinct expression patterns for various markers compared to

lymphocytes and macrophages (Figure 3C), providing further

insight into their unique identity. While CD3+F4/80+ DE cells

exhibited increased expression of CD9, Ly6C, MHCII, CD11b,

CD11c, and F4/80 compared to lymphocytes and macrophages,

the expression level of CD31 in CD3+F4/80+ DE cells was lower

than that in lymphocytes and macrophages. Furthermore, they

tested negative for Ly6G and CD34. The CD3+F4/80+ DE
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FIGURE 1

Enrichment of CD3+F4/80+ DE cells in adrenergically stimulated iBAT SVF. iBAT SVF were collected from mice treated with the b3-adrenergic
agonist BRL37344 (10mg/kg) for 4 days. (A) Gating strategy to distinguish CD3+F4/80+ DE cells from T cells (CD3+ F4/80-) and macrophages (Mj)
(CD3-F4/80+) in iBAT SVF. Single, live, CD45+ hematopoietic cells were gated, and CD3+F4/80+ DE, CD3+ F4/80- T cells, and CD3-F4/80+ Mj
were identified. Representative FACS density plots indicate proportions of CD3+F4/80+ DE, CD3+ F4/80- T cells, and CD3-F4/80+ Mj within CD45
+ hematopoietic cells. The frequencies of T cells, macrophages, and DE cells are plotted as a percentage of the total live iBAT SVF cells. (B)
Characterization of T cells, macrophages, and CD3+F4/80+ DE cells based on the surface expression of CD4, CD8 (top panels), and TCRb (bottom
panels). CD3+F4/80+ DE cells expressed both CD4 and CD8 but lacked TCRb expression. Each data point represents an individual mouse. Data are
presented as mean ± SD (n = 5). * P ≤ 0.05, ** P ≤ 0.01, **** P ≤ 0.0001.
Frontiers in Immunology frontiersin.org04
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population in iBAT exhibits further heterogeneity. Analysis

revealed two distinct subpopulations based on their MHCII

expression levels: MHCII-low and MHCII-high (Figure 3C).

Considering that MHCII expression in macrophages tends to be

downregulated after injury to facilitate tissue repair (25, 26), we

investigated whether chronic adrenergic stimulation could

influence MHCII expression in CD3+F4/80+ DE cells. Our

findings demonstrate a significant increase in the proportion of

the MHCII-low subset within the CD3+F4/80+ population

following chronic adrenergic stimulation (Figure 4A). Both

MHCII-high and MHCII-low CD3+F4/80+ DE populations

increased in iBAT SVF following adrenergic stimulation.
Frontiers in Immunology 05
However, while the frequency of MHCII-high CD3+F4/80+ DE

cells remained unchanged in the CD45+ iBAT hematopoietic

population, the frequency of MHCII-low CD3+F4/80+ DE cells

more than doubled (Figure 4B). This indicates that the ratio of

MHCII-high to MHCII-low CD3+F4/80+ cells shifted towards the

MHCII-low phenotype after BRL37344 administration. Notably,

the MHCII-low subset displayed a marked upregulation of CD9 and

Ly6C markers compared to their MHCII-high counterparts

(Figure 4C). In summary, our results show that extended

adrenergic stimulation significantly increases novel iBAT CD3

+F4/80+ DE population, particularly those expressing low levels

of MHCII.
FIGURE 2

Defining immunophenotype of CD3+F4/80+ DE cells with T/NK cells-related markers. (A) A representative FSC/SSC plot (top) and tSNE flow
cytometry plot (bottom) displaying the color-coded subsets for CD45+ subsets of iBAT SVF from BRL37344-treated mice. The gating strategy for
CD45+ subsets in iBAT SVF is described in Figure 1. The ungated population (yellow) remains unidentified by these definitions. CD45+ subsets were
overlaid onto a tSNE plot, and clustered on CD45+ cells of adrenergically stimulated iBAT SVF. The tSNE flow cytometry plot was based on the
surface expression of markers including CD45, CD3, CD4, CD8, CD62L, CD44, CD25, CD127, CD69, PD1, NK1.1, and F4/80. (B) Color scaling of the
tSNE plots visualizing the relative surface expression levels of CD45.2, CD3, CD4, CD8, TCRb and F4/80 in iBAT SVF CD45+ cells. (C) Expression
levels of T cell or NK cell-associated markers in CD3+F4/80+ DE cells (red), CD4+ SP T cells (green), CD8+ SP T cells (cyan), and macrophages
(blue). Representative histograms (top panels) and quantification of surface marker expression (measured as MFI) for each population. Each data
point represents an individual mouse. Data are shown as mean ± SD (n = 5). * P ≤ 0.05, **** P ≤ 0.0001.
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Discussion

Our investigation reveals a novel DE population co-expressing

CD3, CD4, CD8, CD11b, F4/80, and lacking TCRb and Ly6G

within iBAT. This unique marker expression profi le ,

encompassing features of both lymphocytes and myeloid cells,

distinguishes them from conventional macrophages and T cells,

leading us to designate them as a distinct myeloid subset.

Prior studies have identified rare myeloid populations expressing

dual markers associated with both lymphocytes and myeloid cells,
Frontiers in Immunology 06
including CD19+CD11b+ B cells in mouse brain, TCRab+CD11b+
mouse macrophages and TCRab+CD14+ human macrophages in

the tumor microenvironment, and CD3+CD45+CD68+CD11b+C1q

+ tumor-associated macrophages, CD3+TCRab+CD11b+ and CD3

+TCRab-CD11b+ macrophages during a Plasmodium berghei

ANKA infection, CD3+CD19+ cells in human immunodeficiency

virus-Mycobacterium tuberculosis coinfection, CD3-CD4+CD8

+CD11c+CD80+MHCII+CD68+CD163+CD25-CD103-CD49b-

monocytes/macrophages in T-cell leukemia virus type-I pX

transgenic rats (27–35). Notably, the surface marker profile of these
FIGURE 3

Further characterization of CD3+F4/80+ DE cells with myeloid cell-associated markers. (A) A tSNE plot annotated with CD3+F4/80+ DE cells, T cells
(CD3+ F4/80-), and macrophages (CD3- F4/80+) of adrenergically stimulated iBAT SVF, demonstrating that CD3+F4/80+ DE cells do not fall into
the lymphocytes and macrophage populations. Clustering was performed using 12 markers including CD45, CD3, F4/80, CD11b, CD11c, CD9, CD31,
CD34, Ly6C, Ly6G, MHCII, and NK1.1. (B) Color scaling of the tSNE plots illustrating the relative intensity of CD11b, Ly6C, and MHCII in iBAT SVF
CD45+ cells. (C) Expression of myeloid cell-associated surface markers for CD3+F4/80+ DE cells (red), T cells (cyan), and macrophages (blue) in
adrenergically stimulated-iBAT SVF cells. Each data point represents an individual mouse. Data are presented as mean ± SD (n = 5). ** P ≤ 0.01,
**** P ≤ 0.0001.
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previously reported DE cells differs from that of CD3+F4/80+

population identified within iBAT.

Recently, Burel et al. elucidated that the detection of unexpected

subsets expressing lineage markers of distinct populations, such as CD3

+CD14+ cells, may be attributed to various factors, including the

formation of cell-cell complexes, where T cells are closely associated

with debris derived from myeloid cells, or the phenomenon of

trogocytosis, wherein T cells acquire membrane fragments from

myeloid cells (36, 37). Our data contrasts these observations. CD3
Frontiers in Immunology 07
+CD14-high cells from latent tuberculosis patients displayed elevated

forward scatter/side scatter and CD45 fluorescence, lacked distinct

surface markers, and resembled both T cells and monocytes. In

contrast, iBAT CD3+F4/80+ DE cells resided within the same FSC/

SSC region as CD3-F4/80+ macrophages, exhibited comparable

expression level of CD45 and expressed distinct levels of lymphocyte

and myeloid markers, differentiating them from classical immune cells.

Therefore, our findings suggest that iBAT CD3+F4/80+ DE cells

represent a distinctive myeloid population rather than artifacts of
FIGURE 4

Increase of MHCII-low CD3+F4/80+ DE cells in iBAT following adrenergic stimulation. (A) CD3+F4/80+ DE cells from iBAT were plotted onto
MHCII/CD45.2 histogram. The proportion of MHCII-low subset in CD3+F4/80+ DE population increased with chronic adrenergic stimulation. (B)
The frequencies of MHCII-high and MHCII-low CD3+F4/80+ DE cells subsets are depicted as a percentage of CD45+ or total live iBAT SVF cells. (C)
Expression levels of CD9 and Ly6C in CD3+F4/80+ MHCII-low DE cells (red) and CD3+F4/80+ MHCII-high DE cells (cyan). Quantification of MFI of
CD9 and Ly6C expression in CD3+F4/80+ MHCII-low and MHCII-high macrophages. Each data point represents an individual mouse. Data are
shown as mean ± SD (n = 5). * P ≤ 0.05, ** P ≤ 0.01, **** P ≤ 0.0001.
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cell-cell interactions. The presence of iBAT CD3+F4/80+ cells

expressing dual lineage markers has not been reported thus far,

primarily because T cell (CD3) lineage marker-positive cells are

typically gated out early in the analysis of myeloid populations (36).

Previous research has demonstrated an age-dependent increase in

MHCII expression on macrophages within iBAT, heart, and kidney

tissues (21, 25, 26). Following injury, MHCII low expressing

macrophages become dominant to facilitate debris removal and tissue

repair in heart and kidney (25, 26). Notably, MHCII-low macrophages

are the primary population following myocardial infarction and exhibit

enhanced phagocytic activity and strong anti-inflammatory properties

crucial for cardiac tissue repair (25). Cold exposure, while suppressing

the F4/80+MHCII-high population, conversely promotes an increase in

anti-inflammatory MHCII-dim macrophage subset (9). Our study

aligns with these findings, as prolonged adrenergic stimulation in

iBAT resulted in an elevated proportion of MHCII-low CD3+F4/80+

DE cells (Figure 4). Given that phagocytic macrophages accumulate in

BAT during cold exposure to eliminate oxidatively damaged

mitochondria-derived extracellular vesicles, thereby maintaining

optimal thermogenesis (15), MHCII-low CD3+F4/80+ DE cells likely

play a critical role in preserving thermogenic capacity of BAT.

Taken together our results suggest a link between adrenergic

stimulation, MHCII downregulation, and the expansion of a

specific myeloid subset within BAT. Further investigation into the

function of these distinct subpopulations is crucial for

understanding their contribution to thermogenesis regulation.
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