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Triple-negative breast cancer (TNBC) stands as the most complex and daunting

subtype of breast cancer affecting women globally. Regrettably, treatment

options for TNBC remain limited due to its clinical complexity. However,

immunotherapy has emerged as a promising avenue, showing success in

developing effective therapies for advanced cases and improving patient

outcomes. Improving TNBC treatments involves reducing side effects,

minimizing systemic toxicity, and enhancing efficacy. Unlike traditional cancer

immunotherapy, engineered nonmaterial’s can precisely target TNBC, facilitating

immune cell access, improving antigen presentation, and triggering lasting

immune responses. Nanocarriers with enhanced sensitivity and specificity,

specific cellular absorption, and low toxicity are gaining attention.

Nanotechnology-driven immunoengineering strategies focus on targeted

delivery systems using multifunctional molecules for precise tracking,

diagnosis, and therapy in TNBC. This study delves into TNBC’s tumour

microenvironment (TME) remodeling, therapeutic resistance, and

immunoengineering strategies using nanotechnology.
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Introduction

Breast cancer is developing in the breast tissue. It is one of the

most common forms of cancer in women but can also be found in

men, albeit less frequently (1). Breast cancer can originate in various

parts of the breast, including the milk ducts, lobules, or connective

tissue (2). Triple-negative breast cancer (TNBC) is a highly aggressive

subtype with significant intra-tumoral heterogeneity that often

develops resistance to treatments (2). TNBC are classified into six

subgroups: immunomodulatory, mesenchymal, luminal androgen

receptor, basal-like 1, basal-like 2, and mesenchymal stem cells,

based on the results of the transcriptome analysis (Figure 1).

Tumour heterogeneity and a lack of biomarkers offer significant

hurdles in overcoming treatment resistance and relapse (3).

The tumour immune microenvironment (TIME) is made up of a

wide range of immune cells, as well as stromal cells, which contribute

to its heterogeneity (3). The TIME composition changes throughout

tumour growth and progression, as well as anti-tumor treatment (2,

3). In addition to the extracellular matrix (ECM), immune cells that

are present in the tumour microenvironment (TME) and play a part

in the development and spread of tumour necrosis include

fibroblasts, antigen-presenting cells, and tumour-infiltrating

lymphocytes (TILs) (4, 5).

Reprogramming the cellular physiology and avoiding immune

damage are two recently identified signs of potential universality that

have arisen in the last ten years (5). The body’s immune responses are

enhanced and encouraged by tumour immunotherapy, which has the

impact of eliminating tumours. It has emerged as an important anti-

tumour therapy approach with significant clinical effectiveness and

advantages over radiation, chemotherapy, and selective therapy.
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Current therapies used in clinical practice for the treatment of

TNBC are shown in Table 1 (6).

Although a variety of tumour immunotherapeutic medicines

have been developed, their broad use has been constrained by

difficulties in their administration, including poor tumour

permeability and low tumour cell absorption rates (7). Due to their

targeting abilities, biocompatibility, and functions, nonmaterials have

recently become a viable option for treating a variety of disorders (8).

Additionally, nanoparticles have a number of qualities that make up

for the shortcomings of conventional tumour immunotherapy, such

as high drug loading capacity, effective tumour targeting, and ease of

modification, which has led to the widespread use of nanomaterials in

tumour immunotherapy (8). With the development of novel and

potent therapies like checkpoint blockade therapy and CAR T-cell

therapy that have significantly improved patient outcomes,

immunotherapy has achieved clinical success in the past ten years.

However, these treatments can be made more effective overall, reduce

systemic toxicities, and reduce off-target effects (9). Different types of

immune cells, such as dendritic cells for immunisation or T cells for

enhancing adaptive immunity, can be targeted and modified by

adjusting the nanomaterial’s features, such as size, shape, charge,

and surface chemistry (10).

Currently, immunotherapy is a novel option for many solid

tumours that have failed conventional therapies. There are various

immunotherapeutic options available, including immunocheckpoint

inhibitors (ICIs), inhibitors of cytotoxic T-lymphocyte-associated

antigen 4 (CTLA-4) and programmed death receptor-1 (PD-1), as

well as inhibitors of programmed death receptor-ligand 1 (PD-L1)

(11). Due to its low tumour mutation burden and restricted T-cell

infiltration, breast cancer has traditionally been regarded as a “cold”
FIGURE 1

The expression of hormone receptors (progesterone receptor (PR) and oestrogen receptor (ER), the proliferation marker Ki-67, and the receptor
tyrosine kinase HER2 can be used to classify breast cancer subtypes. Certain breast cancer subtypes can be treated with targeted medications like
Tamoxifen, which targets the ER, and Herceptin, which targets the HER2 protein. The prognosis differs according on the kind of breast cancer.
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tumour. However, TNBC shows a larger amount of infiltrating

lymphocytes, creating an advantageous immunological milieu for

the possible application of ICIs (12).
Remodeling of tumour
microenvironment in TNBC

Multiple immunological and non-immune cell types contribute

to long-lasting inflammation and localised immune suppression in

this immune-modified milieu, allowing malignant cells to divide

and mutate without being recognised and stopped by the host’s
Frontiers in Immunology 03
defense system (13). The TME is essential for the growth, spread,

and therapeutic response of tumours (14). Creating cancer

medicines that work requires an understanding of the TME (15).

There is substantial variability in TME among the various subtypes

of TNBC (16). These immune cells have the ability to aid immune

evasion and tumour progression (17). Through the release of

angiogenic substances, including vascular endothelial growth

factor (VEGF), the TME can encourage angiogenesis (Figure 2)

(18). Increased angiogenesis can feed the tumor with nutrients and

oxygen, promoting growth and metastasis. There are various

mechanisms by which tumours avoid immune recognition (19).

TME is made up of different cell types, including fibroblasts, blood
TABLE 1 Therapies used in clinical practice for the treatment of TNBC.

S. N. Current treatment options Molecular classification of TNBC TNBC subtype

1 Anti-AR treatment (Bicalutamide, Enzalutamide)Anti-
AR treatment (Bicalutamide, Enzalutamide)

High expression of the androgen receptor (AR) leads to increased hormone
receptor signalling, including androgen/estrogen metabolism. High expression
of the androgen receptor (AR) leads to increased hormone receptor signalling,
including androgen/estrogen metabolism.

Luminal Androgen
Receptor (LAR)

2 mTor inhibitors (rapamycin), growth factor inhibitors
(lapatinib, gefitinib, and cetuximab),

Cell movement pathways are activated, extracellular matrix (ECM)
interactions increase, and differentiation processes (Wnt and TGF-b)
are dysregulated.

Mesenchymal (M)

3 Dasatinib is an inhibitor of Abl/Src, while Rapamycin
inhibits mTOR.

Reduced cell proliferation and cell cycle gene expression, while increasing
expression of stemness genes (HOX, NGF receptor, VCAM1).

Mesenchymal Stem
Like (MSL)

4 Immune checkpoint drugs targeting PDL1 or PD1
include Atezolizumab and Pembrolizumab, as well as
PARP inhibitors like Olaparib and Talazoparib.
Platinum-based chemotherapy (cisplatin)

Genes related to immune cells (Th1/Th2 pathway, IL2 and IL7 pathways, NK
cell pathway) are activated. Increased antigen presentation.

Immunomodulatory
(IM)

5 Inhibitors of PARP olaparibm,Talazoparib, Platinum
based chemotherapy cisplastin

T53 mutations and BRCA1 and BARCA2 mutation Basal -Like -1 (BL1)

6 Inhibitors of PARP olaparibm,Talazoparib, Growth
factor inhibitors (Lapatinib, Gefitinib and cetuximab)

Activation of EGFR,MET,IGF-1R,and Wnt/b- catenin signaling, Basal -Like -2 (BL2)
FIGURE 2

The formation of new blood vessels from the pre-existing vasculature is the main method of neovascularisation in tumours with their hypoxic and
necrotic regions acting as inducers of angiogenesis. When a capillary receives an angiogenic stimulus, endothelial cell basal membrane and
extracellular matrix are degraded, releasing endothelial cells from their basement membrane anchors (including integrins). This process is mediated
by metalloproteases, leading to disruption of tight junctions, vasodilation, and pericyte detachment. Existing soluble growth factors coupled with the
synthesis of a new matrix by stromal cells enable the migration and proliferation of endothelial cells.
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vessels, extracellular matrix elements (ECM), cancer cells, immune

cells, and signalling molecules. Cancer therapy can be enhanced by

modulating tumour blood vessels (Figures 2, 3) (20). The ECM, an

intricate web of proteins and glycoproteins, gives tissues structural

support (21). The ECM’s composition and stiffness may change in

TNBC, which may encourage tumour invasion and metastasis

(Figure 3) (21). Fibroblast recruitment and activation contribute

to the formation of a supportive stroma (22). Epithelial-to-

mesenchymal transition (EMT) enables cancer cell invasion and

migration (23). Angiogenesis ensures vascular endothelial growth

factor (VEGF), nutrients, and oxygen supply to the growing tumour

(24). There are various mechanisms by which tumours avoid

immune recognition. In the absence of co-stimulation, tumour

antigens are taken up and presented by APCs to tolerize T cells

(25). Antibody against tumour cell-surface antigens induces

endocytosis, degradation of the antigen, and immune selection of

antigen-loss variants (25). Factors (e.g., TGFb, IL-10, and IDO)

secreted by tumour cells directly inhibit T cells, induce T regulatory

cells, and generate the physical barrier to the immune system

(Figure 4) (26).
TAFs in remodeling of
tumour microenvironment

TAFs (Tumour-Associated Fibroblasts) can activate in TNBC and

release cytokines and growth factors that encourage tumour cell
Frontiers in Immunology 04
growth, invasion, and resistance to treatment (27). There are

frequently areas of low oxygen (hypoxia) within the TME due to the

TNBC tumours’ fast development (28). Angiogenesis, tumour

aggressiveness, and therapy resistance can all be increased by

hypoxia (29). There are six key approaches outlined, all with the aim

of boosting the effector function of NK cells and helping to target

cancer cells (30). Some, such as cytokines and immune checkpoint

inhibitors, are clinically approved, while others are still in pre-clinical

stages (31). Further work is needed to boost the efficacy of these

treatments in solid tumours (Figure 4). In addition to affecting TAMs

(Tumour-Associated Macrophages) and MDSCs (Myeloid-Derived

Suppressor Cells). activating Natural killer (NK) cells is another

approach being investigated for decreasing the immunosuppressive

microenvironment (Figure 4) (7, 32, 33). The immunological activity of

NK cells, a particular type of specialised innate lymphoid cells, is

independent of MHC-mediated antigen presentation, Acts naturally as

cytotoxic agents that inhibit the growth, migration, and colonization of

metastatic cells, fighting both primary cancer cells and metastasis (34).

Tumor Necrosis Factor Alpha (TNF-a), interferon-g (IFNg), and
different interleukins are only a few of the cytokines that NK cells

can release to control the immune response. They can also take part in

other downstream immunological pathways (35). TAMs and MDSCs

both contribute to the creation of an immunosuppressive

microenvironment. T cells and NK cells can no longer act as

immune cells when these cells are present (36). The nanoregulator

can activate MDSCs to hasten the polarisation of TAMs towards the

M1 phenotype and reactivate cytotoxic T cells to stop tumour cell
FIGURE 3

Tumour Extracellular Matrix Reduces Therapeutic Efficiency in TNBC: The tumour microenvironment (TME) comprises all components of a umor.
Of these components, the extracellular matrix (ECM) is the least well studied. Solid tumours induce high expression of ECM molecules (collagens,
proteoglycans, hyaluronic acid, and laminins), which become complex and disordered, resulting in altered haracteristics. Here, the ECM acts as a
physical barrier, reducing the delivery of therapeutics, nutrients, and immune cells to solid tumours and leading to a poorer prognosis.
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proliferation. This further delays recurrence and reduces the chance

that CTCs will establish themselves in the liver and lung thanks to the

increased production of memory T cells that suppress cancer (37).
Role of tumour microenvironment in
Immune checkpoint inhibitors

The use of immune checkpoint inhibitors as a therapeutic approach

to combat this immunosuppressive feature of the TME has been studied.

High amounts of TILs are present in some TNBCs, whichmay indicate a

better prognosis (38). Immunotherapies that stimulate TILs have

demonstrated promise for treating TNBC. Targeted treatments and

immunotherapies have been developed as a result of our growing

understanding of TME remodeling in TNBC (39, 40). Chemotherapy

and immunotherapy are ineffective primarily because of abnormalities in

the TME that act as barriers to drug transport. TNBC tissue has

significant ECM deposition and severe fibrosis, which causes tumour

vascular compression and lowers perfusion, which impairs drug delivery

(41). Cancer-associated fibroblasts (CAFs) release cytokines that

influence the ECM, epigenetic alterations, immunosuppression, and

proliferation of tumour cells (41).

TME remodelling (attractingCD4+T cells, CD8+T cells, andNK cells)

enhances the effectiveness of immunotherapy, an essential approach used

to treat breast cancer, as TILs in the TME have a direct link to the

prognosis of TNBC (42). The targets for redesigning the TME have

significance for the course of therapy and prognosis of TNBC because they

affect TAMs and dendritic cells (DCs), as well as tumour hypoxia, tumour

blood vessel modulation, CAF and ECM regulation, and CAF and ECM
Frontiers in Immunology 05
regulation (Figure) (43, 44). Through the release of cytokines, chemokines,

and ECM remodelling factors, CAFs play a crucial role in promoting

cancer progression and treatment resistance (27, 44–48). In order to kill

cancer cells and sabotage CD47-SIRPa (CD47-signal regulatory protein

alpha) connections, the hybrid cell membrane nanovesicles, or hNVs, can

interface with circulating tumour cells (CTCs) in vascular lumens and

accumulate at the site of resection (48). It has been found that gene

enrichment of IFN-g receptor, JAK2, and interferon regulatory factor 1

occurs in individuals who do not react to anti-CTLA-4 therapy.

The blockade of the PD-1 pathway brings quiescent antitumor T cells

to active life (Figure 5). The pro-tumour activity of neutrophils is blocked

by using antibodies to target CD33 in immunosuppressive neutrophils

(49–51). CXCR2 (CXC chemokine receptor 2) is inhibited by blocking the

recruitment of pro-tumour neutrophils to the TME, which blocks

activation signals such as G-CSF or TNFa and ROS production by

inhibiting contact with T cells (49, 52). We can enhance the anti-tumour

capacities of neutrophils by interfering with innate immune inhibitory

checkpoints to restore antibody-mediated anti-tumour activities, by

targeting proteins downstream of the inhibitory receptor, by using IgA-

based therapeutic mAbs that bind to the activating Fc receptors, and by

modifying the Fc region of IgG therapeutic antibodies that increases

affinity to Fc receptors, as shown in Figure 6 (53).
Adenosine and
tumour microenvironment

Adenosine, released by various cells within the tumour

microenvironment, modulates local immune responses (Figure 7).
FIGURE 4

The tumour microenvironment plays a pivotal role in TNBC-associated changes: (A) Recruitment of fibroblast and activation by and regulates the
TGFb-TNBC-associated fibroblast (TAF). (B) Epithelial-to-mesenchymal transition (EMT) occurs in TNBC (epithelial) by IL-1b, IL-6, and TNFa-to
Migratory cancer cells (mesenchymal). (C) Conversion of normal blood vessels into abnormal vessel growth by VEGF in angiogenesis. (D) Activation
of M1, M2, and CD8+ T cells in immune invasion mechanism by IL-10, TGFb, M-CSF, IL-35-M1 and M2 macrophases.
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This molecule impacts B lymphocytes, T lymphocytes, natural killer

cells, macrophages, dendritic cells, and myeloid-derived suppressor

cells, leading to immunosuppression that favours tumour growth (54).

Understanding adenosine’s role in the tumour microenvironment

provides a basis for identifying potential therapeutic targets for cancer

immunotherapy (Figure 7) (53, 54).
KRAS (Kirsten rat sarcoma
virus) Mutations

KRAS (Kirsten rat sarcoma virus) is an oncogene that is mutated in

about 25% of all cancers, but it only recently became a promising

therapeutic target for anti-cancer therapy because of significant

scientific breakthroughs (Figure 8) (1, 53, 55). KRAS encodes a

protein called K-Ras, which, when mutated, contributes to the

development of cancer through pathways that promote growth,

proliferation, and differentiation. KRAS-mutant cancers have been

difficult to treat via drugs due to the small size of K-Ras and its lack

of binding sites (55). However, recent developments have allowed

scientists to target this protein, showing how cancer treatment is

evolving to be more personalised and specific. The K-Ras protein has

a molecular ‘on/off’ switch that turns K-Ras off when bound to GDP

and on when bound to GTP (55). Mutations in the KRAS gene lock K-

Ras into the ‘on’ state, resulting in uncontrolled cell growth that leads to

cancer. It is difficult for any drug to inhibit K-Ras by outcompeting

GTP/GDP for the binding site (56). However, when K-Ras is bound to

GDP, there is a groove next to the GTP/GDP binding site that a drug

can bind to, locking K-Ras into its ‘off’ state (Figure 9) (57).

New technology is enabling the development of more targeted

and adjuvant therapies that reduce toxicity to normal cells and
Frontiers in Immunology 06
decrease the likelihood of cancer cell resistance. Multiple efforts are

underway to develop a range of combination therapies that include

vaccines, immune checkpoint inhibitors, and mutation-specific

drugs (57). These discoveries are paving the way for personalized

cancer treatments that significantly improve patient quality of life

and outcomes. The first approved targeted therapy for KRAS-

mutant cancer (57). AMG510 selectively binds to the groove on

K-Ras and a mutation nearby, locking it into its ‘off’ state. It also

increases the number of macrophages, CD3+ and CD8+ T cells, and

dendritic cells in the tumour microenvironment (58). Result in the

production of memory T cells that retain KRAS-specific antigens,

reducing the chances of cancer recurrence.

Vaccines can be combined with adjuvants, such as drugs like

AMG510 (Sotorasib), to create a stronger immune response in the

immunosuppressive tumour microenvironment (59). These

exciting new developments show how cancer treatments are

becoming more specific and personalised compared to classic

cancer therapies like chemotherapy (57). The remodelling of

TME can be achieved by either decreasing the matrix barrier or

enhancing the immunosuppressive microenvironment,

concentrating on the gut microbiota and metabolites, and

modifying immune cells and cytokines (58, 59). These methods

contribute to the improvement of TNBC anti-tumour therapy as an

entire concept by using appropriate model (60).
Preclinical models in mimic of TNBC

Preclinical models that accurately mimic TNBC aetiology are

vital for assessing new therapy options and identifying long-term

benefits for patients (60). To maximise model predictive accuracy
FIGURE 5

Blockade of CTLA-4 or PD-1 Signalling in Tumour Immunotherapy: Tumour immunotherapy has received a lot of attention since it has the potential to
improve the immune system’s ability to recognise and fight cancer cells. Researchers hope to overcome tumours’ immune evasion strategies by
suppressing CTLA-4 or PD-1 signalling pathways, thereby enhancing patient outcomes and extending therapy options. Tumour immunotherapy has
received a lot of attention since it has the potential to improve the immune system’s ability to recognise and fight TNBC cells. To overcome tumours’
immune evasion strategies by suppressing CTLA-4 or PD-1 signalling pathways, thereby enhancing patient outcomes and extending therapy options.
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while conserving time and resources, novel therapeutic strategies

are planned, taking into account preclinical studies and clinical trial

expenditures. Individualised therapies for TNBC patients are in

high demand to improve their future healthcare (60, 61). There is a

unique opportunity to use preliminary models and techniques in

laboratory studies. To study TNBC disease at lab work to identify

key genetic, transcriptomic, and proteomic players in tumour

initiation and progression and identify potential anticancer agents

for precision medicine. An ideal preclinical TNBC model should

have close histological similarities to the tumour, maintain

druggable genetic changes for targeted treatments, and be easy to

handle and grow well in vitro and in vivo (Figure 10) (60, 61).
Novel breast cancer drugs in use or in
clinical trials for the treatment
of TNBC

Numerous possible agents are undergoing various phases of

investigation and advancement. These possible agents/inhibitors

carry out their anti-tumor activity (62). An overview of the various
Frontiers in Immunology 07
inhibitor classes, including poly (ADP-ribose) polymerase (PARP),

tyrosine kinase (TK), EGFR, PI3K, heat shock protein (Hsp90),

histone deacetylase (HDAC), angiogenesis, insulin-like growth

factor (IGF), and mammalian target of rapamycin (mTOR), as

well as the mechanism of action depicted. In summary, ssDNA

break repair is the aim of poly (ADP-ribose) polymerase inhibitors

(PARPI). An 88% overall response rate was observed with the

combination of paclitaxel and olaparib (40, 63, 64).

Receptor tyrosine kinase (RTK) inhibitors have been

investigated for treatment options in TNBC. Unexpectedly, the

bulk of EGFR-TKI studies against TNBC are not encouraging,

despite the fact that EGFR is expressed in 89% of TNBC and

looks to be a viable therapeutic target (64). Since only around 10%

of TNBC has FGFR (Fibroblast Growth Factor Receptors) identified

as a therapeutic target, pan-FGFR inhibitors such alofanib and

PD173074 prevent SUM52PE from proliferating and cause

apoptosis by blocking the MAPK and PI3K signalling pathways

(65). Although bevacizumab and apatinib, which target VEGF2

(Vascular endothelial growth factor), have not shown encouraging

effects in clinical studies, VEGF expression is linked to a poor

prognosis in TNBC. On the other hand, sunitinib, an anti-VEGFR

(Vascular endothelial growth factor) tyrosine kinase inhibitor, is
FIGURE 6

Targeting Neutrophils: The Pro- and Anti-tumor Activities of Neutrophils Blocking the pro-tumor activity of neutrophils. (A) Using antibodies to
target CD33 on immunosuppressive neutrophils. (B) Inhibiting CXCR2 to block recruitment of pro-tumor neutrophils to the TME. (C) Blocking of
activation signals such as G-CSF or TNFa. (D) Blocking ROS (Reactive oxygen species) production by inhibiting contact with T cells. (E) Promoting
the anti-tumor capacities of neutrophils. (F) Interfering with innate immune inhibitory checkpoints to restore antibody-mediated anti-tumor
activities.. (G) Targeting proteins downstream of the inhibitory receptor. (H) Using IgA-based therapeutic mAbs (Monoclonal antibodies) that binds to
the activating Fc receptors.
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starting to show promise as a treatment option in breast cancer

studies (66).

The TNBC cell surface RTK (Receptor tyrosine kinases) MET

(Mesenchymal–epithelial transition) triggers the activation of many

downstream effectors, including as Src, AKT, ERK, and RAS. The

tivntinib (MET inhibitor) phase II study is disappointing; however

MET+EGFR inhibition synergistically decreased cell viability,

demonstrating the combination’s higher effectiveness (67). Patients

with TNBC have participated in clinical studies to assess a variety of

PARPIs, including olaparib, veliparib, and talazoparib. The phase III

trial of olaparib for BRCA-mTNBC (OLYMPIAD; NCT02032823)

will The cytoplasmic mic kinases known as non-receptor tyrosine

kinases (NRTKs) include MEK (Mitogen-activated extracellular

signal-regulated kinase), Src, and the PI3-AKT-mTOR signalling

cascade (68, 69). When combined with everolimus, dual mTORC1/

2 inhibitors effectively limit the growth of many TNBC cell lines.

Ongoing clinical studies are being conducted on TNBC using dual

mTOR/P13K inhibitors and mTOR+PARP inhibitors (69). Early in

the clinical development process, the PI3-AKT-mTOR pathway is one

of the growing multi-targets of pharmaceuticals. MEK is a part of the

MAPK signalling cascade, and MEK inhibitors (U0126) have been

shown to dramatically diminish the invasiveness of MDA-MB-2311 in

vitro, while selumetinib has been shown to suppress lung metastasis in

xenograft models (70, 71). The addition of Src inhibitors, such as

dasatinib to cetuximab + cis platin, improved the prevention of cell

growth and invasion in TNBC (71). Src is a cytoplasmin oncoprotein.

HDACs (Histone deacetylases) and Hsp 90 are two examples of

epigenetic targets that are being researched for the therapy of TNBC
Frontiers in Immunology 08
(72). Tumour suppressor and DNA repair gene expression are known

to be inhibited by HDACs. HDACi’s (Histone deacetylase inhibitors)

in combination with cisplatin and DNA methyltransferase inhibitors

are being studied in two clinical studies (72).

It is possible for Hsp90 to block many growths, signalling

pathways, and survival cascades. Although olaparib and paclitaxel

are still being tested in phase 1 clinical trials, a Hsp90 inhibitor

called genetecibo (Ganetespib) has been shown to decrease tumour

volume in xenografts produced from MDA-MB 231 (73). The anti-

androgens bicalutamide and enzalutamide reduce proliferation,

invasion, and migration of cancer cells by targeting the androgen

receptor (AR) in different TNBC cell lines (73). This suggests that

they may serve as a surrogate biomarker for response to other

treatments. The VGS subtype Nav1. 5 neonatal splice variant is

known as voltage-gated sodium channel (VGSC) (74). The

foundation of clinical care of TNBC is VGSC-inhibiting

medications, which include phenytoin, ranolazine, and riluzole.

These medications all reduce metastatic cell behaviours in vitro

and/or in vivo (75).

NP-based formulations called Liposomes-Doxorubicin

nanodrug and Myocet, which were licenced for the treatment of

breast cancer in 1998 (Taiwan) and 2000 (EMA), respectively, are

now being used in clinical settings to treat metastatic breast cancer

(76). A multitude of nanoparticles, including liposomal and

polymeric nanoparticle platforms, are being developed for the

treatment of cancer. The mitoxantrone-containing liposomal

nanoparticles known as plm60-s (Mitoxantrone HCl liposome

injection) are undergoing a phase II clinical study for the
FIGURE 7

The adenosine causes immunosuppression that promotes cancer growth by interfering with B lymphocytes, T lymphocytes, natural killer cells,
macrophages, dendritic cells, and myeloid-derived suppressor cells.
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treatment of breast cancer. In phase II of a clinical study, the

LiPlaCisa liposome nanoparticle containing cisplatin is showing

promising outcomes for metastatic breast cancer (76).

Numerous immunotherapies, including as immune checkpoint

inhibitors, activation of cytotoxic T lymphocytes (CTLs), adaptive

cell transfer-based treatment (ACT), and modification of the

tumour microenvironment (TME), have been tried. These

cutting-edge immune-modulatory techniques can treat TNBC and

have become individualized immunotherapy as shown in

Table 2 (77).
TME and therapeutic resistance
in TNBC

Various immune-promoting and immune-resistant components

interact to form a complex network which regulates the TME (78).
Frontiers in Immunology 09
CTL interacts with APC and NK via cytokines and is essential to

immunotherapy (51). Tumor-associated macrophages (TAM),

myeloid-derived suppressor cells (MDSC), and regulatory T cells

(Treg) are examples of immune-regulating cells (79). These

cells impede the growth of T cells by directly expressing

immunosuppressive cytokines and immunological checkpoint

molecules. An immunosuppressive TME can also be produced by

these cells’ malfunctions through indirect pathways including PD-1

pathway hijacking and interactions with Treg (80).

T cel l infi l tration is impeded by aberrant tumour

neovascularization and cancer-associated fibroblasts (CAF). The

TME becomes more acidic because of hypoxia-induced metabolic

abnormalities, which creates a barrier to antitumor immune activity

(81). Tumorigenesis generates aberrant antigens on the tumour cell

surface that can activate APCs, mostly DCs. However, tumours

frequently change the structure or downregulate MHC-I, which

hinders antigen presentation and encourages immune escape (81).
FIGURE 8

Generation of preclinical tumor mouse models for TNBC.
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FIGURE 10

Key determinants of drug resistance as well as some potential, general solutions. (A) Tumor heterogeneity-Cells acquire genomic alterations that
generate spatial and temporal genetic diversity. (B) Tumor growth kinetics-Tumors with low rates of growth are typically incurable with therapies.
(C) Undruggable genomic drivers-i.e., MYC and TP53. (D) Selective therapeutic pressure-Expansion. (E) Immune system and tumor
microenvironment-Stimulating paracrine growth factors to signal cancer cell growth.
FIGURE 9

KRAS is an oncogene that is mutated in about 25% of all cancers, but it only recently became a promising therapeutic target for anti-cancer therapy.
In this infographic, learn how recent breakthroughs have allowed scientists to develop treatments that specifically target mutant K-Ras, the protein
product of KRAS, and alter the immunosuppressive tumor microenvironment to increase treatment efficacy.
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TNBC patients that are resistant to ICB treatment frequently

have downregulated levels of HLA-I, the human version of this

molecule. This may be caused by mutations in the invariant b2-
microglobulin (b2m) gene and other HLA-I encoding genes (51).

The control of HLA-I expression is also dependent on transcription

factors including NF-kB and NLRC5, as well as epigenetic

processes, the disruption of which would have a major impact on

antigen presentation (82). A prime example is interferon (IFN),

which may upregulate HLA class I heavy chains (b2m, TAP1,

TAP2, or Tapasin) and cause HLA-I to be downregulated when it is

impaired (83). Furthermore, peptide antigen processing and

presentation will be impacted by genetic flaws in any of the

proteins that make up the MHC-I processing apparatus, such as

downregulation of the TAP transporters. Important phases in the

immune activation cascade involve APC activation and

recruitment. Immune escape is supported by the reduction of

chemokines which recruit APCs (84). In order to prevent APC

phagocytosis, tumours can also suppress “eat me” signals like CRT

and HMGB1, and upregulate “don’t eat me” signals like CD47,

CD24, etc. When TNBC is present, the glycosylation of B7-H4

stabilises and stops this protein from degrading, which suppresses

eIF2a phosphorylation (85). This results in a decrease in CRT

surface expression and lets the tumour avoid immune destruction

(85). It has been demonstrated that dendritic cells downregulate

CD80 expression, preventing T cell activation via CD28, and exhibit
Frontiers in Immunology 11
high amounts of PD-L1. This is believed to be one of the

mechanisms for the failure of ICB therapies.

In addition to gene mutations, epigenetic modifications such as

DNA methylation, RNA interference, histone modification, etc., can

serve as immune escape mechanisms (86). By inhibiting the

production of immune genes, epigenetic changes may have a

negative impact on tumour immunity. For example, loss of

methylation may be the mechanism via which highly altered

malignancies avoid immune responses and account for the

seemingly contradictory observation that tumours with large

chromosomal copy number changes have low antitumor immune

activity. DNA methylation can also mute genes related to

immunity (87).

Abnormal MAPK pathway activation is inextricably connected

to tumour formation and progression as well as treatment resistance

mechanisms in different types of cancer. Low TIL in the basal-like

breast cancer subtype is associated with activating alterations in the

Ras/MAPK pathway, such as shortening of NF1, amplifications of

KRAS, BRAF, and RAF1, according to data from the TCGA

database (88). In addition, MEK expression has some predictive

value for TNBC patients’ overall survival (OS) and recurrence-free

survival (RFS) following neoadjuvant treatment (89). The antigen-

presenting molecules MHC-I and -II expression seem to be

inversely correlated with MEK activity. The prevailing consensus

explains this by stating that the Ras/MAPK pathway might impede
TABLE 2 TNBC tumor microenvironment-based nanotherapy.

S.N. Therapeutic
agent(s)

Nanocarrier Key outcomes Reference

1 Doxorubicin Amphiphilic copolymer micelles linked via
b-thiopropionate bonding

Linkage is hydrolyzed by acids. After 100 hours, drug release was
80% at pH 5.2% and 35% at pH 7.4.

(99)

2 Doxorubicin pH-sensitive tri block copolymeric micelles
including peptides that penetrate cells

The release of doxorubicin was around 65% at pH 5.0 and 32% at
pH 7.4.

(99)

3 Paclitaxel pH-responsive liposomes Paclitaxel releases faster at acidic pH and is more helpful to breast
cancer models in both vitro and in vivo settings.

(101)

4 Doxorubicin Glycolipid-like nanocarrier based on chitosan Cytotoxic to MCF-7 breast cancer cells due to the
5extracellular environment

(102)

5 NS629 Stromal cells -lipidated cathepsin B inhibitor-
coated liposomes

T6argeting cathepsin B which is all7owed for the selective targeting
and internalization of liposomes, which improved both ex vivo and
in vivo administration in TNBC model.

(103)

6 siRNA Amphiphilic copolymer micelles linked via
b-thiopropionate bonding

Tumour acidity caused the PeG surface layer to separate, allowing
for easier cellular absorption. The hydrophobic PLGA layer caused
siRNA to be released into tumour cells very quickly.

(104)

7 Docetaxel Acetylated carboxymethylcellulose nanoparticles
connected with PEG

Revealed reduced tumour growth and metastasis and increased
MTD in many xenograft models in comparison to Abraxane;
moreover, the 4T1 and MDA-MB-231 models displayed a-smooth
muscle actin levels that were 82% and 70% lower, respectively.

(105)

8 Doxorubicin FSH receptor on tumor vasculature with
Graphene oxide nanoparticles containing
FSH antibody

GO–FSHR–m vasculature accumulation Early-stage Ab conjugates
in tumours; improved drug delivery efficiency in MDA-MB 231
metastatic locations

(106)

9 Carboxyfluorescein
as fluorescent dye

MMP-9-Liposome with degradable lipopeptides MMP-9-degraded lipopeptide, markedly increased release rate
when MMP-9 is present

(106)
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the IFNg-mediated inflammatory response, which in turn impacts

the IFNg-mediated production of MHC-I, MHC-II, and PD-L1,

suppressing antigen presentation (90). The WNT pathway controls

DC-mediated innate immunity. ATF3, a transcriptional repressor

that stops CCL4 from being transcribed, can be activated by b-
catenin. Lack of CCL4 reduces the effectiveness of ICB treatments

by impeding both the infiltration and activation of CD8+ T cells as

well as the stimulation of CD103+ DCs (91). Thus, cancer cells have

the ability to immunoedit by down regulating or changing key

molecules in the IFN-g signalling cascade, which ultimately leads to

immune evasion. Cancer cells have the ability to up regulate PD-L1

transcription and expression as a negative feedback mechanism

(92). There is some overlap between IFN-g and type I IFN’s roles in

antitumor immunity. More research is necessary since it is unclear

how they work, what kind of reaction is elicited, and which cell

population is reacting (93).

PTEN deficiency can impact T cell recruitment and function,

which can lead to ICB therapy resistance. The loss of PTEN causes

immunosuppressive factors like VEGF and CCL2 to express more. It

has been demonstrated that anti-VEGF antibodies increase T cell

infiltration and activation within the tumour (94). Therefore, PTEN

deletion probably reduces T cell invasion through unregulated VEGF

expression. Drug resistance in cancer therapy is major cause of

mortality. Figure 10 has described outlined key determinants of

drug resistance as well as some potential, general solutions.

Exogenous nanomaterials can boost host immune escape and

enhance the efficacy of immunotherapy. Nano-immunomodulators

have been developed to specifically target the immunosuppressive

microenvironment in order to loosen this rigid state (95). These agents

can re-open the immune system in situ and slow the growth of

tumours. The major nano-immunomodulators are predicted to target

the microenvironment and inhibit metastasis based on the ability of

reactivated immune cells to migrate (95). The biomimetic technique
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greatly reduces the toxicity of nano-assisted immunotherapy when

compared to conventional nonmaterials, increasing its safety. Overall,

by reducing the immunosuppressive effects on tumor-associated

immune cells, remodelling the immunological state of the tumour

microenvironment offers a workable strategy for immunotherapy (96).
Nanotechnology based
Immunoengineering approaches

In the realm of nanoscience, a variety of physiochemical,

biological, and functional characteristics are required to generate

promising nanoparticles for use in biomedicine. The most crucial

factor is size: conformational structure, targeted size (1 and 200

nm), high drug loading efficiency, a long half-life in circulation with

minimal systemic toxicity, selective localization, and high adhesion

in the tumour environment (97). There are various types of

polymeric, inorganic, and lipid-based nanoparticles that, to their

advantage, have been used against cancer cells (Figure 11) (98).

Gold nanoparticles (GNPs) have been shown to enhance

radiation cytotoxicity in human cancer cells. Increased absorption

of GNPs by cells may lead to greater radiation effects. We studied

the radiosensitization effect of glucose-capped GNPs (16 nm and

49 nm) on MDA-MB-231 cells under megavoltage X-rays. Electron

microscopy revealed that Glu-GNPs are primarily found in cells’

cytoplasm, including endosomes and lysosomes. ICP-AES shows

that MDA-MB-231 cells absorb more 49-nm Glu-GNPs than 16-

nm Glu-GNPs (P<0.05) (98). A lipid-based nanoparticle was

chemically coupled to an inhibitor of the ECM-related enzyme,

lysyl oxidase 1 (LOX), which inhibits the crosslinking of elastin and

collagen fibres, resulting in a novel nanotherapeutic targeting the

ECM. Conjugated vesicles loaded with chemotherapy-therapeutic

epirubicin showed improved inhibition of TNBC cell proliferation
FIGURE 11

Main classes and features of Nanoparticles.
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in vitro and in vivo. Compared to free epirubicin and epirubicin-

loaded nanoparticles, the in vivo results showed increased survival,

reduced cytotoxicity, and improved biocompatibility (99). Using

layer-by-layer films to adapt a liposomal doxorubicin delivery

design with a synergistic siRNA can significantly reduce tumours

in TNBC (100). Nevertheless, the use of nanomedicine in TNBC is

restricted by the lack of ligands and a known highly expressed

tumour target. Tumour microenvironment-based nanotherapy is

described in Table 2, and strategies for therapeutic drugs via

nanocarriers are shown in Table 3 (100).
Versatile liposomal nanocarrier

Liposomes are 400 nm spherical vesicles, lipid bilayer, versatile

nanocarriers, offering the effective drug distribution since they may

encapsulate medications in either a lipid membrane or an aqueous

core (111). Three different processes are commonly used to

manufacture liposomal nanoparticles: reverse phase evaporation,

solvent injection (which precipitates lipid from a dissolved lipid in

solution), and extrusion (which produces nanoparticles with a

predetermined cross-sectional area) (112). The dual drug targeted

method has shown better outcomes in TNBC xenograft mice,

liposomes containing sorafenib and doxorubicin have been shown

to have increased antitumor efficaciousness. Clinical trial has been

completed on a novel micelle-encapsulated doxorubicin formulation

(NK911) with high efficacy and minimum toxicity (112). Antagomir-

10b, an anti-metastasis agent, and PTX (Paclitaxel), an anti-cancer

agent, were co-delivered via a liposomal drug delivery method to

reduce lung metastases of breast cancer and limit the growth of 4T1

tumours (113). The lipid-conjugated estrogenic (bioactive; 47.03%)

NPs were seen to display a substantially greater, or 87%, reduction of

breast cancer development in engrafted mice (MDA-MB-231 cells)

(113). Thus far, EndoTAG-1 and MM-398, liposomes laden with

paclitaxel and irinotecan, have progressed to clinical trials in patients

with TNBC (112).
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Micelles

Micelles are hydrophobic particles with a hydrophobic core

formed by Vander Waals bonding, and they range in size from 5

to 100 nm. They are stabilized by a hydrophilic shell (114). Micelles

have the ability to transport hydrophobic and water soluble drugs for

the treatment of cancer due to their amphiphilic nature. Using

styrene-co-malefic acid (SMA) (115). Researcher has synthesized an

amicellar system to deliver RL71, a hydrophobic derivative of

curcumin, for TNBC treatment. Due to a prolonged release profile

and higher cellular absorption mediated by endocytosis, the system

exhibited greater toxicity to cancer cells (115). Another synthesized

cetuximab-conjugated vitamin E D-alphatocopheryl polyethylene

glycol succinate to deliver docetaxel medication selectively (115).
Dendrimers

Dendrimer was tested as a targeted diagnostic module in a

TNBC cancer mouse model.A novel dendrimer, G4PAMAM, was

generated and subcutaneously injected into mice as a dual model for

imaging and drug delivery (66). It was combined with DL680 (NIR

dye) and GdDOTA (MRI contrast). A near-infrared (NIR)

fluorescence imaging scan and an MRI scan demonstrated the

targeted diagnostic usage of this small sized (GdDOTA) 42-

G4PAMAM-DL680 (GdDOTA) may be employed for certain

diagnostic applications (116).
Polymeric nanoparticles

Misnomer nanoparticles are polymeric nanoparticles (50 nm and

10 mm in size), These nanoparticles have the added benefit of

encapsulating medications and proteins without requiring any

structural modification. They can be made from natural or artificial

polymers (117).
TABLE 3 Co-delivery strategy via nanocarriers for improved anticancer effects.

SN. Therapeutic agent(s) Nanocarrier Key outcomes

1 Rapamycin as chemotherapy agent;
piperine as chemosensitizer

PLGA nanoparticles Piperine increased the absorption of P-glycoprotein substrate
rapamycin into breast cancer cells, resulting in a 4.8-fold increase
in bioavailability.

(107)

2 Paclitaxel for chemotherapy; curcumin Lipid nanoparticles conjugated with
folate
Cationic peptide

Increased paclitaxel and curcumin absorption in MCF-7/ADR cells (108)

3 pTRAIL as a chemosensitizer and
doxorubicin as a
chemotherapeutic drug

Cationic peptide MCF-7/ADR cells showed an 83.7% increase in cellular apoptosis
along with a 94.0% tumour inhibitory rate; a synergistic effect was
also seen.

(109)

4 Doxorubicin for chemotherapy;
resveratrol to help

poly (lactic-co-glycolic
acid) nanoparticle

Substantial in vivo tumour growth suppression with low toxicity;
downregulated nuclear factor-kB and BCL-2 expression; inhibited
expression of P-glycoprotein, MrP-1, BCRP, and triggered apoptosis.

(110)

5 Chemotherapy with doxorubicin and
autophagy inhibition with chloroquine

Liposomes IC50 in MCF-7/ADR cells was 5.7 times lower than that of free
doxorubicin; in the spheroid and transgenic zebrafish models, it
demonstrated superior anticancer effects compared to liposomal
doxorubicin or doxorubicin alone.

(111)
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The combination of succinobucol and P188 (poloxamer) is

showing promise as the best oral therapy for breast cancer.

Succinobucol NPs have a better bioavailability (13 fold), which

amplifies their capacity to prevent tumour cell migration and

vascular cell adhesion molecule-1 (VCAM-1) invasion (118).

Moreover, miRNA and siRNA have been shown to be delivered

by polymeric NPs in conjunction with therapeutic drugs to reduce

the tumour (119). Antisense-miR-21 and antisense-miR-10b were

co-delivered by PLGA-b PEG polymer NPs at a concentration of

0.15 mg/kg, whereas co-loaded DOX and siRNA (multidrug

resistance protein) induced an 8-fold decrease in tumour volume

and growth overall, respectively (119). In TNBC tumour models, a

potential ligand called Arg-Gly-Asp (RGD) either helps with

targeted drug delivery or suppresses malignant invasion in a

different way. For example, alphavbeta 3 (avb-3) integrin

receptor adhesions and invasion have been demonstrated to be

inhibited by cyclic RGD-functionalized solid lipid NP (RGD-SLN),

which is overexpressed in invasive TNBC tumours (120). RGD-

DMPLN’s targeted treatment efficacy was evaluated in a metastatic

TNBC mouse model that was optimized with the MDA-MB-231-

lucD3H2LN cell line. The total effectiveness of treating cancer is

increased by this kind of targeted distribution of synergistic drugs;

further research is needed to enable broader applicability in the case

of breast cancer (120).
DNA nanostructures in TNBC therapy

DNA nanostructures are designed with required forms, sizes, and

configurations, such as tetrahedral, bipyramids, cages, and cubes, by

taking use of the most fundamental property of DNA, which is

Watson-Crick complementary nucleic acid base pairing (121). These

DNA nanostructures may include tiny functional molecules and/or

ligands for bioimaging or site-specific attachment (121). It was tagged

at the base with red-emissive glutathione protected gold nanoclusters

(GSH-Au NCs) and included actinomycin (AMD) in the minor

groove of the DNA (122). Cetuximab’s has found effective in EGFR

over expressing cancer cells, which is conjugated TH (THC3) with

intercalated doxorubicin (DOX) medication, or THDC3,

demonstrated preferential death of MDA-MB-468 cancer cells

(122). The low IC50 value of 0.91 mM for THDC3 relative to 3.06

mM for free DOX indicates the strong and specific killing effectiveness

of THDC3. Due to improved absorption of Cy3 THC3 into MDA-

MB-68 cells, a different modified formulation comprising one Cy3

probe and three cetuximab, or Cy3-THC3, exhibits high signalling

intensity (122). These two (THDC3 and Cy3-THC3) modest TH

alterations demonstrate improved cancer cell targeting and killing,

making them a great option for cancer nanomedicine, particularly for

TNBC (122).
Multifunctional metal nanoparticles

Metallic nanoparticles (NPs) like titanium dioxide (TiO2), gold

(Au), silver (Ag), platinum (Pt), zinc (ZnO) are employed in cancer

treatment. These nanoparticles’ magnetic, optical, thermal, and
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electrical characteristics may present several opportunities in

therapeutic and diagnostic assays (123). The usefulness for

intended therapeutic results is increased when metal

nanoparticles’ surfaces are modified by conjugating distinct

groups. NPs from the transition class of metals heat up the cells

by converting electromagnetic energy to heat, causing hyperthermia

(a non-invasive technique) that kills the tumour cells. Some metal

nanoparticles possess distinct physiochemical characteristics that

confer intrinsic strong anti-cancer action (124).

The most promising metal nanoparticle (NP) now available for

delivering the well-known anti-cancer medication paclitaxel is gold

nanoparticles (AuNPs) (125). Serum-coated AuNR has the innate

capacity to suppress the expression of genes linked to energy

production. Both in vitro and in vivo cancer cell migration and

invasion are hindered as a result of decreased energy (125).

The cisplatin-coated AuNR in combination with an NIR laser

has shown to inhibit/suppress the TNBC tumour and its metastasis.

The antiproliferative, proapoptotic, and anti-angiogenic properties

of silver nanoparticles (Ag NPs) on cancer cells are well-known

(125). As a radiosensitive drug, AuNPs interacts with the acidic

environment of cancer cells to enhance oxidative stress through the

generation of reactive oxygen species (ROS), which ultimately cause

damage and death (124, 125). The researchers have revealed

encouraging outcomes from treating gliomas with AgNPs and

then radiation. Additionally, it was shown that these NPs

prevented cancer cells from expressing endothelial growth factor

(VEGF), which reduced metastasis (126).

Zinc oxide nanoparticles (ZnO NPs) are used in cancer therapy

and have even been shown to decrease toxicity and boost

effectiveness in breast cancer cells when used in conjunction with

the medications paclitaxel and cisplatin (127). In addition to copper

(CuO NP), iron oxide (Fe2O3), silica, cerium oxide, and titanium

oxide, other metal nanoparticles (NPs) are also being investigated

and employed in the detection and treatment of breast cancer (127).
Carbon nanotubesin TNBC therapy

Carbon nanotubes (CNTs) are folded into single-walled or

multi-walled cylindrical structures. A slight modification in

chemical change may perform a variety of tasks and has great

potential for cancer treatment (128). Single-walled nanotubes (with

a diameter of 1-2 nm) that may enter cells have both localised and

sustained effects. By decreasing the number of macrophages and

blood vessels within the tumour, oxidised multi-walled carbon

nanotubes (o-MWNTs) offer a unique strategy for cancer

treatment (129).
Aptamers nucleicacid based ligands

Short oligonucleotide segments of single-stranded DNA or

RNA are known as aptamers. Because of the aptamer’s distinct

three-dimensional confirmation, it binds the target molecule with

great affinity and strength (130). The degradation by nucleases is the

sole restriction, yet its great stability attracted interest for the
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creation of molecular probes. The cell-SELEX approach has been

used to precisely target a surface membrane protein on TNBC

tumours, utilising the recently discovered LXL-1 aptamer (130).

Using PDGF-aptamer coated with gold nanoparticles, the

differential overexpression of the platelet-derived growth factor

(PDGF) receptor in the TNBC cell line has been found.

Mammaglobin A2 and B1 are overexpressed in breast cancer cells

MCF7 and MDA-MB-415, according to observations (131).

Terahertz (THz) chemical microscopy (TCM), which employs

THz radiation, was used to find metastatic breast cancer using

MAMA2 and MAMB1 aptamers. The nucleo-lin receptor in TNBC

theranostic in certain breast cancer cells is exclusively bound by a

unique 26-mer G-rich DNA aptamer; nevertheless, further research

and combination with medication administration are needed for

such an aptamer-based precision targeted diagnostic (132).
Antibodies conjugated
fluorescent nanoparticles

Antibodies are Y-shaped proteins with two epitopes that bind to

their receptors with affinity and specificity (133). These are

considered to be the best class of ligands for targeting.After

conceptualising the differentially up-regulated expression of

urokinase plasminogen activator receptor (uPAR) and tissue

factor (TF) receptor in TNBC, researchers have proposed and

confirmed the use of an anti-TF antibody labelled with copper-64

(anti-TF-antibody-64Cu) in an in vitro model of TNBC through

PET imaging (134). Fluorescence microscopy and ultrasonography

are also used to identify anti-EGFR and anti-VEGFR antibodies

conjugated with fluorescent NP and ultrasonic contrast agents.

Preclinical investigation on TNBC xenograft mice has

demonstrated a satisfactory response (treatment) to Iodine-124

(124I)-tagged B-B4 antibody (targeting syndecan-1; CD138

antigen) and a good visualisation of the TNBC tumour (134–155).
Peptides

Peptides are ligands with a low molecular weight that have a high

degree of selectivity for intracellular activities. Chlorotoxin, RGD, P-

selection, and tumour metastasis targeting (TMT) are a few peptides

that are effective in targeting metastatic breast cancer (135, 156–173).

By using NIR fluorescence imaging in breast cancer models of TNBC

mice. CK3 peptide (Cys-Leu-Lys-Ala-asp-Lys-Ala Lys-Cys) binding

to neuropilin 1 (NRP-1 transmembrane protein) (136, 174–201).

Activated cell-penetrating peptides (ACPPs), which target the matrix

metalloproteinase (MMP)-2 enzymes, increase tumour uptake and

contrast imaging in in vivo tumour necrosis models when covalently

attached to cyclic-RGD peptide (137). Better and more efficient

targeting of avb3 integrin receptors was achieved by connecting

modified Fe2O3 NPs to cyclic RGD peptides (138). PGD-peptide and

P-selectin, when combined with liposomal NP, have the ability to
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bind to different tumour areas by overexpressing their respective

receptors on breast cancer cells (139).
Other small molecules

The possible targeted agent for cancer imaging has potential for

direct imaging agents such as 18F-FDG, which is used as a glucose

analogue. Studies have revealed that the folate molecule drives the

super-paramagnetic iron oxide contrast agent (P1133) to folate

receptors and internalises it in actively developing TNBC (140, 202–

230). Even folic acid-conjugated AuNR demonstrated increased

absorption in 4T1 metastatic breast cancer cells and targeted the

folate receptor (141). Both quantum dots (QDs) and carbon dots

(CDots) have shown potential in imaging and early detection of TNBC

(141). TNBC development and metastasis are mediated by the cellular

target chemokine receptor type 4 (CXCR4) (141). By increasing the

cellular absorption into MDA-MB-231 cells, plerixafor or AMD3100

(CXCR4 ligand) conjugated poly(lactide-co-glycolide) NPs improved

siRNA-mediated gene silencing. Similarly, in a lung metastatic model

of breast cancer, AMD3100-loaded human serum albumin-

encapsulated NPs target CXCR4 (141, 231–242).

Due to the strong affinity of hyaluronic acid (HA) for the CD44

receptor, MDA-MB-231Br (a kind of metastatic breast cancer cell)

may take up an ultra-small (~5 kDa) HA-PTX nanoconjugate

through CD44 receptor-mediated endocytosis (142). Tumour

inhibition was much stronger when the urokinase plasminogen

activator receptor (uPAR) targeting peptide was attached to poly

(lactic-co-glycolic acid)-b-PEG polymers containing two antisense

siRNAs. Novel contrast agents in MRI have been employed, using

functionalized fullerenes (143, 243–250). In biomedicine, other

small carbon molecules with unique physical and chemical

characteristics, such as nanocarbons and nanodiamonds, are also

developing and require more investigation.
Virus-like particles: innovative nano-
vehicles for theranostics in the future

Virus-like particles (VLPs) are multimeric nanostructures that

self-assemble and range in size from 0.1 to 100 nm. They are

produced when viral structural genes are expressed in heterologous

systems (144). The VLPs are allowed to travel through the

bloodstream, and their functional viral proteins are on the cell

surface, which promote cell entrance and penetration (144). By

targeting and infiltrating certain tumour cells through receptor-

mediated endocytosis, VLP’s can encapsulate tiny molecules or

drugs that may be used to treat cancer. Eventually, the

encapsulated medicine will be released inside the cancer cell. The

most amazing capacity is to avoid lysosomal degradation by escaping

endosomes; this promotes medication availability and protects drugs

in blood plasma (144).

The major drawback to using VLP as a drug delivery strategy is

that, because of its viral proteinaceous particle and easy uptake by
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dendritic cells, it triggers an innate immune response (145).

Nevertheless, after traditional chemotherapy failed, it provided a

glimmer of hope for the treatment of TNBC (145). Moreover,

improvements in medication absorption and biocompatibility may

offset the aforementioned drawbacks. Human papillomavirus

(HPV), bacteriophage, polyomavirus, Ebola, influenza, hepatitis E

virus (HEV), and tobacco mosaic virus (TMV) are the sources of

several VLPs (146). The bulk of VLPs exhibit natural tropism to

sialic acids or heparin sulphates, which restricts their application as

targeted nanocarriers. However, certain VLPs exhibit natural

tropism to specific organs or tissues, such as HEV VLPs for the

liver and hepatocytes (146).

The self-assembled Bacteriphage MS2 VLP, which is modified

with SP94 peptide and encapsulated with doxorubicin, cisplatin,

and 5-fluoro-uracil to selectively transport and kill human

hepatocellular carcinoma (HCC) in the Hep3B cell line, is a

classic example of VLPs as targeted therapeutic carriers (147).

Dodecahedron, chemically coupled with the anticancer antibiotic

Bleomycin (BLM) and produced from adenovirus (Ad3), or Db-

BLM, causes ds-DNA breaks at lower concentrations, which kills

transformed cells. Thus, the adaptability, cell-specific targeting,

effective cell entry, absence of endosomal sequestering,

multivalency, biocompatibility, massive encapsulation, and secure

delivery mechanism of vector lambda proteins are responsible for

their widespread use. Even with all of their benefits, VLPs as a

medication delivery mechanism are still in their infancy and require

validation using animal models (148).
Conclusion and future prospect

Addressing the advantages of nanotechnology in TNBC

treatment, researchers highlight the potential for targeted drug

delivery systems that can enhance the efficacy of therapies while

minimizing side effects. Adjuvant treatment, which includes

hormone therapy (letrozole, tamoxifen) and chemotherapy

(paclitaxel, eribulin), has a number of long-term adverse effects

that lower the patient’s quality of life. Chemotherapy, which

includes neoadjunant chemotherapy, anthracyclin, and taxane-

based chemotherapy, is still the only choice for treating TNBC. A

sophisticated, innovative, and successful therapy is required due to

the 50% recurrence rate and 37% death rate, despite thorough and

vigorous management.

The conjugation of multifunctional smart nanoparticles with

therapeutic fluorophore allows them to penetrate various biological

barriers, target, and penetrate cancer cells through a passive

mechanism called the enhanced permeability and retention (EPR)

effect. Ultimately, the controlled release of medication within the

cancer cells is achieved. However, challenges such as the need for

extensive safety evaluations and the complexity of manufacturing

nanomaterials remain significant hurdles to overcome. There are a

lot of limitations associated with conventional chemotherapeutic

drugs, including non-specific targets, poor clinical results, chronic

toxicity, poor solubility, low absorption, and potential drug

resistance. Immunotherapy has produced new and useful
Frontiers in Immunology 16
treatment alternatives; however, using these immunostimulatory

medications unmodified has led to drawbacks such as off-target

effects and quick elimination. Immunotherapy based on

nanoparticles has a lot of potential to overcome these challenges

in order to increase the therapeutic effect and improve patient

outcomes for TNBC patients.
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