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Adoptive immunotherapy with T cells, genetically modified to express a tumor-

reactive chimeric antigen receptor (CAR), is an innovative and rapidly developing

life-saving treatment for cancer patients without other therapeutic opportunities.

CAR-T cell therapy has proven effective only in hematological malignancies.

However, although by now only a few clinical trials had promising outcomes, we

predict that CAR-T therapy will eventually become an established treatment for

several solid tumors. Oncolytic viruses (OVs) can selectively replicate in and kill

cancer cells without harming healthy cells. They can stimulate an immune

response against the tumor, because OVs potentially stimulate adaptive

immunity and innate components of the host immune system. Using CAR-T

cells along with oncolytic viruses may enhance the efficacy of CAR-T cell therapy

in destroying solid tumors by increasing the tumor penetrance of T cells and

reducing the immune suppression by the tumor microenvironment. This review

describes recent advances in the design of oncolytic viruses and CAR-T cells

while providing an overview of the potential combination of oncolytic

virotherapy with CAR-T cells for solid cancers. In this review, we will focus on

the host-virus interaction in the tumor microenvironment to reverse local

immunosuppression and to develop CAR-T cell effector function.
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1 From conventional therapies to CAR-T cell
immunotherapy with OVs

Cancer treatment has undergone a radical transformation thanks to groundbreaking

advancements in research and drug development. While chemotherapy once stood as the

primary treatment, targeting rapidly dividing cancer cells, it also affected proliferating

healthy cells, such as those of the epithelial and hematopoietic compartments. However, the

advent of molecular profiling and understanding of cancer cell mutations has

revolutionized treatment approaches. Random screening has been replaced by targeted

therapies that specifically target molecular abnormalities in cancer cells (1).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1455163/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1455163/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1455163&domain=pdf&date_stamp=2024-10-30
mailto:eleonora.ponterio@iss.it
https://doi.org/10.3389/fimmu.2024.1455163
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1455163
https://www.frontiersin.org/journals/immunology


Ponterio et al. 10.3389/fimmu.2024.1455163
Immunotherapy has rapidly ascended as a cutting-edge and

highly promising domain within oncological treatments. While the

response to immunotherapies varies among patients, those who do

respond can achieve substantial improvements. A leading

innovation in this field is Chimeric antigen receptor (CAR) T-cell

therapy (2). CAR-T cell therapy involves the clinical use of adoptive

cell therapies to combat cancer (3), introducing new possibilities

alongside conventional treatments like surgery, radiotherapy, and

chemotherapy. In this approach, a patient’s immune system is

supported with infused T cells that have been genetically

modified to specifically target tumor cells. This approach holds

great promise and has demonstrated clinical efficacy in hematologic

malignancies (4). These T cells have been modified to express a

CAR. The CAR is an artificial molecule engineered to induce

cytolytic T cell reactions in tumors. The CAR combines the

extracellular single chain variable fragment (scFv) portion with

the ability to recognize tumor-associated epitopes and the

intracellular signalling domains that are required for T cell

activation (3). At present, the clinical efficacy of CAR-T cell

therapy is mainly limited to hematologic malignancies. Some

successes were reported in preclinical studies on solid tumors but

most of the CAR-T cell therapies targeting these types of cancers are

yet not ready for FDA approval.

In this review we describe some of the drawbacks of CAR-T

cells in solid tumors and how a combination of this therapy with

oncolytic viruses (OVs) could potentially function in a synergistic

manner, offering complementary and additive benefits.
2 CAR-T cells show limited efficacy in
solid tumors, underscoring the need
for new solutions

The therapy based on CAR-T cells faces challenges in targeting

solid tumors, with issues related to identification of the optimal

antigen, effective trafficking, infiltration, and persistence within the

immunosuppressive tumor (5–8).

These issues often lead to reduced efficacy and potential toxicity

(9). To address these limitations, researchers are developing

advanced CAR designs that incorporate multiple costimulatory

molecules, ligands, and soluble cytokines (10). Additionally,

combining CAR-T cell therapy with checkpoint blockade and

targeting inhibitory factors in the tumor microenvironment has

shown promise in reducing T-cell exhaustion (11). Ongoing

research aims to enhance CAR-T cell proliferation and tumor

destruction capabilities in solid tumors by addressing mechanisms

of CAR-T cell dysfunction (11). Strategies to improve CAR-T cell

efficacy include enhancing tumor infiltration, persistence, and

overall function (12).
2.1 Trafficking

After infusion, CAR-T cells need to accumulate at the tumor

site. This process is favoured by interventions targeting the tumor
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vasculature and by promoting the expression of chemokine

receptors that promote T cell infiltration (13). For instance, CAR-

T cells engineered to co-express CXCR2/CCR2b (receptors for

CXCL1) have shown enhanced targeting towards mesothelioma

tumor cells expressing CXCL1. Similar results were obtained with

avb3- or avb6-targeting CAR-T cells, which express integrins

found on tumor vascular endothelium (14–18). Blocking

endothelin B receptor has also demonstrated enhanced T cell

infiltration into tumor lesions (19).
2.2 Infiltration

CAR-T cell therapy has been effective for hematological

malignancies but struggles with solid tumors due to issues with

infiltration and expansion (8). To overcome these challenges,

researchers are exploring several strategies. One approach involves

engineering CAR-T cells to express heparanase, an enzyme that

breaks down extracellular matrix components, improving tumor

infiltration (15). Combining CAR-T cells with vascular disrupting

agents like combretastatin A-4 phosphate (CA4P) has also shown

improved infiltration and efficacy in preclinical models (20).

Additionally, Tian et al. (21) engineered CAR-T cells to express

CXCL9, enhancing their cytokine secretion, cytotoxicity, and ability

to recruit T cells while inhibiting tumor angiogenesis. Engineered

CAR-T cells to express IL-8 receptors for improved migration and

persistence in the tumor microenvironment (22). These innovative

strategies aim to enhance CAR-T cell therapy’s efficacy in solid

tumors by improving infiltration, antitumor activity, and survival

outcomes in preclinical studies.
2.3 Tumor microenvironmental
immune suppression

Tumors employ various mechanisms, including the

recruitment of tumor-associated macrophages, myeloid-derived

suppressor cells, and activated regulatory T cells, to create an

immune-tolerant microenvironment (23). Understanding the

tumor microenvironment (TME) in solid tumors reveals a

complex interplay of cells and signals sustaining tumor

growth and immune evasion. Strategies to counteract the

immunosuppressive TME include immune checkpoint inhibitors

and genetically engineered CAR-T cells to secrete immune-

modulating compounds. Incorporating cytokines like IL-12, IL-

18, or IL-36g into CAR-T cells enhances bystander T cell

activation, and co-stimulatory ligands such as CD40L boost

nearby T cell effector functions. (24–28). Moreover, CAR-T cells

expressing dendritic cell growth factors like Flt3L activate host T

cells and promote an effective immune response (28). Addressing

antigenic heterogeneity, researchers have developed EGFRvIII

CAR-T BiTEs (29). While these approaches show promise,

further research is needed to optimize CAR-T therapy in solid

tumors, considering specific CAR constructs and patients’ clinical

histories. Combining CAR-T therapy with checkpoint blockade
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holds potential (30), but requires careful consideration of efficacy

and potential toxicity (31).

However, positive preclinical studies fostered new efforts that

mesoCAR-T cells expressing anti-PD-1 antibodies are being

evaluated in a phase II trial for treating mesothelin-positive

advanced solid tumors (32).

Cell death within tumors is complex, and true “immunogenic”

cell death, capable of triggering an anti-tumor immune response, is

rare (33–35). Dying normal cells tend to be tolerogenic, and dying

tumor cells often activate suppressive pathways, such as IDO,

TGFb, and Treg activation, hindering the immune response (36–

38). Activated Tregs play a crucial role in establishing tolerance to

dying tumor cells and can inhibit CAR-T cell activation through

various mechanisms (39). The immunosuppressive properties of

activated Tregs can limit CAR-T cell therapy effectiveness.

Strategies to modulate Treg function or reduce their presence

within the tumor microenvironment may enhance CAR-T cell

efficacy. Combining therapies targeting both Tregs and tumor

cells simultaneously could improve CAR-T cell therapy outcomes,

particularly in the context of immune tolerance. Additionally, the

enzyme IDO, which inhibits T-cell function, can be expressed in

tumors and hinder CAR-T therapy, but targeting IDO with certain

drugs may enhance the success of CAR-T treatments (40). Indeed,

ongoing research, bolstered by technological advancements, offers

the promise of maximizing the efficacy of immunotherapy. This

entails also synergistically merging CAR-T therapy with oncolytic
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viruses (OVs) to address solid tumors. This evolving landscape

holds significant promise for the future of cancer treatment.
2.4 Oncolytic viruses

OVs are a promising class of viruses that show the potential to

selectively target and destroy cancer cells, leaving healthy cells

largely unharmed. (41). Once inside the host cells, OVs replicate

and may cause lysis of the cancer cells, or produce their primary

therapeutic benefit by delivering immunostimulatory transgenes

that trigger or augment an immune response against the tumor.

OVs exert various effects that contribute to their anti-cancer

activity, including: (i) the release of tumor antigens, (ii) the

release of PAMP-like molecules, which trigger the innate immune

system to recognize and eliminate infected cells, including cancer

cells, (iii) the stimulation of the innate immune responses, (iv) the

release of proinflammatory cytokines.

OVs induce oncolysis and immunogenic killing of tumor cells.

OVs modulate specific cell death pathways such as apoptosis,

autophagic cell death, necrosis, and necroptosis; many of these cell

death pathways are by themself immunogenic (Figure 1). Moreover,

OVs can be engineered to carry genes that produce immune-

stimulating molecules, further boosting the anti-tumor response.

These biological properties suggest that the combination of OVs

with another immunotherapy agent may have considerable anti-
FIGURE 1

The figure illustrates that the heightened oncolytic immunogenicity is a distinctive feature of OVs. As OVs induce the lysis of tumor cells, they
release a combination of viral progeny, tumor-specific antigens (TSAs), pathogen-associated molecular patterns (PAMPs), and damage-associated
molecular patterns (DAMPs), orchestrating immunogenic cell death (ICD). This intricate process not only activates innate immunity, with
collaboration between immune cells for effective tumor clearance. This leads to the release of inflammatory factors and chemokines (CXCL9,
CXCL10, HMGB1), ultimately reversing the immunosuppressive characteristics of the tumor microenvironment (TME). Created with BioRender.com.
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tumor effects (42). Beyond OVs, CAR-T cells themselves can be

engineered to express and deliver therapeutic factors. For instance,

mesoCAR-T cells expressing anti-PD-1 antibodies are being

evaluated in a phase II trial for treating mesothelin-positive

advanced solid tumors (32). Additionally, IL-12-secreting Muc16-

directed CAR-T cells have shown success in overcoming the

immunosuppressive tumor microenvironment (TME) (43).

Furthermore, OVs can be modified to express and deliver specific

CAR antigens to the tumor surface, enhancing the targeting of

corresponding CAR-T cells (44). In a study, a recombinant

oncolytic vaccinia virus (OVV) was engineered to produce

hyaluronidase (Hyal1) to break down hyaluronic acid in the tumor

microenvironment. This degradation enhances drug delivery and

immune cell infiltration, significantly improving antitumor effects

both alone and in combination with other treatments (45). Recent

research has found that combining oncolytic viruses with CAR-T

cells enhances anti-tumor effects. However, delivering treatment to

distant or metastatic tumors is challenging. To address this, scientists

used CAR-T cells infected with HSV-1, which can systemically

deliver the virus to solid tumors. These HSV-carrying CAR-T cells

remained functional and, in mouse models, successfully delivered the

virus to tumors, improving T-cell infiltration and significantly

prolonging survival. The study demonstrates the potential of using

CAR-T cells to target and treat distant tumors effectively (46). To

improve CAR-T therapy for solid tumors, researchers used the A56

antigen, which is upregulated on tumor cells after administering an

oncolytic vaccinia virus (OVV). A56-targeted CAR-T cells showed

enhanced effectiveness in killing cancer cells in vitro. In mouse

models, combining A56 CAR-T cells with OVV and hydroxyurea

significantly reduced tumor size and delayed progression. This

approach minimizes CAR-T effects on normal cells while

improving targeting and treatment of various solid tumors. (47).

Combining OVs with CAR-T cell therapy strategies could potentially

function in a synergistic manner, offering complementary and

additive benefits, that will be discussed in this review.
3 Impact of Ovs on the
tumor microenvironment

The use of OVs, has emerged as a potentially powerful approach

for cancer treatment by harnessing the immune system’s ability to

recognize and eliminate tumor cells (48), OVs exploit several molecular

and cellular mechanisms to enhance antitumor immunity. Firstly, OVs

can selectively infect and replicate within cancer cells due to their

inherent tumor cell tropism, which is achieved through specific

receptor interactions or alterations in the tumor microenvironment

(49). Upon viral replication, cancer cells undergo cytolysis, resulting in

the release of tumor-associated antigens (TAAs) and danger signals

(50). These TAAs are presented by antigen-presenting cells, such as

dendritic cells (DCs), to activate tumor-specific T cells and initiate an

adaptive immune response against the tumor. In addition to direct

tumor cell killing, OVs induce immunogenic cell death (ICD), a

process characterized by the release of immunostimulatory

molecules. During ICD, cancer cells release damage-associated

molecular patterns (DAMPs) such as calreticulin, high-mobility
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group box 1 (HMGB1), and adenosine triphosphate (ATP) (51).

Cellular damage or stress is induced by various triggers, such as

tissue injury, radiation, drug treatment, infection, and ischemic

shock, leading to the release of DAMPs (52, 53). These DAMPs

serve as danger signals that alert the immune system to the presence

of dying tumor cells. They activate innate immune cells, including DCs,

macrophages, and natural killer (NK) cells, which process TAAs,

leading to antigen presentation and activation of cytotoxic T

lymphocytes (CTLs) and other effector cells (54). This immune

activation promotes tumor-specific immune responses and long-term

memory against the tumor. Furthermore, OVs can be genetically

engineered to express therapeutic transgenes that enhance the

antitumor immune response. These transgenes can encode cytokines

(e.g., interferons, interleukins) (55, 56), chemokines (e.g., CXCL9,

CXCL10), immune checkpoint inhibitors (e.g., anti-PD-1 antibodies

(56), or co-stimulatory molecules (e.g., CD40 ligand, 4-1BB ligand)

(57). By expressing these immune-stimulatory molecules, OVs can

augment immune cell recruitment, activation, and effector functions

within the tumor microenvironment. For example, the expression of

cytokines can promote the infiltration of immune cells into the tumor,

enhance antigen presentation, and activate cytotoxic immune

responses. Immune checkpoint inhibitors expressed by OVs can

block inhibitory signalling pathways, such as PD-1/PD-L1, leading to

the reinvigoration of exhausted T cells and restoration of antitumor

immune responses (56). The combination of direct oncolysis,

induction of ICD, and expression of immune-stimulatory molecules

by OVs creates a highly immunogenic tumor microenvironment,

facilitating the generation of systemic antitumor immunity. This

multimodal approach not only targets and eliminates primary

tumors but also promotes immune memory and helps to control

metastatic disease. Moreover, as described below, OVs can be used in

combination with other immunotherapies, such as immune checkpoint

inhibitors or adoptive cell therapies, to achieve synergistic effects and

enhance treatment outcomes.

By harnessing these mechanisms, oncolytic viruses (OVs) show

immense potential for enhancing cancer treatment and broadening

the therapeutic arsenal available for patients, including CAR-T cell

therapy. Numerous preclinical studies have been published

demonstrating the efficacy of this approach. (Table 1).
4 Enhancement of CAR-T cell
function by OVs

Setting up treatment strategies inducing complete therapeutic

responses in patients with solid tumors presents significant

challenges. However, OVs hold great promise as tools to

overcome some of these obstacles and enhance the effectiveness

of CAR-T cell therapy in solid tumors (Figure 2).

First, OVs can be armed with therapeutic transgenes to boost

the CAR-T activation. Second, OVs could be able to survive and

maintain their cytotoxicity functions in a tumor microenvironment

that is immunosuppressed. This may provide danger signals that

can revert tumor immunosuppression. Third, the direct lytic effect

of OV on cancer cells results in tumor cell death and thus the release

of tumor-associated antigens (TAA) (69).
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Wing et al. described that the combination of an adenovirus

vector (OAd) and BiTE treatment-mediated oncolysis, improved

CAR-T cell activation and proliferation. Furthermore, this co-

treatment increased cytokine production and cytotoxicity and

showed a favourable safety profile in vitro compared to the EGFR-

targeting CAR-T cells alone (70). Another opportunity is the

combination of CAR-T cells with an armed oncolytic virus that

delivers chemokine such as RANTES and IL15 to enhance the
Frontiers in Immunology 05
trafficking and persistence of the CAR-T cells, resulting in

antitumor effects (71). It was described that infecting tumor cells

with an oncolytic vaccinia virus coding for CD19t produced de novo

CD19 at the cell surface before virus-mediated tumor lysis. Co-

culture with CD19 CAR-T cells with OV19t produced secretion of

cytokines and exhibited potent cytolytic activity against infected

tumors (72). In another study, the authors used a combination of

DD7-IL7 and B7H3 CAR-T in vitro and showed increased
FIGURE 2

The figure illustrates the synergistic combination of CAR-T cells and oncolytic viruses. (A) CAR-T cells encounter various challenges in solid tumors,
including an immunosuppressive environment that may lead to T cell dysfunction and treatment failure. (B) Administering oncolytic viruses for
cancer treatment before CAR-T cell therapy leads to tumor debulking, immunogenic cell death, and a reversal of tumor immunosuppression. (C) In
a collaborative effort, the engineered oncolytic viruses may transform the immunologically “cold” tumor into a “hot” tumor, exerting an upgraded
and more powerful antitumor immunity. Oncolytic viruses can be genetically modified to deliver therapeutic transgenes into the tumor
microenvironment, boosting T-cell effector functions. Combining CAR-T cells with oncolytic viruses armed with cytokines, chemokines, BiTEs, or
immune checkpoint inhibitors has demonstrated enhanced therapeutic outcomes. Created with BioRender.com.
TABLE 1 Preclinical studies on oncolytic viruses and CAR-T cells.

Oncolytic Virus Armed References

Adenovirus Onc.-Ad RANTES IL2 (58)

Adenovirus CAdvec-aPDL1 (59)

Adenovirus CAdvec-IL12 aPDL1 (60)

Adenovirus BiTE CAdDuo interleukin [IL]-12 and PD-L1Ab (61)

Adenovirus Ad5/3-E2F-D24-TNFa-IRES-IL2, or OAd-TNFa-IL2 (62)

Adenovirus oAD-IL7, B7H3-CAR-T (63)

Adenovirus CAd12_PDL1 (60, 64)

Vaccinia virus VSVmIFNb EGFRvIII CAR T (65)

Vaccinia virus CAR/CXCL11 VV.CXCL11 (66)

Herpes virus oHSV T7011 with CD19 or BCMA CAR T-cell (67)

Herpes virus oHSV-1 CD70 CAR T (68)
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proliferation and persistence of tumor-infiltrating B7H3 CAR-T for

glioblastoma treatment (63). The oncolytic adenovirus LOAd703,

encoding CD40L and 4-1BBL transgenes, demonstrates promise in B

cell tumor therapy, activating both antigen-presenting cells and T

cells through CD46 interaction (73). When combined with CAR-T

cell therapy, it elicits robust anti-lymphoma immune responses,

significantly enhancing the effectiveness of CAR-T treatment (73).

Additionally, oncolytic vaccinia viruses engineered to produce

CXCL11 or armed with IL21 have shown potential in bolstering

adoptive T cell transfer and vaccine-based immunotherapy, offering

promising avenues for treatment improvement (66).

Furthermore, OVs can be modified to express and deliver

specific CAR antigens to the tumor surface, enhancing the

targeting of corresponding CAR-T cells (44). Looking ahead,

combining oncolytic virotherapy with established treatments and

emerging strategies like immune checkpoint inhibitors and CAR-T

therapy holds considerable potential for future cancer treatment

paradigms for solid tumors (74).
5 Examples of oncolytic viruses
combined with CAR-T cell

5.1 Adenovirus

Adenoviruses (Ads) are small, non-enveloped viruses with a

double-stranded DNA genome. One advantage of adenoviral

vectors is that their genome remains episomal, conferring a safer

profile compared to integrating viral vectors. Adenovirus-based

genetic vaccines have demonstrated the ability to drive robust and

sustained T cell and B cell responses against the encoded transgenes.

This may be attributed to the vector’s ability to persist in a

transcriptionally active form at the site of inoculation and in

lymphatic tissues (75) Adenovirus, holds significant potential in the

realm of CAR-T cell therapy (CAR-T). Adenoviral vectors can be

genetically modified to efficiently deliver CAR genes into T cells,

enabling the production of CAR-T cells (63, 76, 77). The high

infectivity and transduction efficiency of adenoviruses make them

an appealing tool for CAR-T cell manufacturing (78). By employing

adenoviral transduction, CAR expression can be effectively achieved

on the surface of T cells, empowering them to target and eliminate

cancer cells. Furthermore, adenoviral vectors can be engineered to

enhance CAR-T cell persistence and augment their anti-tumor

activity (79). However, it is essential to address challenges such as

pre-existing immunity against adenoviruses in the human population

and potential toxicity associated with viral vectors. Ongoing

preclinical (Table 1) and clinical investigations aim to optimize

adenoviral vectors for CAR-T cell generation, with the goal of

improving the safety and efficacy of CAR-T cell therapy across

diverse cancer types (70).
5.2 Vaccinia virus

Vaccinia virus (VV) is a large, enveloped, double-stranded

DNA virus that belongs to the Poxviridae family. It has been
Frontiers in Immunology 06
extensively used as a smallpox vaccine and has a well-established

safety profile in humans. By leveraging its inherent oncolytic

properties, vaccinia virus can selectively infect and replicate

within cancer cells, triggering their destruction and has shown

promise in clinical trials for advanced solid cancers (80). When

combined with CAR-T cells, vaccinia virus can enhance the anti-

tumor immune response by promoting the release of tumor

antigens and creating an inflammatory milieu that supports CAR-

T cell activation and cytotoxicity (65). Ongoing preclinical

investigations will be important to explore the synergistic

potential of vaccinia virus and CAR-T cells aim to optimize this

combination therapy for improved outcomes in cancer

treatment (66).
5.3 Herpes virus

Oncolytic herpes simplex virus (oHSV) have proven to be very

potent OVs as they can selectively lyse tumor cells without harming

healthy cells, addressing a key challenge in CAR-T cell therapy for

solid tumors. Through genetic manipulation of the viral genome,

oHSVs can be armed with various payloads such as cytokines,

chemokines, and immune checkpoint inhibitors to convert

immunologically “cold” tumors into “hot” tumors. Talimogene

laherparepvec (T-VEC), the first clinically approved OV, is a

genetically modified oHSV that expresses granulocyte-macrophage

colony-stimulating factor (GM-CSF) and is utilized for treating

melanoma (81). Possible combination with CAR-T cells are

discussed in different papers. For instance, the authors Zhu et al.

demonstrated that oncolytic herpes simplex virus type 1 (oHSV-1)

enhances the therapeutic effect of CD70-specific CAR-T cells by

promoting intratumoral T cell infiltration and the release of

interferon-gamma (IFN-g). This finding provides support for the

incorporation of CAR-T therapy into glioblastoma (GB) therapeutic

strategies (68). Moreover, in vitro and in vivo studies have

demonstrated synergistic anti-tumor responses through combined

treatment with oHSV T7011 and CAR-TCD19 or CAR-TBCMA cells

(67). The efficacy assessments further validate the significant

synergistic anti-tumor effects achieved by combining T7011 with

either CAR-TCD19 or CAR-TBCMA cells across various solid tumor

models. These findings collectively suggest that the next-generation

oHSV T7011 holds substantial promise as a combinatorial therapy

alongside CD19 or BCMA-specific CAR-T cells, offering a potential

for the treatment of solid tumors (67).
6 Conclusion

The compelling potential of Onco-Immunotherapy, driven by

the intricate molecular and cellular mechanisms inherent in

oncolytic virus strategies, as discussed in the preceding sections of

this review, strongly suggests that the synergistic use of CAR-T cells

and OVs could be pivotal in overcoming tumor resistance and

significantly improving therapeutic outcomes. When used in

tandem, OVs can serve as powerful adjuvants to CAR-T cell

therapy (71). They can sensitize tumors to CAR-T cell
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1455163
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ponterio et al. 10.3389/fimmu.2024.1455163
recognition by upregulating the expression of tumor antigens and

immune-stimulatory molecules. This synergistic approach can

address the limitations of CAR-T cell therapy in solid tumors and

potentiate a more robust and durable anti-tumor immune response

(82). OVs are genetically modified viruses designed to selectively

infect and replicate within cancer cells. They possess several

characteristics that make them attractive candidates for

combination therapy with CAR-T cells. By infecting tumor cells,

OVs can induce immunogenic cell death, release tumor antigens,

and create an inflammatory environment favourable for CAR-T cell

activation (83). Additionally, some OVs can directly modulate the

tumor microenvironment, reversing immunosuppression and

promoting an anti-tumor immune response. The integration of

OVs with CAR-T cells in solid tumor treatment represents a

promising avenue for future research and clinical applications

(44). Ongoing studies are focused on optimizing the delivery

methods, improving the safety profiles, and developing novel

oncolytic viruses that can selectively target tumor cells while

sparing normal tissues. Furthermore, combining these therapies

with immune checkpoint inhibitors or other immunomodulatory

agents may further enhance their effectiveness against most types of

solid cancer. The combination of CAR-T cells and oncolytic viruses

offers a promising strategy to address this hurdle. By harnessing the

complementary mechanisms of action of these two modalities,

researchers are striving to unlock the full potential of

immunotherapy in the treatment of cancer. With continued

advancements and clinical investigations, this combined approach

holds great promise for the future of cancer treatment.
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