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Pancreatic cancer remains one of the most lethal malignancies, with

conventional treatment options providing limited efficacy. Recent

advancements in immunotherapy have offered new hope, yet the unique

tumor microenvironment (TME) of pancreatic cancer poses significant

challenges to its successful application. This review explores the transformative

impact of single-cell technology on the understanding and treatment of

pancreatic cancer. By enabling high-resolution analysis of cellular

heterogeneity within the TME, single-cell approaches have elucidated the

complex interplay between various immune and tumor cell populations. These

insights have led to the identification of predictive biomarkers and the

development of innovative, personalized immunotherapeutic strategies. The

review discusses the role of single-cell technology in dissecting the intricate

immune landscape of pancreatic cancer, highlighting the discovery of T cell

exhaustion profiles and macrophage polarization states that influence treatment

response. Moreover, it outlines the potential of single-cell data in guiding the

selection of immunotherapy drugs and optimizing treatment plans. The review

also addresses the challenges and prospects of translating these single-cell-

based innovations into clinical practice, emphasizing the need for

interdisciplinary research and the integration of artificial intelligence to

overcome current limitations. Ultimately, the review underscores the promise

of single-cell technology in driving therapeutic strategy innovation and

improving patient outcomes in the battle against pancreatic cancer.
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1 Background

Pancreatic cancer has emerged as a focal point in global medical

research due to its exceedingly high fatality rate and the scarcity of

treatment options (1–4). This type of cancer’s five-year survival rate

is astonishingly low, less than 10%, significantly lower than most

other types of cancer (5). These poor survival rates have not

changed significantly in nearly 40 years, highlighting the

malignancy of pancreatic cancer and the urgency of treatment.

One of the primary challenges of pancreatic cancer lies in its almost

asymptomatic early stages, leading to a diagnosis at an advanced

stage for the majority of patients (6, 7). Furthermore, the difficulty

in diagnosing pancreatic cancer and the lack of early diagnosis

mean that patients miss the optimal time to receive effective

treatment (8, 9). About 70% of pancreatic cancer patients will

develop cachexia that cannot be reversed through traditional

nutritional support (10). Consequently, researchers aim to

improve early diagnosis rates and find more effective treatments

to enhance survival and quality of life.

Immunotherapy has shown significant potential in cancer

treatment, leveraging the patient’s immune system to recognize and

eliminate cancer cells (11). Unlike traditional surgery, chemotherapy,

and radiation therapy, immunotherapy activates the immune system

to target cancer cells effectively. Although successful in treating

cancers like melanoma and non-small cell lung cancer,

immunotherapy has lagged in pancreatic cancer due to unique

tumor microenvironment and immune evasion mechanisms (12,

13).Pancreatic cancer’s dense desmoplastic stroma hinders immune

cell infiltration, a stark contrast to the less dense environments in

cancers like breast or prostate cancer (14). Additionally, pancreatic

cancers secrete high levels of immunosuppressive cytokines such as

TGF-b and IL-10, creating a tumor microenvironment that hinders

effective T-cell response (15, 16). The lower mutational burden in

pancreatic cancer results in fewer targets for immune recognition

compared to other cancers with high mutational burdens (17).

Moreover, pancreatic cancer cells express high levels of PD-L1,

leading to T-cell anergy and apoptosis (18, 19). However, with in-

depth research into the pancreatic cancer tumor microenvironment,

scientists have begun to find that adjusting the use of immune

checkpoint inhibitors can effectively change the tumor

microenvironment, enhancing the immune system’s ability to

attack pancreatic cancer cells (20). Furthermore, combining

immunotherapy with other treatments, such as targeted therapy

and chemotherapy, has also shown potential to improve treatment

effects, providing new hope for pancreatic cancer patients and

opening new directions for future treatment research (21–23).

Single-cell technology provides a novel perspective for

understanding the complexity of pancreatic cancer. This technology

enables high-throughput gene expression analysis at the single-cell

level, revealing the cellular heterogeneity in the tumor

microenvironment (24, 25). Cellular-level heterogeneity is a

significant challenge in treating pancreatic cancer, as it leads to

varied responses to treatments (26). Single-cell technology has

identified distinct subpopulations of cancer-associated fibroblasts

that contribute differently to tumor progression and therapy
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resistance. For instance, Elyada et al. identified fibroblast subtypes

with pro-tumorigenic and anti-tumorigenic properties, which has

significant implications for targeted therapies. Peng et al. used

scRNA-seq(single-cell RNA sequencing) to uncover rare cell

populations resistant to conventional therapies, providing new

therapeutic targets (27).

Through single-cell technology, researchers can analyze gene

expression patterns, functional states, and interactions of different

cell types in the tumor microenvironment, crucial for

understanding pancreatic cancer’s response to immunotherapy

(28). Specifically, this technology helps identify tumor cells

evading immune surveillance and immune cells playing key roles

in tumor combat, providing a basis for designing new

immunotherapy strategies (29). For example, Zhang et al. used

single-cell analysis to identify immune cell subsets correlating with

better patient outcomes, paving the way for personalized

immunotherapy (30). Additionally, single-cell technology can

monitor treatment effects by analyzing changes in tumor

microenvironment cells before and after treatment, assessing

treatment plans’ effectiveness (20, 31–34).
2 The revolutionary impact of single-
cell technology

2.1 Application of single-cell technology in
pancreatic cancer research

Single-cell technology allows detailed study of each cancer cell,

revealing unknown molecular markers and pathways. For example,

through single-cell sequencing technology, researchers have been able

to depict the signaling pathway activity map in pancreatic cancer cells,

revealing differences between different cell populations (35). These

differences are not only present among cancer cells expressing KRAS

mutations but also among cells in the tumor microenvironment, such

as macrophages and T cells, in terms of their functional states (36).

Through these in-depth analyses, researchers have discovered that cells

in the tumor microenvironment interact with cancer cells by secreting

various factors (such as cytokines and chemokines), which are crucial

for tumor growth, metastasis, and response to treatment (37, 38).
2.2 Single-cell analysis reveals tumor
heterogeneity and
immune microenvironment

Single-cell technology reveals not only tumor cell heterogeneity but

also the complexity of immune cells in the tumor microenvironment

(39). These cells play dual roles in tumor growth and spread. Single-cell

sequencing helps identify and classify immune cell subtypes in the

tumor and study their interactions with cancer cells through specific

molecular pathways. For example, Tregs (regulatory T cells) suppress

immune response by expressing molecules like CTLA-4 and TGF-b,
facilitating tumor cell escape (40). This insight supports developing

therapeutic strategies targeting these immunosuppressive pathways.
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Clinical trials are exploring inhibitors of CTLA-4 and TGF-b for

pancreatic cancer, with early-phase studies indicating that combining

these inhibitors with immune checkpoint blockade can enhance anti-

tumor immune responses and improve outcomes (41). Similarly,

analysis of macrophages in the tumor microenvironment shows that

M2-type macrophages promote tumor growth and suppress immune

responses by secreting molecules like IL-10 and upregulating PD-L1,

aiding tumor cells in evading immune surveillance (42, 43).

Therapeutic strategies are being developed to reprogram these M2

macrophages into the pro-inflammatory M1 phenotype, supporting

anti-tumor immunity. Preclinical studies show that targeting IL-10 and

PD-L1, combined withmacrophage reprogramming agents, can reduce

tumor burden and enhance treatment efficacy (19). These examples

illustrate the crucial role of single-cell technology in revealing the

complexity of pancreatic cancer and its microenvironment, providing

unprecedented opportunities to understand disease mechanisms and

develop new therapeutic methods.
3 Single-cell analysis of the pancreatic
cancer immune microenvironment

3.1 Complexity of the pancreatic cancer
immune microenvironment and its impact
on treatment response

The pancreatic cancer immune microenvironment is a complex

network of tumor cells, immune cells, fibroblasts, and endothelial

cells. Their interactions affect tumor development and treatment

response. Tregs and TAMs (tumor-associated macrophages),

prevalent in the pancreatic cancer immune microenvironment,

suppress effector T cell activity and promote immune evasion by

releasing factors like TGF-b (44, 45). Particularly, TAMs in

pancreatic cancer often exhibit an M2 polarization state, where

M2-type TAMs further promote tumor growth and angiogenesis by

secreting molecules like IL-10 and VEGF (46–48). Moreover, the

fibrotic characteristic of pancreatic cancer, namely the formation of

scar tissue and dense deposition of the extracellular matrix,

constitutes a physical and biochemical barrier that hinders the

infiltration of immune cells. This feature not only reduces the

permeability of tumor tissue to drugs but also limits the access

and attack capabilities of immune cells to tumor cells (49–51)

(Figure 1).
3.2 How single-cell data can help identify
mechanisms of immune therapy response

Single-cell technology, particularly scRNA-seq, provides a

powerful tool for deciphering the pancreatic cancer immune

microenvironment, enabling researchers to study cellular

heterogeneity and complex interactions at an unprecedented

resolution (52, 53). Through single-cell analysis of pancreatic

cancer patient samples, researchers have identified a group of

CD8+ T cells specifically expressing PD-1, which are exceedingly
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rare in untreated tumors but significantly increase after PD-1/PD-

L1 blockade therapy (54, 55). This finding not only confirms the

role of PD-1 as an immune checkpoint but also identifies specific

cell subpopulations responding to immunotherapy, offering

potential for personalized medicine. Further, single-cell

sequencing reveals “immune desert” phenomena where some

pancreatic tumors have scarce immune cells, actively repelled by

specific chemokine and adhesion molecule patterns (56, 57). This

rich analysis helps understand the complexity of the pancreatic

cancer immune microenvironment and reveals mechanisms of

immune therapy response and failure, crucial for designing new

therapeutic strategies and achieving personalized treatment (58).
4 Predictive biomarkers discovered
through single-cell technology

4.1 Predictive biomarkers of immune
therapy response identified by single-
cell analysis

Single-cell technology has revealed key biomarkers predicting

immune therapy response in pancreatic cancer. High-resolution

scRNA-seq allows precise analysis of cellular heterogeneity in the

tumor immune microenvironment, identifying biomarkers like

high PD-1 expression on CD8+ T cells, indicating an exhausted

state linked to responsiveness to anti-PD-1/PD-L1 therapy (56, 58–

60). Clinically, these findings can help personalize therapy,

prioritizing patients with high PD-1 levels for anti-PD-1/PD-L1

treatment (61). The M2 polarization state of TAMs, secreting IL-10

and TGF-b, also impacts immune therapy effectiveness (62).

Identifying these states through single-cell sequencing can guide

combination therapies targeting PD-1/PD-L1 and modulating the

macrophage environment to enhance immune response (63).

Single-cell data also reveal signaling pathways regulating immune

cell activity, providing mechanisms to predict immune therapy

outcomes accurately (64–66).
4.2 Exploring the potential contributions of
these markers to personalized
treatment strategies

The predictive markers discovered by single-cell technology

provide a substantial scientific basis for personalizing pancreatic

cancer treatment. In clinical practice, the presence of these markers

can guide physicians in selecting the most suitable immune therapy

drugs, optimizing treatment plans, and avoiding the waste of

resources on treatments unlikely to be effective. For example, by

pre-testing tumor samples for specific phenotypes and functional

states of immune cells, doctors can predict the patient’s

responsiveness to PD-1/PD-L1 or CTLA-4 inhibitors, thus

selectively choosing the treatment method most likely to benefit

(67). Additionally, these in-depth insights obtained through single-

cell analysis also offer directions for developing new therapeutic
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targets and strategies (25, 42). For instance, targeting specific

subsets of exhausted T cells found in the pancreatic cancer tumor

microenvironment, researchers can design novel treatment

approaches, such as using biologics to restore these cells’ activity

or enhance their tumor-killing capabilities (68). Similarly,

therapeutic strategies targeting M2-type TAMs could involve

transforming these cells into an anti-tumor M1 polarization state

to inhibit tumor growth (29, 69, 70).
5 Therapeutic strategy innovation
driven by single-cell technology

5.1 New immunotherapy strategies
developed based on single-cell
analysis results

Single-cell technology, particularly scRNA-seq, has driven

innovation and precision in pancreatic cancer treatment strategies

(25, 53). By analyzing individual cel ls in the tumor

microenvironment, researchers have identified various cell

markers and molecular pathways that predict treatment response.

These include specific T cell subtypes, immune checkpoint

expression patterns, and levels of pro-inflammatory and anti-

inflammatory cytokines (54, 71, 72). Based on these findings, new

immunotherapy strategies have emerged, including biomarker-

guided immune checkpoint inhibitor therapy, targeted cell

therapy, and methods to modulate the tumor microenvironment
Frontiers in Immunology 04
to enhance immune response (73). For example, Chen et al. (2023)

found that integrating immune checkpoint inhibitors with therapies

targeting the KRAS pathway significantly enhanced immune

response in pancreatic cancer models, reducing tumor

progression and extending survival compared to single-agent

treatments (74). Additionally, single-cell analysis has revealed

aberrant signaling pathways that offer new combination therapy

opportunities. Combining specific pathway inhibitors with immune

therapies, such as PD-1/PD-L1 blockers, can overcome pancreatic

cancer’s immune evasion mechanisms, improving treatment

outcomes (75, 76). For instance, Lu et al. found that targeting the

JAK/STAT signaling pathway, in conjunction with PD-L1 blockade,

enhanced CD8+ T cell infiltration and activity in pancreatic tumors,

significantly reducing tumor burden (77).
5.2 Clinical prospects of single-cell-driven
therapeutic strategy innovations

Translating single-cell-driven pancreatic cancer immunotherapy

strategies from the laboratory to clinical application presents enormous

prospects (42). Personalized treatment plans, based on detailed tumor

microenvironment analysis, can improve treatment specificity and

effectiveness, reduce unnecessary side effects, and enhance patient

prognosis and quality of life (67). However, the clinical

implementation of these strategies faces numerous challenges. First,

the high costs and technical requirements limit the widespread clinical

application of single-cell technology (78). Second, although single-cell
FIGURE 1

Single-cell perspective of immune cell populations and tumor cell populations in the pancreatic cancer microenvironment.
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analysis can provide detailed information about the tumor

microenvironment, translating these complex data into effective

treatment plans remains a challenge (79). Furthermore, the safety

and effectiveness of these single-cell analysis-based treatment strategies

need to be verified through clinical trials, a time and resource-intensive

process (42). Lastly, the high heterogeneity and complexity of

pancreatic cancer mean that even the most advanced treatment

strategies may encounter resistance issues, necessitating continuous

exploration and optimization of treatment plans (80).
6 Future research directions
and challenges

6.1 Deepening exploration of future
directions in pancreatic cancer research
with single-cell technology

As single-cell technology continues to advance, the exploration

of new markers will remain a focus of future research, especially

those that can guide immunotherapy and precision medicine, such

as specific subtypes of immune cells or unique molecular patterns of

tumor cells (25). Additionally, future pancreatic cancer research

may emphasize analyzing cell heterogeneity and interactions to

reveal subtle differences in cancer development and treatment

response (42). Specifically, the combined use of single-cell

transcriptomics, single-cell epigenetics, and single-cell proteomics

is expected to provide new perspectives on complex molecular

mechanisms in pancreatic cancer that are not yet fully understood

(25). For example, by analyzing the epigenetic states of different cell

types in pancreatic cancer tumors, researchers can identify key

epigenetic modifications that promote tumor growth and immune

evasion, exploring targeted treatment strategies against these

modifications (53). Additionally, Single-cell analysis of cell-cell

communication, such as exosome-mediated signaling, will reveal

immune suppression network mechanisms, offering strategies to

disrupt these networks (81). The application of single-cell

technology will not be limited to studying pancreatic cancer cells

themselves but will also extend to researching non-tumor cells in

the tumor microenvironment, such as immune cells, fibroblasts,

and endothelial cells (80, 82). For instance, detailed analysis of

immune cell diversity and functional states will uncover immune

surveillance evasion mechanisms, discovering new immune

checkpoints or immunoregulatory molecules as therapeutic

targets (52, 54).
6.2 Challenges and acceleration of
pancreatic cancer treatment progress
through interdisciplinary research

Interdisciplinary research, including AI and gene editing

technology, plays a crucial role in advancing single-cell studies.

AI, especially deep learning, has great potential in processing and
Frontiers in Immunology 05
analyzing large-scale biological data (83, 84). AI can predict

treatment responses at the cellular level, helping design suitable

treatment plans for individual disease characteristics. For instance,

AI can analyze single-cell data to identify cell subpopulations

sensitive to chemotherapy or targeted therapy, customizing

compounds or treatment methods (23, 85, 86). Combining single-

cell technology and AI can also analyze treatment failure

mechanisms, identifying cell subpopulation evolution patterns

and underlying molecular mechanisms to develop strategies

overcoming treatment resistance (87–89). Gene editing, combined

with precise molecular targets from single-cell analysis, offers new

treatment strategies by editing specific genes in certain cell

subpopulations (90, 91).However, integrating single-cell

technology, AI, and gene editing faces challenges, including

technical complexity, ethical issues, data processing, and clinical

application aspects. Ensuring data security and patient privacy is

crucial when handling sensitive medical data (92–94).

Technological advancements may exacerbate medical resource

disparities, necessitating international cooperation and policy-

making to improve access to advanced technologies in low-

income countries (95, 96). Ethical considerations include the

implications of applying gene editing technologies like CRISPR-

Cas9 to human applications, which have sparked widespread ethical

debates. A study in Nature (2022) highlighted potential ethical

concerns with gene editing, including effects on offspring, off-target

effects, and social equity issues (97). Ensuring the safe and ethical

use of these advanced technologies remains a significant challenge

that must be addressed.
7 Discussion

Single-cell technologies have fundamentally transformed our

comprehension of the tumor microenvironment (TME) in

pancreatic cancer, uncovering significant heterogeneity not just

among different tumors but also within the same tumor. This

detailed analysis has illuminated the complex interplay between

various immune cell types, such as T cells, macrophages, and

MDSCs, within the TME, each playing distinct roles in tumor

immunity (71). Through identifying specific subpopulations of

immune cells that either support or hinder the anti-tumor

immune response, such as specific T cell exhaustion profiles and

myeloid cell markers, these technologies provide insights that could

lead to the development of novel therapeutic strategies aimed at

enhancing immunotherapy efficacy (98).

Exploring single-cell mechanisms offers unparalleled

opportunities to optimize therapeutic strategies in pancreatic

cancer. By elucidating the molecular signals and pathways that

control the behavior of individual cell types within the TME,

researchers can develop targeted therapies to alter the immune

landscape in favor of an effective anti-tumor response. This includes

strategies like targeting the PD-1/PD-L1 axis in T cells, which,

despite limited efficacy, remains promising (99). Single-cell analyses

not only shed light on resistance mechanisms but also guide the
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integration of immunotherapies with other treatments (67, 100),

such as chemotherapy, aiming to surmount existing therapeutic

barriers. Furthermore, these analyses hold the potential for

personalizing medicine by identifying biomarkers that predict a

patient’s response to immunotherapy, thereby tailoring treatments

to maximize efficacy and minimize the risk of ineffective treatment

exposure (101).

However, it is crucial to acknowledge the current limitations of

single-cell technology and their impact on clinical applications. One

significant limitation is the technical complexity and high cost

associated with single-cell sequencing, which can limit its

widespread adoption in clinical settings, particularly in low-

resource environments. High-throughput single-cell analyses

require sophisticated equipment, substantial computational

resources, and specialized expertise, posing accessibility challenges

(102). Additionally, the vast and complex data generated from

single-cell technologies necessitate advanced computational

methods and bioinformatics tools for proper analysis and

interpretation, leading to challenges in data integration and

standardization essential for translating single-cell insights into

clinically actionable information (103). Variability in sample

preparation and sequencing protocols can introduce biases,

affecting reproducibility and reliability of results (102). Another

limitation is the potential for incomplete cellular profiling, where

certain cell types or states may be underrepresented or missed

entirely, leading to gaps in understanding the TME, especially when

identifying rare cell populations crucial for tumor progression and

treatment response (104).

Despite these limitations, integrating single-cell technologies

with advanced computational methods and machine learning

algorithms promises to enhance our understanding of the TME,

predict treatment outcomes more accurately, and uncover novel

therapeutic targets (25). Interdisciplinary collaboration, uniting

biologists, clinicians, and data scientists, is pivotal for translating

complex biological insights into actionable, clinically viable

treatments. Single-cell technologies thus stand as an indispensable

tool in the quest to improve pancreatic cancer patient outcomes

through more effective, personalized immunotherapeutic strategies,

marking a significant step forward in the fight against this

challenging disease (105).
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