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Effect of alemtuzumab over
sNfL and sGFAP levels in
multiple sclerosis
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José Ignacio Fernández Velasco2, Noelia Villarrubia2,
Jose Luis Veiga González2, Susana Sainz de la Maza1,
Fernando Rodrı́guez Jorge1, Jaime Masjuan1,
Lucienne Costa-Frossard1 and Luisa Marı́a Villar2*

1Neurology Department, Hospital Universitario Ramón y Cajal, La Red Española de Esclerosis Multiple,
Red de Enfermedades Inflamatorias, Instituto de Salud Carlos III (ISCIII), Instituto Ramón y Cajal de
Investigación Sanitaria, Madrid, Spain, 2Immunology Department, Hospital Universitario Ramón y
Cajal, La Red Española de Esclerosis Multiple, Red de Enfermedades Inflamatorias, Instituto de Salud
Carlos III, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
Introduction: Alemtuzumab is a highly effective pulsed immune reconstitution

therapy for multiple sclerosis (MS).

Aim: To evaluate serum neurofilament light chain (sNfL) and serum glial fibrillary

acidic protein (sGFAP) in patients with relapsing-remitting MS who have been

treated with Alemtuzumab over the course of 2 years.

Methods: This prospective study involved MS patients treated with Alemtuzumab at

a referral MS center. Both sNfL and sGFAP were analyzed at baseline and then again

at 6, 12, and 24 months post-treatment using the single molecule array (SiMoA)

technique. We also recruited matched healthy controls (HCs) for comparison.

Results: The study included 46 patients (with a median age of 34.2 [Interquartile

range (IQR), 28.7–42.3] years, 27 of which were women [58%]) and 76 HCs. No

differences in demographic characteristics were observed between patients and

HC. The median disease duration was 6.22 (IQR, 1.56–10.13) years. The median

annualized relapse rate before treatment was 2 (IQR, 1–3). At baseline, sNfL and

sGFAP levels were higher in MS patients (median of 18.8 [IQR, 10.7–52.7] pg/ml

and 158.9 [IQR, 126.9–255.5] pg/ml, respectively) when compared to HC (6.11

[IQR, 2.03–8.54] pg/ml and 91.0 [72.6–109] pg/ml, respectively) (p<0.001 for

both comparisons). The data indicates that 80% of patients had high (≥10 pg/ml)
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sNfL values at baseline. We observed a significant decrease in sNfL levels at 6

(65%, p = 0.02), 12 (70.8%, p<0.001), and 24 (78.1%, p<0.001) months. sNfL

reached similar levels to HC only after 24 months of Alemtuzumab treatment.

During the follow-up period, no changes were identified in the sGFAP values.

Conclusion: Alemtuzumab leads to the normalization of sNfL values in MS

patients after 2 years of treatment, with no apparent effect on sGFAP values.
KEYWORDS

alemtuzumab, sNfL, sGFAP, multiple sclerosis, SiMoA
1 Introduction

Serum biomarkers have emerged as a useful tool in multiple

sclerosis (MS), especially since the establishment of fourth-

generation immune assays over the past decade (1, 2).

Neurofilaments are cytoskeletal proteins whose release into CSF

and blood is a quantitative measure of neuronal injury (3). Serum

neurofilament light chain (sNfL) in MS has been validated as a

biomarker for clinical and radiological inflammation and as a

predictor of disease worsening (4–7).

Serum glial fibrillary acidic protein (sGFAP) is the main

intermediate filament of astrocytes (8). sGFAP has been suggested

as a biomarker to detect progressive MS and disability deterioration

separate from inflammation (9–12). The combination of both

biomarkers seems to enhance predictive accuracy (9, 10).

Alemtuzumab, a humanized monoclonal antibody, is a

s ignificant figure among the current pulsed immune

reconstitution therapies. It works by binding to CD52, leading to

a substantial reduction in autoreactive T and B-lymphocytes (13).

This action paves the way for a new immune cell population, which

is less likely to launch an immunological attack on the central

nervous system (CNS) (14–17). The effectiveness of Alemtuzumab

has been proven through rigorous clinical investigations, including

phase II (CAMMS223) and phase III (CARE-MS I & II) trials, as

well as observational studies with patients suffering from highly

active disease (18–21).

The impact of Alemtuzumab on both sNfL and sGFAP levels

has begun to be studied (22), but the evidence is limited.

We aimed to evaluate sNfL and sGFAP in patients with

relapsing-remitting MS (RRMS) treated with Alemtuzumab over

2 years and to compare their values with a cohort of matched

healthy controls (HCs). In addition, we intended to analyze the

relationship between sNfL and sGFAP values and changes in

disease course in terms of no evidence of disease activity-3

(NEDA-3), risk of relapse-associated worsening (RAW), and

progression independent of relapse activity (PIRA).
02
2 Methods

2.1 Study design

This was an observational study with prospective data

collection, aligning with the Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) statement.

Patients were recruited for the study at the Hospital Universitario

Ramón y Cajal in Madrid, Spain. We consecutively enrolled patients

with RRMS who began Alemtuzumab treatment between July 2015

and January 2022. These patients were followed until January 31,

2024. Both treatment-naïve and previously treated patients with one

or more disease-modifying therapies (DMTs) were included. A

wash-out period of four weeks was established for patients

previously treated with monoclonal antibodies or fingolimod. No

wash-out period was used for other drugs. Age, sex, and body mass

index matched HCs were recruited between August 2023 and

February 2024.
2.2 Standard protocols and
patient consents

The study received approval from the Hospital Universitario

Ramón y Cajal ethics committee, and all patients, along with HC,

signed an informed consent prior to participation. Anonymized

data, which support the findings of this study, will be available to

any qualified investigator upon reasonable request for 3 years

following the publication of the study.
2.3 Treatment

Patients received 60 mg of Alemtuzumab intravenously for five

consecutive days. After 12 months, they were given a repeated dose of

36 mg intravenously over three consecutive days. Additional doses of
frontiersin.org
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36 mg of Alemtuzumab were utilized at the signs of new disease

activity, such as a relapse or the detection of new, enlarging, or

contrast-enhancing MRI lesions. Premedication with 1000 mg of

intravenous methylprednisolone, an oral antihistamine, paracetamol,

and omeprazole was given. Furthermore, patients received prophylactic

treatments with acyclovir and trimethoprim/sulfamethoxazole.
2.4 Data collection

Demographic, clinical, and radiological variables were collected

at baseline. Experienced neurologists conducted all EDSS

evaluations at least every 3 months and additional examinations

in the event of a relapse. A baseline MRI was taken within a month

prior to the start of treatment in accordance with established clinical

protocols. Subsequent control MRI studies were done annually.
2.5 Sample collection

Patient blood specimens were collected just before initiating

Alemtuzumab treatment and again at 6, 12, and 24 months after

that. Serum sample aliquots were procured and stored at -80° until

they were processed.
2.6 Serum sNfL and sGFAP quantification

sNfL and sGFAP were quantified using an SR-X instrument

(Quanterix, Lexington, MA) with the single molecule array (SIMOA)

technique (Quanterix, Billerica, MA). We employed the NF-light

Advantage Kit (Quanterix, Billerica, MA) and the Serum GFAP

Discovery Kit (Quanterix, Billerica, MA), respectively, following the

manufacturer’s instructions. The mean inter- and intra-assay

coefficients equaled 6% and 7% for sNfL and 6% and 10% for

sGFAP, respectively. The research team handling the evaluation of

the serum samples remained unaware of the clinical data.
2.7 Definitions

We applied the revised 2017 McDonald criteria for patient

diagnosis (23). Disability was assessed using the EDSS score (24).

Confirmed disability worsening was defined as an increase of at least

1.5 points in the EDSS if the baseline score was 0, a rise of at least 1

point if the previous EDSS was between 1 and 5, and a minimum 0.5

point increase for patients with a baseline EDSS of 5.5 or higher (25).

NEDA-3 was defined as the absence of relapses, disability worsening,

and new and/or enlarged T2 lesions or gadolinium-enhancing lesions

on MRI (26). Conversely, patients experiencing either a relapse, MRI

activity or an exacerbation of neurological disability were classified as

having evidence of disease activity-3 (EDA-3). RAW and PIRA were

defined as previously described (27).

The cut-off applied for sNfL and sGFAP levels was established

at the 90th percentile value of the corresponding HC, which was 10
Frontiers in Immunology 03
pg/ml for sNfL and 140 pg/ml for sGFAP, in line with the

benchmarks used in previous studies (5, 7, 28).
2.8 Statistical analyses

Descriptive analyses were summarized using absolute and

relative proportions for categorical variables, and differences were

examined using either a c² or Fisher’s exact test. The median with

an interquartile range (IQR) was employed to describe continuous

variables, and associations between groups were evaluated using the

Kruskal-Wallis and Mann Whitney-U tests. We performed

statistical analyses using the GraphPad Prism 9.0 software

(GraphPad Prism Inc., San Diego, CA). All tests were two-tailed,

and a significance level of P < 0.05 was deemed significant.
3 Results

We incorporated 46 patients (27 women (58%)) into the study,

for a combined total of 77 (Figure 1), all of whom initiated

Alemtuzumab in a single referral MS center. Table 1 displays the

clinical and demographic data of the cohort, as well as their

matched HC.

The median age (IQR) of Alemtuzumab-treated patients was

34.2 (28.7–42.3) years. The disease duration at the onset of

Alemtuzumab was 6.2 (1.6–10.1) years. Twelve patients (26.1%)

were naïve, and 34 (73.9%) switched from other DMTs due to lack

of efficacy (24, 52.2%) or safety concerns (10, 21.7%). The

annualized relapse rate (ARR) the year prior to treatment

initiation was 2 (1–3). Eighteen patients (39.1%) had more than

50 lesions in their baseline MRI, while 24 (52.2%) had gadolinium-

enhancing lesions.
FIGURE 1

Flowchart of patients included.
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The values of sNfL and sGFAP were higher at baseline in MS

patients compared to HC (p<0.001 for both comparisons).

A substantial decrease in sNfL levels was observed at 6 (65%, p =

0.02), 12 (70.8%, p<0.001), and 24 months (78.1%, p<0.001). sNfL

levels were akin to those of the HC only after 24 months of

Alemtuzumab treatment (Figure 2). No changes in sGFAP values

were identified during the follow-up period (Figure 2).

We did not find differences in sNfL and SGFAP values between

naïve and previously treated patients neither at baseline nor at 6, 12,

24 months. Likewise, we did not find differences between sexes

(Supplementary Table 1).
Frontiers in Immunology 04
Thirty-seven patients (80%) exhibited high (≥10 pg/ml) sNfL

values at baseline. Patients presenting these high sNfL values had a

higher number of gadolinium-enhancing lesions at baseline

(median 1 [IQR 0 – 5] vs. 0 [0 – 0.75] p = 0.02).

Patients with high sNfL at the baseline had a greater number of

new T2 lesions in the MRI performed after the first year of

treatment (1 [0–2] vs. 0 [0-0], p=0.006). Similarly, NEDA-3

(44.2% vs. 88.9%, p=0.02) was achieved by a smaller proportion

of these patients during the first year. However, these differences

dissipated in the following years of follow-up (39.4% vs 78%, p=0.06

after second year).

We next analyzed the risks associated with RAW and PIRA.

Median [IQR] follow-up time was 5.8 years [4.8-7.7], 76% of

patients were followed up for at least five years. No significant

differences were noted between patients with high sNfL at baseline

and those with lower values concerning the risk of RAW (HR 0.3

[0.04 – 2.1], p=0.2). However, throughout the follow-up, no patients

with low sNfL experienced either RAW or PIRA. In contrast, for the

27 patients with high sNfL who were followed 5 years post-

Alemtuzumab administration, the cumulative incidences of RAW

and PIRA were 15% and 14.4%, respectively. Baseline sGFAP levels

served as a differentiating factor for patients who encountered RAW

during follow-up, as they exhibited lower values compared to those

suffering from PIRA (99 [79–123] vs. 178 [147–276], p = 0.02).

Furthermore, patients with higher sGFAP values demonstrated a

tendency for an increased risk of PIRA over time (HR 3.7 [0.5–

27.5], p = 0.2) (Figure 3).
4 Discussion

sNfL levels indicate acute axonal damage and are associated

with acute inflammatory activity seen as clinical relapses or T2-

weighted or contrast-enhancing lesions (29). These levels can be

used as a biomarker for monitoring inflammation (5) and disease

progression (7). Combining sNfL levels with sGFAP might enhance

the ability to identify patients at risk of disease progression (10).

The early administration of high-efficacy DMTs (HE-DMTs) in

patients with high sNfL levels has been associated with no disability

worsening (7). However, there are only a few studies focused on the

analysis of sNfL values over time in patients who have started on a

specific HE-DMT. Additionally, there are even fewer studies that

analyze both sNfL and sGFAP.

We aimed to explore the role of both biomarkers in a cohort of

highly active patients treated with Alemtuzumab. First, we analyzed

sNFL and sGFAP over 2 years and compared the values to a cohort

of matched HCs. We observed that sNfL decreased progressively, as

described in other cohorts (22, 30–33), but did not reach similar

values to those of the HC until a follow-up of two years. A reduction

in sNfL was also described two years after alemtuzumab initiation in

other cohort of patients treated with alemtuzumab who showed

moderate levels at treatment onset (22). We could show that results

are similar in a more active cohort with clearly higher baseline sNfL

values. Likewise, a clear decrease of sNfL was observed in the

Alemtuzumab arm of the CARE-MS I study (27), this decrease

was higher compared with patients treated with Interferon-beta-1a.
TABLE 1 Baseline data.

Patients
(n=46)

Healthy
Controls
(n=76)

P value

Demographic characteristics

Age (years) 34 [29– 42] 31 [26 – 46] Ns

Sex (Female/Male) 27/19 47/29 Ns

BMI 24.2 [20.8
– 29.6]

22.5 [20.5
– 24.7]

Ns

Baseline Clinical, radiological, and laboratory data

Disease duration (years) 6.2 [1.6
– 10.1]

EDSS score 2.5 [1.5 – 4]

ARR 1 year
before treatment

2 [1 – 3]

Previous treatment

Naïve 12 (26.1%)

Platform 1 (2.2%)

Orals 24 (52.2%)

Monoclonal Ab 9 (19.6%)

T2 lesions (<10, 10-50, >50) 1 (2.2%), 27
(58,7%),

18 (39,1%)

N. of Gd-enhancing lesions 1[0-4]

N. of patients with Gd-
enhancing lesions

24 (52.2%)

Oligoclonal IgG bands 38/41 (92.7%)

Oligoclonal IgM bands
against lipids

24/38 (63.1%)

sNfL [pg/mL] 18.8 [10.7
– 52.7]

6.11 [2 – 8.5] p<0.0001

sGFAP [pg/mL] 158.9 [126.9
– 255.5]

91 [72.6
- 109]

p<0.0001
N, number of patients/controls; BMI, body mass index; EDSS, Expanded Disability Status
Scale; ARR, annualized relapse rate; Ab, antibody; MRI, magnetic resonance imaging; sNfL,
serum neurofilament light chains; sGFAP, serum glial fibrillary acidic protein.
Naïve: no previous treatment; Platform treatments included: interferon beta and glatiramer
acetate; Oral drugs included: dimethylfumarate, fingolimod, and teriflunomide; Monoclonal
Ab. included: natalizumab.
Categorical variables are shown as numbers (%). Continuous variables are described as
median [IQR].
NS, non-significant.
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In our cohort we also see a decrease in sNfL values until the

normalization is reached and there is no difference with HCs.

Higher baseline sNfL values were associated with higher T2 lesion

load, as we describe in our cohort.

By contrast, in patients with high sGFAP levels at treatment

initiation these levels remained stable over time and were higher

than those of HC, which confirms previous findings in which

symptomatic controls were used as control group (22).

Alemtuzumab eliminates the abnormal B and T cells (13) and

let the immune system to reconstitute a normal lymphocyte

response. This seems to work very efficiently in patients who have

not an intrathecal activation of the innate immune response,

reflected by the high sGFAP values. By contrast, in patients with

increased sGFAP values a trend to a higher risk of PIRA was

observed, despite the normalization of sNfL. The association of

sGFAP with high risk of disability progression was already
Frontiers in Immunology 05
described (10). Our data strongly suggest that normalization of

sGFAP values it crucial for avoiding disease progression in MS.

We examined whether baseline sNfL was associated with an increase

in disability over time. We set a cut-off value of 10 pg/mL for sNfL and

140 pg/mL for sGFAP based on the 90th percentile of our population of

matched HCs. Patients with elevated sNfL displayed more clinical and

radiological activity during the initial year. However, these differences

were not apparent in the following years. Along with the normalization

of sNfL, this information emphasizes the effectiveness of Alemtuzumab

in managing axonal damage and inflammation.

No patient with low sNfL values demonstrated RAW or PIRA

during follow-up. Additionally, high levels of sGFAP in this patient

group were associated with a trend toward a higher risk of PIRA.

These data suggest that astrogliosis (34) may remain active despite

Alemtuzumab treatment and contribute to patient disability

worsening independent of relapses.
FIGURE 2

sNfL (pg/ml) values of controls and patients at baseline and after 6, 12, 24 months of treatment. sGFAP (pg/ml) values of controls and patients at
baseline and after 6, 12, and 24 months of treatment. NS, non-significant, ****: p<0.0001, *: p<0.01.
FIGURE 3

Comparison of baseline sGFAP (pg/ml) values in patients with high sNfL (pg/ml). Kaplan-Meier comparing time to PIRA in patients with high sNfL (pg/
ml) who had high versus low sGFAP (pg/ml). *: p=0.02.
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The primary limitation of our study was the reduced sample size.

These findings should be validated in larger, multicenter cohorts.

In conclusion, we observed a normalization of sNfL levels at

follow-up, while sGFAP concentrations remained unchanged. This

suggests that Alemtuzumab reduces acute axonal damage but has

little or no effect on astrogliosis.
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