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The treatment of fungal keratitis(FK) remains challenging due to delayed fungal

detection and the limited effectiveness of antifungal drugs. Fungal infection can

activate both innate and adaptive immune responses in the cornea. Fungi

stimulate the production of oxidative stress-related biomarkers and mediate

the infiltration of neutrophils, macrophages, and T cells. These cells can induce

infiltration of cytokines, chemokines, and matrix metalloproteinases (MMPs),

leading to corneal tissue damage and even corneal perforation. The signaling

pathway regulates the expression of inflammatory cytokines in fungal keratitis.

Immune inflammatory damage is the main mechanism of FK, and oxidative stress

damage is also involved in this infection process. Peroxisome proliferator-

activated receptor (PPAR) is a member of the nuclear hormone receptor

superfamily, with different subtypes of PPAR a, PPAR b/d, and PPARg. PPARs
play important roles in the antioxidant response, anti-inflammatory, lipid

metabolism, neuroprotection, and immune regulation processes. PPAR g can

promote macrophage polarization and reduce oxidative stress damage by

regulating ROS production. PPAR has made some progress in the treatment of

eye diseases: PPARa agonists can inhibit diabetes keratopathy and corneal

neuropathy. PPARa agonists inhibit early immature angiogenesis in corneal

alkali burns and have potential therapeutic effects on inflammatory corneal

angiogenesis. PPARs can control the progression of dry eye disease and

improve the condition of meibomian gland dysfunction. Based on this, we

explored the potential roles of PPARs in the treatment of FK.
KEYWORDS

PPAR, fungal keratitis, infection and inflammation, cytokines, oxidative
stress, immunology
1 Introduction

The treatment of fungal infections is an important part of global public health. Fungi is the

most important environmental biomarker. Its biodiversity is very important and highly sensitive

to environmental changes. Fungal resistance can lead to uncontrolled infections that can be life-

threatening (1, 2). Microbial keratitis includes bacteria, viruses, fungi, and protozoa. The
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incidence of FK is increasing year by year. FK accounts for 40% to 50%

of all cases of microbial keratitis. FK can cause corneal damage and

endophthalmitis, which can eventually lead to vision loss. The main

causative agents of FK are Fusarium and Aspergillus (3, 4). Trauma,

weakened immune function, ocular surface disease, and wearing

contact lenses are the main causes of FK. The lag of fungal test

results is challenging (5). Fungal resistance and corneal transplant

rejection are currently challenges in the treatment of aggressive FK

(6).The difficulties of drug therapy with FK lie in the limited

permeability of antifungal drugs, low bioavailability, poor

pharmacokinetic properties and corneal toxicity. The lack of donors

for corneal transplantation is a dilemma for fungal treatment (7).

Exploring new adjuvant treatment options in clinical practice is a

top priority. PPAR can be a good option. PPARs are the members of

nuclear hormone receptor superfamilies with different subtypes PPAR

a, PPAR b/d, and PPAR g. PPARs can regulate energy homeostasis,

and oxidative stress, and determine cell fate (8). Impaired peroxidase

function can lead to different diseases, which are associated with severe

clinical symptoms. Oxidative stress damage is also involved in the

pathogenesis of FK (9). Pro-inflammatory cytokines, oxidative stress

damage, macrophage reactive oxygen species, and mitochondrial

reactive oxygen species levels during FK pathogenesis are our

therapeutic targets (10). PPAR has definite anti-inflammatory and

antioxidant effects. One of the key functions of peroxisomes is the

oxidation of fatty acids, which can be mobilized and transferred to

peroxisomes and mitochondria, thus efficiently exchanging metabolites

(11, 12). Excessive inflammation and immune damage during FK can

cause irreversible damage to corneal tissue. PPARa is a transcription

factor that can modulate inflammation. PPARa functional modulators

inhibit inflammation by blocking peripheral immune cells and the

Toll-like receptor-4(TLR-4)/the nuclear factor-kB(NF-kB)pathway
(13). Numerous studies suggest that PPARg agonists may be effective

therapeutic agents for inflammation-related diseases (14). PPAR

activators inhibit the expression of inflammatory response genes

such as IL-2, IL-6, IL-8, TNFa, and MMP by inhibiting the NF-kB
signal transducer, the activator of the transcription(STAT) and

Activator Protein -1(AP-1) signaling pathways (15).

Finding appropriate reagents to fight inflammation, modulate

an overactive immune response, and resist oxidative stress damage

is essential to prevent infection-related corneal damage. Peroxisome

could be the ideal target. In this review, we emphasize corneal

fungal infections that require progress to better express treatment of

FK related to PPARs.
2 Immunity to fungi in the cornea

Fungi infection activated the corneal innate and adaptive

immune response (16).
2.1 Innate immunity to FK

Innate immunity is the host’s first line of defense against

microbial infection. Fungal infections in immunocompromised

patients can cause severe tissue damage. The corneal cells
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specifically recognizes patterns associated with molecular patterns

(PAMPs) on the fungal surface through pattern recognition

receivers (PRRs). PRRs play a clinical role in innate immunity,

mediating the infiltration of neutrophils, macrophages, and T cells,

and ultimately the destruction of fungi. The infiltration of these cells

can lead to infiltration of cascades of amplified inflammatory and

chemokines, which can eventually lead to corneal tissue damage

and even corneal perforation. The innate immune function relies on

the recognition of PAMPs, and damage-associated molecular

patterns (DAMPs) of pathogen by PRRs (17, 18). Ficolin-A

(FCN-A) is a class of soluble PRRs that play an important role in

innate immunity. Downregulation of FCN-A reduces the

inflammatory response and decreases the expression of tumor

necrosis factor(TNF-a), p-p38, p-JNK, and mitogen-activated

protein kinase(MAPK)in corneal infected mice, and promotes

macrophage polarization (19). The proportion of dendritic cells

(DCs) in the early stage of FK generally decreases with fungal

infection, while the proportion of macrophages, monocytes, and

neutrophils increases dramatically in the early stage and then

gradually decreases as inflammation resolves. Activation of

adaptive immune cells is also observed in the later stages of

infection. Activation of early acquired immune cells favors fungal

clearance, which gradually decreases in the later stages of

inflammation to reduce the damage to corneal tissue by the

corresponding cytokines (20). b-glucan on A. fumigatus

germinate conidia which activates Dectin-1 on corneal

macrophages produce interleukin-1(IL-1b), and CXC ligand-1

(CXCL1), recruiting neutrophils from the corneal stroma through

IL-1R1/myeloid differentiation primary response gene 88 (MYD88)

dependent activation and killing fungi through the TLR4 dependent

pathway (21). Fumigatus-infected corneal DCs could drive naive

CD4+ T-cell proliferation and promote the production of Th17

cytokines and IL-22. Activated DC produces thymic stromal

lymphopoietin (TSLP) leading to a Th17-type inflammatory

response via the Janus kinase-signal transducer and activator of

transcription pathway(JAK/STAT)signaling pathway (22).

Fumigatus-infected mouse cornea induces macrophage infiltration

through a TLR-4-mediated signaling pathway. and produce pro-

inflammatory factors IL-1b, tumour necrosis factor-a(TNF-a), and
IL-6 in the corneal epithelium and stroma. The antifungal and anti-

inflammatory reagents should be found in the therapy of FK (23).T

cells follicular helper, monocytes, macrophages, and mast cells might

play a key role in Fusarium keratitis using analysis of immune

infiltration (24). Inhibition of macrophage phagocytosis and killing

function can mediate the protective immune effect of Aspergillus

fumigatus (25, 26). In the process of FK infection, finding effective

macrophage pathogen clearance while reducing unnecessary

inflammatory reactions to alleviate tissue damage is the immune

regulatory target that scholars are dedicated to searching for (27).
2.2 Adaptive immunity to FK

2.2.1 Cellular immunity
Immunity through the mucosal surface stimulates IgA

antibodies in tears which can prevent the development of keratitis
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(28). T helper cells(Th17)and regulatory T (Treg)cells share a

common precursor cell (naive CD4 T cells), Th17 originated from

neutrophils, plays a key role in the severity of autoimmune and

inflammatory infection, while Treg cells inhibit Immune

inflammatory damage and maintain immune homeostasis.Th17/

Treg cells balance signaling pathways were triggered by T cell

receptors, costimulatory receptors, and cytokines, as well as

various metabolic pathways and gut microbiota (29). CD4+T cell-

driven inflammation leads to irreversible damage to the cornea. and

can lead to corneal nerve damage (30, 31). The regulation of Th17/

Treg differentiation will determine the outcome of fungal keratitis.

This will be a potential site (32, 33).

2.2.2 Humoral immunity
Local and systemic immunity inhibits pathogen responses in

some keratitis, such as infectious bovine keratoconjunctivitis (34).

Anti-amoebic antigens were detected in tear and ocular lysates, and

different levels of Immunoglobulin M(IGM) and Immunoglobulin

A(IGA) antibodies were detected during the course of the disease

(35). The keratitis vaccine has not been clinically promoted.

Treatment of corneas infected with Pseudomonas aeruginosa was

effective with immune serum from animals immunized with

Pseudomonas aeruginosa membrane vesicles, and the results were

effective. Topical treatment with immune serum reduces corneal

clinical scores (36).
3 Corneal inflammations in FK

The treatment of FK needs to be based on preventing spore

adhesion and disrupting the formation of fungal biofilms, reducing

the expression of inflammatory factors in corneal epithelial cells,

and inducing reactive oxygen species (ROS) levels in corneal

epithelial cells (24). Many cytokines and chemokines are involved

in the progression of FK. NF-kB pathway, phosphatidylinositol-3

kinase (PI3K)/protein kinase B(AKT) pathway like PI3K and AKT,

and MAPK pathway like p38 regulate the expression of

inflammatory cytokines. The fungus induces an increase in TLR4/

MyD88 expression in corneal tissue. It can be used as an effective

way of action against fungal infection (37, 38). In infectious

keratitis, corneal stromal MMPs, especially MMP-9 and MMP-2,

increase activity, inducing corneal collagen degradation and ulcer

formation (39). Macrophage inhibitory protein 2 (MIP-2) and

intercellular adhesion molecule 1 (ICAM-1) attract neutrophils to

the inflammatory site in the cornea (40, 41). Neutrophils are the

earliest cells in the body’s immune response and are an important

part of fighting pathogens (42). The corneal inflammatory response

to fungal infection is caused by the accumulation of inflammatory

cells. Neutrophils trigger the expression of cytokines and

chemokines. These cytokines and chemokines deposit immune

cells, and excessive immune responses can cause immune

damage, corneal opacity, and vision loss. Therefore, anti-

inflammatory is an important direction of FK treatment (43–46).

Downregulated the p-p65/p65 and p-IkB/IkB protein ratios,
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attenuate the inflammatory response and fungal burden in FK

(47). DC-derived TSLP promotes the Th17-type inflammatory

response through the JAK/STAT signaling pathway. Corneal

damage in Aspergillus fumigatus-infected keratitis can be reversed

by inhibition of the JAK/STAT signaling pathway with specific

inhibitors (22).
4 Oxidative stress damage in FK

The fungus stimulates the production of oxidative stress-related

markers (ROS, HNE, NO, MDAmitochondrial DNA 8-OHdG, and

aconitase-2) in corneal cells. Fungal infections also increase

HMOX1 and COX2 expressions and inhibit the levels of

antioxidant enzymes, superoxide dismutase-1 (SOD1), glutathione

peroxidase-1 (GPx1), and peroxide resin-4 (PRDX4) (48).

Upregulation of HO-1 leads to the conversion of heme to carbon

monoxide, which acts as an inhibitor of the NF-kB pathway, leading

to decreased expression of pro-inflammatory cytokines.

Inflammation is the main culprit in exacerbating fungal infections

(49, 50). Activation of the Nrf2/(HO)-1 pathway reduces the innate

immune response mediated by oxidative stress.Nrf2 plays an

important role in promoting corneal wound healing (51).

Inhibition of oxidative stress damage is an effective way to

alleviate corneal damage in fungal infections (52) (Figure 1).
5 The potential role of PPARs in FK

The anti-inflammatory and antioxidant effects of PPAR

agonists in various inflammatory diseases have been confirmed,

but their roles in FK is worth exploring.
5.1 The role of peroxisome in liver disease

PPAR enhances the production of high-density lipids and

inhibits the proliferation of vascular smooth muscle cells. PPARa
prevents cardiac complications through adenosine-activated

protein kinase, TGF-b activated kinase, and NF-kB pathway (53).

PPARa/g agonists can reduce cardiovascular risk by improving the

serum atherosclerotic lipoprotein profile of patients with

nonalcoholic fatty liver disease (54). The dual agonist of PPAR

a,d, efebranol, can significantly improve the relevant biochemical

indicators of cholestasis and is expected to treat primary biliary

cholangitis caused by liver fibrosis (55, 56).
5.2 The role of peroxisome in
nerve protection

PPARg agonists are being studied for the treatment of

neurodegenerative diseases including Alzheimer’s and Parkinson’s

disease (57, 58). The biology of PPARg inhibits transmembrane
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spanning transporters or alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid(AMPA) receptors thus alleviating brain

swelling and changes around tumors (57–59). PPARg coactivator

1a plays an important role in maintaining mitochondrial function,

protecting peripheral nerves, and alleviating chemotherapy-induced

peripheral neuropathy (60). PPARa is selectively expressed in

certain brain regions and neuronal glial cells and regulates

antioxidant responses, neurotransmission, neuroinflammation,

neurogenesis, and glial cell proliferation differentiation. PPAR

agonists perform a protective role in neurodegenerative diseases

and neuropsychiatric disorders (61).
5.3 The role of peroxisome in
inflammatory diseases

PPAR is a ligand-dependent transcription factor belonging to

the nuclear receptor family. The basic function of PPARa is to

regulate the oxidation of fatty acids. PPARb/d is involved in lipid

metabolism, wound healing, embryonic development, and

inflammation (62–64). PPAR agonists have recently demonstrated

promising short-term biochemical responses in patients with
Frontiers in Immunology 04
primary cholangitis (65). PPARg performs anti-inflammatory and

anti-fibrotic effects in different disease models (64). PPARg agonists
can be used to alleviate allergic inflammation and inhibit pro-

inflammatory gene expression programs (66). Recombinant

Human Fibroblast Growth Factor 21(rhFGF21)Regulates the

secretion of pro- and anti-inflammatory cytokines to improve

neurological deficits in behavioral testing. It attenuates

macrophage polarization to the M1 phenotype and peripheral

immune cell accumulation, inhibits NF-kB, and upregulates

PPARg to inhibit pro-inflammatory cytokine expression (67). In

the treatment of immunoglobulin A nephropathy rat model, the

addition of Yi-Shen-Hua-Shi granules modulates immune and

inflammatory damage by the PPARg/NF-kB pathway (68). PPAR-

g is a transcription factor with anti-inflammatory capacity. Nuclear

receptors are important bridges between lipid signaling molecules

and transcription responses. Macrophages downregulate PPARg
and its target genes under inflammatory conditions, thereby

decreasing lipid stress in these cells. PPARg is required during the

resolution phase of the inflammatory response, and the absence

of PPARg is associated with a sustained immune response.

Signaling pathways (p38, NFkB, ERK1/2) activated by TLR2 and

TL4 were inhibited by PPARg in various situations (69–72).
FIGURE 1

Innate and adaptive immune response are both involved in the pathogenesis of fungal keratitis(FK) (16). Corneal cells specifically recognize fungal-
associated patterns associated with molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs) molecules by pattern recognition
receivers (PRRs) (17, 18). Dendritic cells(DCs) can drive naïve CD4+ T cell proliferation, leading to inflammatory responses by activating signaling
pathways. T helper cells, monocytes, macrophages, and mast cells play key roles in FK. Activation of signal transduction molecules promotes the
expression of cytokines, chemokines, and rmatrix metalloproteinases (MMPs) (22, 24). The fungus stimulates the production of oxidative stress-
related markers in corneal cells. Inhibition of oxidative stress damage will be an effective way to alleviate corneal damage in fungal infections (52).
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5.4 Existing research results of peroxisome
in eye diseases

Both PPARa and PPARg could be detected in the cornea,

conjunctiva, meibomian gland, and lacrimal gland. PPARg is

expressed at higher levels than PPARa in all tissues (73).

5.4.1 Dry eye
PPARa, b/d, g can be expressed in the conjunctiva and lacrimal

glands. Decreased tear secretion, shortened BUT, and increased

corneal staining were shown in Dry eye rats and diabetic rats. The

expression of PPARg decreased, while the expression of TNF-a, IL-
1b, IL-6, MyD88, and TGF-b increased in both dry-eye rats and

diabetic rats (74). Excessive keratinization of the meibomian gland

epithelium leads to obstruction of the meibomian opening,

meibomian stasis, and cystic dilation of the ducts, resulting in

secondary disuse acinar atrophy and glandular shedding (75).

PPARg is responsible for the formation of ductal lumens and the

differentiation of epithelial cells into meibocyte phenotype during

meibomian gland development. The decrease in PPARg receptor

expression is the key role of meibomian gland atrophy and

degeneration (76). PPAR ligands have neuroprotective and anti-

inflammatory effects (77), making them a promising drug choice for

the treatment of dry eye syndrome.

5.4.2 Corneal alkali burn
In the rat corneal alkali burn model, PPARa, PPARg agonists,

and their combinations of ophthalmic fluid were administered

respectively in the corneal alkali burn model. PPARa, PPARg,
and PPARa , g agon i s t s inh ib i t i nflammato ry c e l l s ,

neovascularization, and fibrotic changes. PPARg agonists facilitate
M2 macrophages and promote wound healing, The combination of

PPARa with g agonists may be a new therapy strategy for corneal

alkali burns (78, 79). The increased expression level of PPARg
mRNA can serve as one of the factors for evaluating the prognosis

of corneal alkali burn (80).

PPARg can reduce the expression of downstream inflammatory

molecules by regulating signaling molecules. The enhanced

expression of PPARg protein in spinal microglia can inhibit the

activity of the NF - k B pathway, increase the expression of M2

polarization-related genes and significantly reduce the level of

inflammatory factors (81). Oxidative stress and inflammatory

reaction play an important role in the development of diabetes.

Curcumin has been shown to have anti-inflammatory effects in

combating changes induced by hyperglycemia by regulating

signaling pathways such as PPAR - g and NF - k B, as well as

high expression of IL-1 b, IL-6, and chemokines such as MCP-1

(82). By regulating the polarization of M2 macrophages through the

PPARg/NFkB axis and IL-6/IL-6R signaling pathway, the

proliferation, migration, and glucose metabolism of lung

adenocarcinoma cells are regulated (83).

5.4.3 corneal epithelial injury
In a model of delayed corneal epithelial injury, PPAR agonists or

vehicle ophthalmic fluids are locally instilled into the rat cornea, and
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the corneal epithelial healing process is assessed by fluorescein

staining. The area of corneal epithelial defect in the PPAR agonist

ophthalmic fluid group was significantly smaller than that in the

vehicle group. PPARg administration can inhibit the expression of

inflammatory cytokines and NF-kB thus promoting corneal epithelial

healing (84). The expression of PPARg and PPARb/d is reduced in

acute epidermal barrier injury, promoting the progression of the

disease (85). PPARb/d agonists promote the infiltration of M2

macrophages and vascular endothelial cells and promote the

expression of vascular endothelial growth factor A mRNA. Thus,

PPARb/d ligands promote corneal neovascularization as well as

wound healing processes (86).

5.4.4 Diabetic nerve damage
The strong nerve innervation of the cornea ensures its

maintenance of the ocular surface homeostasis. Corneal diabetes

neuropathy changes the shape and density of the intranasal plexus

and nerves. The length and the fiber density of corneal nerve fiber,

corneal nerve branch density, twist coefficient, and bead frequency

are quantitative analysis parameters of nerve fibers in corneal

diabetes neuropathy (87). PPARa agonists stimulate corneal

nerve regeneration, reduce nerve edema, significantly improve

corneal nerve fiber density and corneal nerve fiber width, and

upregulate the neurotrophic signaling pathway (88). The

protective effect of PPARa on diabetes keratopathy and corneal

neuropathy is achieved by restoring the level of neurotrophic factors

in the cornea. The density of corneal nerve fibers in PPARa -/- mice

gradually decreased. The corneal sensitivity of PPARa -/- mice

continues to decrease. PPARa agonist has therapeutic potential in

the treatment of diabetes keratopathy (89). Fenofibrate(PPAR alpha

agonist )can delay the development of retinopathy and reduce

macular edema, reducing the demand for laser therapy (90, 91).

Fenofibrate has good effects on lipid control, inflammation,

angiogenesis, and cell apoptosis. These factors are considered

important in the development of DR. Fenofibrate has the

function of protecting the retina (92). Fenofibrate is the treatment

choice for DR. More understanding of biomarkers related to

inflammation and angiogenesis in diabetes retinopathy will help

to develop treatment methods for advanced retinopathy (93).
5.5 The possible mechanism of PPARs
involving in FK

PPARs play multiple roles in the b - oxidation of fatty acids and

the metabolism of arachidonic acid metabolites. PPAR is also a key

regulatory factor in controlling inflammation and has great

therapeutic potential in inflammatory diseases (14). Given this,

based on our analysis of the aforementioned literature, we attempt

to demonstrate the therapeutic potential of PPAR in FK.

5.5.1 Immune regulation of PPARs
Immune damage plays a crucial role in the pathogenesis of FK.

In the early stage of inflammation, the innate immune response

plays a protective role, while in the late stage of inflammation,
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immune damage leads to the formation of corneal ulcers and severe

decline in vision. PPARg regulates macrophage polarization, DC

function, and T-cell activation (64). PPARa is an important target

through which Melatonin regulates autophagy to alleviate the

hepatocyte lipid accumulation of Cadmium (94).

PPARa is an important player in innate immune regulation. To

distinguish between self and foreign molecules and cells, the pattern

recognition receptor(PRR) binds specific molecule PAMPs from

certain groups of common pathogens of viral, bacterial, or fungal

origin. In the event of an invasion, phagocytosis is triggered and the

production of cytotoxic compounds helps to destroy the engulfed

particles. PPARa acts as a transcription factor to exert a strong

influence on intracellular signal transduction events, fighting a

disruptive cytokine storm (95, 96). Peroxisomes are key regulators

that regulate immunity, paving the way for potential therapeutic

intervention in FK by its immunomodulatory function.

5.5.2 Inhibition effect of PPARs on oxidative
stress damage

Oxidative stress promotes the formation of liver fibrosis.

Inhibition of ROS-mediated effects and modulation of major

antioxidant responses has emerged as therapeutic targets for the

prevention of liver injury. ROS is involved in signal transduction,

which regulates inflammation and immune factors (97). PPARg has
been shown to reduce oxidative stress and block pro-inflammatory

polarization of macrophages. PPARg regulates ROS production by

inhibiting Inducible nitric oxide synthase (iNOS) or enhancing the

activity of endothelial nitric oxide synthase(eNOS) (98, 99).
Frontiers in Immunology 06
Upregulation of antioxidant enzymes as described above can

alleviate the condition of FK, and peroxisome can participate in

the treatment process of FK through its potential to reduce

oxidative stress damage (100). The relative research outcome

offers the potential targets for therapeutic strategies to FK.

5.5.3 Inhibition effect of PPARs on inflammations
During the course of FK disease, the retinoid X receptor (RXR)

recognizes PAMP and activates a large number of upregulated

cytokines/chemokines through signal transduction molecules.

Fungal antigens activate CD4+T, activate Th1, Th2, and Th17, and

regulate T cell production. The production of related cytokines

determines the final outcome of fungal inflammation (101).

Chemokines recruit neutrophils, regulate vascularization, play a

key role in inflammatory responses, and are widely involved in a

variety of complex physiological processes (102, 103). Chemokines

are involved in FK pathogenesis mentioned above. CC chemokine

receptor 1 (CCR1) is a member of the chemokine family and its

receptor family, playing a role in the autoimmune response.

Inhibiting the MAPK signaling pathway of CCR1 and PPAR - g
reduces inflammatory response and can downregulate the

expression of iNOS, IL-1 b, COX-2, and MMP13. Chemokine

inhibitors reduce the inflammatory response through the PPARg
pathway (104). PPAR agonists have recently been demonstrated

promising short-term biochemical responses in patients with

primary cholangitis. PPAR-g plays a central and important role in

the inhibition of inflammation (65). Peroxisome can be exploited to

develop new anti-inflammatory drugs to treat FK.
FIGURE 2

Peroxisome proliferator activated receptor(PPAR) regulates lipid metabolism, antioxidant responses, inflammation and immune factors (97). PPAR-g
has been shown to reduce oxidative stress and block pro-inflammatory polarization in macrophages (78, 108). The PPARa signaling pathway has
therapeutic effects in addressing inflammatory corneal angiogenesis and corneal fibrosis (106, 116). PPARg agonists can significantly proliferate
interleukin 17(+) T cells and promote the proliferation of Regulatory T cells (Tregs). PPAR has great potential in the treatment of FK.
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5.5.4 Inhibition effect of PPARs on
corneal neovascularization

Infection is an important factor in promoting corneal

neovascularization, which can cause corneal opacity and lead to

decreased vision. And often leads to chronic inflammatory

circulation (105). The balance between angiogenic factors and anti-

angiogenic factors is an important cause of corneal neovascularization.

Anti-Vascular endothelial growth factor(anti-VEGF) drugs are effective

in the treatment of neovascular eye diseases such as age-relatedmacular

degeneration, diabetes retinopathy, macular edema, neovascular

glaucoma, and other neovascular diseases. Keratitis can cause

pathological corneal neovascularization, and the inflammatory genes

have a time-dependent effect on capillary regression and corneal

transparency recovery. When endogenous capillaries disappear,

corneal capillaries become thinner, accompanied by the

disappearance of inflammatory cells. Anti-VEGF drugs have great

potential in treating corneal neovascularization (106). Endogenous

capillary regression is characterized by progressive thinning and

remodeling of neovascularization in the rat cornea and in vivo

inflammatory cell regression. VEGF ligand receptor signaling is

inhibited during vascular regression and PPARa/RXRa is activated

in the later stages, which may be responsible for inhibiting pro-

inflammatory genes and immature blood vessels, and helping to

prune and remodel capillaries. The administration of PPARa, a g
agonist, promotes corneal wound healing and provides a new

therapeutic strategy (78, 107).

5.5.5 Inhibition effect of PPARs on corneal
fibrosis and scar formation

After the corneal injury, transforming growth factor beta-1,2

(TGFb-1,2) is activated and enters the corneal stroma, promoting

the transition of keratinocytes near the injury site to myofibroblasts,

excreting a large amount of disordered extracellular matrix, forming

corneal scarring, and causing vision loss (108–111). PPARg can

inhibit inflammation, fibrosis, and cell differentiation activated by

TGFb (112). Impaired PPARa signaling can affect FXR activation

by inducing the TGFb signaling pathway, P53 signaling pathway,

and PI3K-AKT-mTOR signaling pathway, reducing the liver’s

ability to inhibit inflammation, and ultimately leading to

apoptosis and fibrosis (113–115). PPAR plays an important role

in inflammation, angiogenesis, and fibrosis formation, and these

pathological processes are also important causes of FK (116). PPAR

agonists were considered promising therapeutic targets to reduce

corneal neovascularization, fibrosis, and inflammation (117).

5.5.6 Inhibition effect of PPARs on corneal
transplant rejection in FK

In cases of FK, corneal transplantation is an effective measure for

restoring vision, but fungal recurrence and corneal transplant rejection

are important reasons for surgical failure. In cases of corneal

vascularization or severe infection, the failure rate of corneal

transplantation can reach as high as 35% to 70% in patients

undergoing corneal transplantation. The rejection reaction of corneal
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transplantation leads to irreversible damage to the corneal endothelium

and corneal opacity (118). The loss of donor corneal endothelial cells is

progressive after corneal transplant, which can lead to late-stage graft

failure (119). T cell activation is an important cause of corneal

transplant rejection. Activated T cells proliferate to form CD4+T

helper cells, causing a delayed hypersensitive immune response

against the same antigen on the transplant, resulting in damage to

corneal tissue (120, 121). After T cells recognize foreign antigens,

antigen-presenting cells (APCs) trigger innate and adaptive immunity.

CD4+T cells differentiate into Th1, Th2,Treg, and Th17 cells, causing

tissue inflammation and immune damage (122, 123). PPARg agonists
can significantly inhibit the proliferation of IL-17 (+) T cells and

promote the proliferation of Tregs in a heart transplant model, which

can help protect heart allografts. Given the anti-inflammatory and anti-

immunity effects of PPARg agonists, the agonists were used to treat

acute and chronic allograft rejection reactions (124–126) (Figure 2).
6 Conclusion

FK is an infectious disease that seriously affects eye health. Due to

the widespread use of antibiotics and steroid drugs, dysbiosis of the

microbiota leads to a continuous increase in fungal infections. At

present, there is a lack of effective antifungal drugs, and fungal

resistance remains an urgent problem to be solved. PPAR is a

member of the nuclear receptor family, widely expressed in the

cornea, and has made research progress in various eye diseases.

Excessive immune inflammatory damage in FK cases resulted in

severe damage to corneal tissue. The occurrence of corneal transplant

rejection is an important reason for the failure of FK vision restoration.

Corneal scarring in the late stage of PK is also an important treatment

direction. The anti-inflammatory, immunomodulatory,

immunosuppressive, antioxidant, and anti-fibrotic functions of PPAR

are a promising choice for future FK treatment. This will contribute to

better treatment outcomes for patients with FK.
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