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Introduction: In 2020, global cancer statistics reported 19.3 million new cases

and 10 million deaths annually, highlighting the urgent need for effective

treatments. Current therapies, such as surgery, radiation, and chemotherapy,

have limitations in comprehensively addressing solid tumor. Recent advances in

cancer biology and immuno-oncology, including CAR-T cell therapy, show

promise but face efficacy challenges against solid tumors.

Methods: This meta-analysis systematically reviewed studies from PubMed,

Embase, Cochrane, and ClinicalTrials.gov databases up to May 2024 to

evaluate the clinical efficacy and safety of unmodified NK cell therapies in solid

tumors. The included trials focused on reporting objective response rates (ORR).

Results: Thirty-one trials involving 600 patients across various cancers (e.g.,

NSCLC, HCC, breast, ovarian) were analyzed. NK cell therapies demonstrated

promising ORRs, particularly 72.3% in hepatocellular carcinoma, often in

combination with local therapies. Safety profiles were favorable, with fatigue

being the most common adverse event.

Discussion: NK cell therapies represent a promising treatment option for solid

tumors, offering a viable alternative to genetically modified cell therapies like

CAR-T. Further research is needed to optimize the clinical utility of NK cell

therapy and integrate it effectively into standard cancer treatment regimens.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_

record.php?ID=CRD42023438410, identifier CRD42023438410.
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Introduction

According to the Global Cancer Statistics of 2020, 19.3 million

new cases of cancer are diagnosed annually worldwide, with 10

million individuals succumbing to the disease. The most prevalent

cancer types include breast cancer (11.7%), lung cancer (11.4%),

prostate cancer (7.3%), skin cancer (6.2%), colorectal cancer (6.0%),

stomach cancer (5.6%), and liver cancer (4.7%). Notably, lung

cancer (18.0%), liver cancer (8.3%), and stomach cancer (7.7%)

emerge as the leading causes of cancer-related mortality (1).

Traditional cancer therapies, such as surgery, radiation, and

chemotherapy, have been standard treatment options for decades.

However, their limitations in addressing the complex nature of

cancer are becoming increasingly apparent. Recent advances in

cancer molecular biology and immuno-oncology have introduced

precision and targeted therapeutics, which aim to selectively

eliminate cancer cells while minimizing collateral toxicity and

side effects.

One significant advancement is CAR-T cell therapy, where

genetically engineered immune cells are designed to recognize

and eliminate tumor cells with specific surface antigens. CAR-T

therapy has shown remarkable success, especially in managing

aggressive B-cell malignancies, offering renewed hope for patients.

Nevertheless, this approach faces challenges, including limited

efficacy against solid tumors, pronounced toxicities like cytokine

release syndrome (CRS), complex manufacturing processes, and

high costs (2).

In response, alternative strategies such as CAR-NK and CAR-M

cells have been developed (2). These innovative therapies aim to

leverage the potential of Natural Killer (NK) cells, key components

of the human immune system known for their role in innate

immunity through cell-mediated cytotoxicity and antibody-

dependent cellular cytotoxicity (3).

Furthermore, NK cells offer several advantages including non-

MHC-restricted recognition, the ability to infiltrate tumor

microenvironments, potent cytolytic capabilities, and a favorable

safety profile with a reduced risk of complications such as CRS,

graft-versus- host-disease (GvHD), and immune effector cell-

associated neurotoxicity syndrome (ICANS). These attributes

make NK cells promising candidates for treating solid tumors (4).

Unlike CAR-T cell therapies, NK cell-based therapies can utilize

various sources, including peripheral blood (PB) from healthy

donors, umbilical cord blood (UCB), induced pluripotent stem

cells (iPSCs), or commercially available NK cell lines. This

versatility allows for cost-effective mass production and off-the-

shelf availability, providing on-demand treatment options (2, 5).

Given these promising attributes, ongoing research is exploring

the potential of NK cells, particularly through the development of

CAR-NK cells, marking a new frontier in cancer therapy. This

meta-analysis aims to systematically evaluate the clinical efficacy

and safety of unmodified NK cells as a treatment modality for solid

cancer patients. This meta-analysis represents a critical step toward

integrating NK cell-based therapies into clinical practice and

facilitating evidence-based decision-making in cancer therapeutics.
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Materials and methods

Literature search and screening

We conducted a systematic review and meta-analysis to identify

published clinical trials that utilized combination therapies involving

natural killer cells, as well as trials did not, with a focus on reporting

objective response rates. The PubMed, Embase, Cochrane, and

ClinicalTrials.gov databases were searched for papers published from

database inception through May 2024, using the terms ‘neoplasms’,

‘hematologic neoplasms’ and ‘killer cells, natural’ (Appendix A).

Additionally, we manually examined references from relevant

reviews and articles to avoid omitting any pertinent studies.

The PRISMA guidelines were followed during the

review process (6). A prospective protocol was registered in

PROSPERO, CRD42023438410.
Inclusion and exclusion criteria

The selection criteria included: (1) articles reporting prospective

clinical trials which were published before the literature review date;

(2) participants were diagnosed solid cancer; (3) articles in which

participants were treated with natural killer cells; and (4) clinical

trials reporting the objective response rate. Studies not matching the

selection criteria were excluded. Exclusion criteria were: (1) studies

without full-text available; (2) non-interventional studies; (3)

studies lacking efficacy assessment parameters; and (4) studies in

which participants were treated with agents other than NK cells. HS

Park and KR Kim independently conducted the literature search

and data extraction. Discrepancies were resolved through

discussion with a senior author (HW Yim). For publications

reporting duplicate populations, we only included the most recent

study or the study reporting the most complete efficacy data.
Data extraction

Data extraction was conducted using standardized, pre-piloted

forms for study tabulation and quality assessment. Independent

investigators (HS Park and KR Kim) extracted the following

information: study characteristics (first author, year of

publication, if applicable, country, phase, study design, patient

number, age, gender, cancer type, previous treatment history, cell

origin, expansion duration, infusion dose, dose schedule, adverse

events, and treatment response (complete response, partial

response, stable disease, progressive disease, objective response

rate [ORR], disease control rate [DCR]), and survival

(progression-free survival [PFS], overall survival [OS], 6-month

and 1-year survival rates). ORR was defined as the sum of all

patients demonstrating complete or partial response divided by the

total of evaluable patients, and DCR was defined as the sum of all

patients demonstrating complete or partial response or stable

disease divided by the total of evaluable patients.
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Outcome measurement

The primary outcome was objective response rate (ORR),

defined as the sum of all patients demonstrating complete or

partial response divided by the total of evaluable patients. The

secondary outcome was disease control rate (DCR), defined as the

sum of all patients demonstrating complete or partial response or

stable disease divided by the total of evaluable patients. Safety

endpoint was adverse events of any grade, as reported by the

individual trials.
Subgroup analysis

Several subgroup analyses were conducted to examine the

impact of various factors on the efficacy of NK cell

immunotherapy in solid cancer. The subgroups included cancer

type, age, study year, subject number, cell origin, expansion

duration, infusion dose, IL-2 administration, lymphodepleting

chemotherapy regimen, combination treatment. Subgroups were

analyzed if they appeared in at least two studies.
Statistical analysis

We performed a meta-analysis using Comprehensive Meta-

analysis 4.0. Event rate (ER) with 95% confidence intervals (CIs)

were calculated for each outcome. Pooled ORR and DCR were

calculated using fixed- and random-effects models depending on

the heterogeneity across the included studies (7). The heterogeneity

was assessed using I2 values. Generally, I2 values of 25% represent

low heterogeneity, and I2 values of 50% and 75% are evidence of

moderate and high heterogeneity, respectively. When no

statistically significant heterogeneity existed, the analysis was

calculated with a fixed-effect model; otherwise, a random-effect

model was used. P values of <0.05 were considered statistically

significant (8). We performed subgroup analysis to assess the

efficacy of natural killer cells with different clinical parameters in

all available studies.

The analysis of safety data, the secondary evaluative variable,

was conducted using R software version 4.3.1 (R Foundation for

Statistical Computing, Vienna, Austria). The “epiR” package was

employed to calculate the incidence rate and its corresponding 95%

confidence interval.

Begg’s and Egger’s tests were used to assess publication bias and

a publication bias was indicated by p-value < 0.05 in Begg’s or

Egger’s values (9, 10). Sensitivity analyses were conducted using

both fixed and random effects models.

The quality of the included studies was evaluated using the

ROBINS-I tool (Risk of Bias in Non-Randomized Studies of

Interventions), which assesses the risk of bias across seven

domains: confounding, participant selection, intervention

classification, deviations from intended interventions, missing

data, outcome measurement, and selection of reported results.

Each study was categorized as having low, moderate, or high risk
Frontiers in Immunology 03
of bias. Risk of bias was independently assessed by two reviewers,

with disagreements resolved by a third reviewer. To explore the

impact of study bias on outcomes, we conducted a separate analysis

of studies classified as having low or moderate risk of bias (11).
Results

Selection of clinical trials

A total of 3076 publications were retrieved through the initial

literature search, and 1905 studies remained after duplications were

excluded. After reviewing titles and abstracts, 1774 publications

were excluded because the topics were irrelevant, the articles were

reviews, the studies were not used NK cells as an intervention, or no

usable data were reported. 131 potentially relevant articles were

identified for detailed review.

After a full-text review, 100 studies were excluded for the following

reasons: 52 lacked full text or relevant information, 37 involved patients

with pre-existing partial response (PR) or higher responsiveness, 8 were

used cells other than NK cells, 3 were non-intervention studies.

After this process, 31 clinical trials involving 600 patients were

identified as eligible to be included in the meta-analysis (Figure 1)

(12–42).
Characteristics of the included trials

A total of 600 patients were included in this meta-analysis from 31

selected references. All the studies focused on solid tumor patients, and

they were further classified by cancer type, with 7 studies involving

Non-Small Cell Lung Cancer (NSCLC), 3 studies on Hepatocellular

Carcinoma (HCC), and 2 studies each on Breast and Ovarian Cancer,

Pancreatic Cancer, Renal Cell Carcinoma (RCC), Central Nervous

System Tumors (CNS tumor), and Digestive System Cancers. One

study was centered on Nasopharyngeal Cancer, while 9 studies

encompassed all solid tumor types. Regarding the origin of cells, 15

studies used allogeneic cells, 12 used autologous cells, 2 employed cell

lines, and 1 study utilized both allogeneic and autologous cells.

Additionally, 8 studies incorporated lymphodepleting chemotherapy

prior to NK cell infusion, 8 combined NK cell therapy with IL-2, and 19

studies combined NK cell therapy with other anticancer treatments.

These characteristics reflect the diversity within the meta-analysis,

covering patient demographics, cell sources, cancer types, and the

incorporation of various treatment approaches.

All included 31 clinical trials reported the outcomes of NK cell

treatment. 15 trials with 218 patients reported the number of

therapeutic toxicities of NK cell. The characteristics of all

included studies are summarized in Table 1.
ORR and DCR of NK cell
treatment outcome

Forest plots showing the best ORR and DCR with 95% CI are

presented in Figure 2.
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In our meta-analysis of 31 selected studies, we examined both

Overall Response Rate (ORR) and Disease Control Rate (DCR),

using the event rate as the effect size index. To account for potential

study variability, we applied a random-effects model, considering

these studies as a random sample from a broader universe of similar

research. For ORR, the mean effect size was calculated at 0.282 (95%

CI: 0.194 - 0.389), while for DCR, it is determined as 0.632 (95% CI:

0.543 - 0.713). These values represent the response rates across the

studies. Heterogeneity analysis indicated significant variability

among the included studies for both ORR (I2 = 77%) and DCR

(I2 = 68%), with Q-tests for heterogeneity producing highly

significant results (p < 0.001) in both cases.
Subgroup analysis based on various
clinical factors

Due to a considerable heterogeneity detected in ORR and DCR,

we conducted several comprehensive subgroup analyses and

metaregressions according to the protocol designed at the

beginning of the study. The results of subgroup analyses and

metaregressions based on different factors are presented in

Table 2, including the number of studies, the number of patients,

pooled ORR and DCR with 95% CI, heterogeneity and p-value for

metaregression. The random effects model was applied due to

significant heterogeneity as shown in Table 2.

Sub-analysis for ORR showed statistically significant results,

with a 72.3% (0.527-0.859) ORR in hepatocellular carcinoma

patients and 69.9% (0.555-0.813) in patients receiving

combination with local treatment, and allogenic NK cells showed

better ORR at 39.6% (0.261-0.549) than autologous NK cells. In

addition, 38.1% (0.262-0.516) showed a better response rate when

the culture period was within 2 weeks, and 45.8% (0.305-0.620)
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when the number of cells administered was ≥10^9. Contrary to

expectations, the use of lymphodepletion or IL-2 administration

demonstrated significantly lower ORR, with values of 30.3% (95%

CI: 0.206-0.421) and 33.0% (95% CI: 0.223-0.459), respectively.

These results showed a similar trend in the sub-analysis of DCR.
Overall incidence of AEs

The meta-analysis included 15 out of the 31 studies, comprising

a total of 218 participants, where adverse events with specified

Grades were reported. Among Grade 1-2 adverse events, fatigue was

the most common, at 44% (95% CI: 0.34-0.56), followed by nausea

at 37% (95% CI: 0.25-0.53) and anemia at 33% (95% CI: 0.22-0.47).

Grade 3 or higher adverse reactions included Headache occurred in

25% (95% CI: 0.16-0.37), Anorexia in 8% (95% CI: 0.02-0.20), and

neutropenia at 7% (95% CI: 0.03-0.16). Notably, no cases of

Cytokine Release Syndrome (CRS) or Graft-versus-Host Disease

(GvHD), common side effects of cell therapies like CAR-T, were

reported (Figure 3).
Publication bias, sensitivity analysis, and
risk of bias

Begg’s rank correlation and Egger’s regression analyses were

performed to evaluate publication bias. A publication bias was

indicated by p-value < 0.05 in Begg’s or Egger’s tests. Publication

bias was detected for ORR. In the sensitivity analysis, a significant

difference was observed in the pooled ES for the best ORR and DCR

based on the fixed and random effects models (Table 3).

Sensitivity analyses were performed to assess the stability of the

results by sequentially removing each study. The removal of any
FIGURE 1

Flow diagram representing the selection process of studies.
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TABLE 1 Basic characteristics of included clinical trials.
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SD5 PD6

(21)

No 5-FU + Cis CR4 PR3

SD2 PD2

(14)

No No SD2 PD5 (36)

Yes 1MU/m2 Cetuximab SD4 PD3 (28)

No Pembrolizumab PR5 SD3 PD4 (23)

No No PR1 SD3 PD6 (35)

Yes

1 million

IU/m2

Trastuzumab with or

without Bevacizumab

PR1 SD16 PD14 (24)

No No SD2 PD7 (22)

No Pembrolizumab PR20 SD30 PD5 (32)

No IRE CR3 PR13 SD2 (41)

No IgG1 antibody,

Capecitabine or S-1,

Cisplatin, Trastuzumab,

Capecitabine or S-1,

Oxaliplatin, Cetuximab

SD4 PD2 (20)

No Cetuximab PR4 SD17 PD6 (25)

No IRE CR5 PR8

SD5 PD2

(12)

No Cryoablation with or

without Herceptin.

CR3 PR12

SD10 PD7

(26)

Yes

No

further detail

Cyclophosphamide/

Topotecan, Irinotecan/

Temozolomide,

Ifosfamide/Carboplatin/

Etoposide, Hu14.18K322A

CR3 PR5 SD5 (15)

No IRE CR5 PR12

SD10 PD10

(29)
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Study ID (Year) Patient

number (*)
Age

(years)

Gender

M/(F)

Type of Cancer Origin Duration

of expansion

Cytokines

for expansion

Dose Lymphodep

chemothera

Jia, L. 2022 20 49-71 17 (3) NSCLC Auto 14 days IL-2, IL-15 3×10^9 cells every 3 weeks No

Bae, W. K. 2022 11 43-71 10 (1) HCC Auto 14 days IL-2, IL-15 2.5×10^8, 5×10^8,

10×10^8 cells

for 5 consecutive days

Cy + Flu

Otegbeye, F. 2022 7 23-66 2 (5) CRC (6)

Sarcoma (1)

Allo 14~21days IL-2 1X10^7/kg, 2.5X10^7/kg,

5X10^7/kg

Cy + Flu

Lim, C. M. 2022 7 45-66 6 (1) Nasopharyngea ca. Auto 10 days IL-2 1 × 10^6 cells/kg → 1 ×

10^7 cells/kg

3 times a week for 2 weeks

No

Kim, E. J. 2022 14 (12) 49-73 11 (3) NSCLC Auto 17~18 days – 2×10^9

or 4×10^9 cells every

1 week

No

Nagai, K. 2020 10 22-61 4 (6) Mixed

solid cancer

Auto 14 days IL-2 10^6 cells → 10^7 cells →

10^8 cells

every 2 weeks

No

Lee, S. C. 2020 31 32-73 – Mixed

advanced HER2-positive

solid tumors refractory to

standard therapy (breast

ca. (30), gastric ca. (1))

Allo – – 1X10^6cells/kg,1X10^7

cells/kg, 5X10^7 cells/kg,

1X10^8 cells/kg

X 3~19 infusions

No

Khatua, S. 2020 9 8-18 6 (3) CNS ca.

Recurrent pediatric

medulloblastoma

and ependymoma

Auto – – 1 × 10^6/m2,

1 × 10^7/m2,

X 3 infusions weekly

3 × 10^3/m2 X 1

infusion weekly

No

Lin, M. 2020 55 56.0-69.0 34 (21) NSCLC Allo 12 days IL-2 – No

Yang, Y. 2019 18 57** 11 (7) HCC Allo 8~12 days No – No

Ishikawa, T. 2018 9 (6) 34-79 3 (32) Digestive ca.

gastric ca. (3),

colorectal ca. (6)

Auto 18~24 days IL-2 0.5 × 10^9,

1.0 × 10^9,

2.0 × 10^9 cells

every 3 weeks

No

Liang, S. 2018 27 around 55

yrs old

5 (8) NSCLC Allo 12 days No – No

Alnaggar,

M. 2018

20 31-77 13 (31) HCC Allo 12 days No 8~10X10^9 cells

D 13, 14, 15

No

Liang, S. 2017 32 26-71 0 (18) Breast ca. Allo 12 days No – No

Federico, S.

M. 2017

13 15.96-75.46 5 (8) CNS ca.

Recurrent/

Refractory Neuroblastoma

Allo – No 4.7 X 10^6/kg ~ 59.5 X

10^6/kg

D 7 or 8 every 2 cycles

No

Lin, M. 2017 37 57** 36 (31) Pancreatic ca. Allo 12 days No 8~10X10^9 cells

D 13, 14, 15 for 2 cycles

No
le

p
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PR2 SD6 PD7 (18)

No No No SD4 PD8 (13)
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1.75 X 10^6

IU/m2

No CR0 PR0

SD6 PD-

(34)
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Study ID (Year) Patient

number (*)
Age

(years)
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M/(F)

Type of Cancer Origin Duration

of expansion

Cytokines

for expansion

Dose

Lin, M. 2017 30 47** 12 (18) NSCLC Allo 12 days No 8~10X10^9 cells

D 13, 14, 15 for 2 cycles

Lin, M. 2017 20 57** 12 (8) Pancreatic ca. Allo 12 days No 8~10X10^9 cells

D 13, 14, 15 for 2 cycles

Lin, M. 2017 30 61** 18 (12) RCC Allo 12 days No 8~10X10^9 cells

D 13, 14, 15 for 2 cycles

Liang, S. 2017 36 around 50

yrs old

0 (36) Breast ca. Mixed 12 days No –

Yang, Y. 2016 20 (15) 48-78 16 (4) Mixed

advanced, recurrent

solid tumors

Allo 14 days IL-2 1 X 10^6 cells/kg, 1X10^7

cells/kg single infusion,

1X10^6 cells/kg, 3X10^6

cells/kg,

1X10^7 cells/kg, 3X10^7

cells/kg X 1 infusion/week

for 3 weeks

Sakamoto,

N. 2015

14 (12) 48-78 11 (3) Digestive ca.

un-resectable, locally

advanced and/or

metastatic digestive cancer

Auto 21~22 days IL-2 0.5 × 10^9,

1.0 × 10^9,

2.0 × 10^9 cells

D 0, 7, 14

Tonn, T. 2013 15 9-71 6 (9) Mixed

predominantly end-stage

solid tumors

Cell line

NK-

92 cells

~12 days IL-2 1X10^9,

3X10^9,

1X10^10 cells/m2

2 infusion (2h, 50h)

Yang, Y. J. 2013 19 45-75 12 (7) NSCLC Auto 14 days IL-2 2.0×10^9 cells

D 1, 8 every 3 weeks

Parkhurst, M.

R. 2011

8 21-56 4 (4) Mixed

metastatic melanoma (7),

renal cell carcinoma (1)

Auto 21 days IL-2 4.7X10^10 (±

2.1X10^10) cells

Geller, M.

A. 2011

20 30-65 0 (20) Mixed

refractory metastatic breast

ca. (6), ovarian ca. (14)

Allo 14 days No 2.16X10^7 cells/kg

(8.33X10^6 – 3.94X10^7)

Iliopoulou, E.

G. 2010

16 (15) 50-75 11 (5) NSCLC Allo 21~23 days IL-15 0.2 ~ 29 X 10^6/kg

Arai, S. 2008 12 31-74 8 (4) Mixed

Renal cell cancer (11),

malignant

melanoma (n=1)

Cell line

NK-

92 cells

15~17 days IL-2 1X10^8/m2,

3X10^8/m2,

1X10^9/m2

3X10^9/m2

D 1, 3, 5

Miller, J. S. 2005 43

(23)

– – Mixed

metastatic melanoma (10),

metastatic renal cell

carcinoma (13), refractory

Hodgkin (1), poor-

prognosis AML (19)

Allo – IL-2 –
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single study did not change the overall statistical results, indicating

that the results of this study were statistically robust (Figure 4).

Using the ROBINS-I tool, we assessed the risk of bias in 19

studies as low and in 12 studies as moderate (Appendix B). This

thorough evaluation enabled us to explore the relationship between

study quality and reported outcomes, specifically Overall Response

Rate (ORR) and Disease Control Rate (DCR). Our analysis revealed

a clear pattern: studies with low risk of bias consistently

demonstrated more favorable outcomes (Tables 2, 3).
Discussion

In our study, we conducted a meta-analysis and systematic

review of 31 studies involving the administration of non-genetically

modified natural killer (NK) cells to patients with solid tumors. The

objective response rate (ORR), defined as a response of partial

response or better, was 28.2% (95% CI: 0.194 - 0.389), and the

disease control rate (DCR), defined as stable disease or better, was

63.2% (95% CI: 0.543 - 0.713).

The meta-analysis included studies ranging from the early

stages of NK cell research starting in 1999 to advancements in

technology up to 2020, without limiting the timeframe.

Consequently, the more recent studies from 2011 to 2020

showcased an ORR of 38.4% (95% CI: 0.268-0.515) and a DCR of

72.7% (95% CI: 0.648-0.794), suggesting the possibility that

advancements in NK cell manufacturing technology and related

developments may contribute to the enhanced efficacy of cell

therapy, indicating the potential of NK cells as a new option for

solid tumor patients without effective treatments.

Particularly noteworthy were the high ORR of 72.3% (95% CI:

0.527-0.859) and DCR of 88.9% (95% CI: 0.749-0.956) observed in

hepatocellular carcinoma. Among the three clinical trials involving

liver cancer patients, two included irreversible electroporation (IRE)

and one involved a combination with intrahepatic arterial

chemotherapy. When NK cells were combined with local

therapies, such as IRE, the observed ORR was 69.9% (95% CI:

0.555-0.813), and the DCR was 81.9% (95% CI: 0.681-0.906).

Notably, these outcomes exhibited superior efficacy compared to

the concomitant use of systemic treatments (ORR 0.295, 95% CI:

0.190-0.428; DCR 0.729, 95% CI: 0.636-0.806) or administration of

NK cells alone (ORR 0.124, 95% CI: 0.078-0.190; DCR 0.406, 95%

CI: 0.276-0.550). This underscores the heightened effectiveness

achieved through the strategic selection of combination therapies,

emphasizing their potential in maximizing the therapeutic impact

of NK cells. Hence, choosing appropriate combination therapies

tailored to each cancer type is crucial to optimizing the therapeutic

efficacy of NK cells.

Cytokines such as IL-2 and IL-15 play a role in the development

of NK cell cytotoxic function and stimulation of NK cell

proliferation when administered during cell culture or in

combination with cells (43–46). Among the 31 studies included in

the meta-analysis, 16 studies used IL-2, two studies used both IL-2

and IL-15, and one study used IL-15 for NK cell expansion.

Additionally, eight studies administered IL-2 to patients. Despite

IL-2 being recognized for its critical role in immune system
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TABLE 2 Subgroup analyses and metaregressions based on different factors.

Clinical
factors

Studies
number

Patients
number

Pooled ES
(95% CI)

Heterogeneity Metaregression

I2 static
P-value

(Q statistic)
p-value

ORR 31 591 0.282 (0.194 - 0.389) 77.192 0.000

DCR 31 591 0.632 (0.543 - 0.713) 65.347 0.000

Study year-ORR

>2000 21 453 0.384(0.268-0.515) 78.895 0.000 0.289(0.204-0.391)
Q-value 9.580, df 1 (p=0.002),
I2 78.246≤2010 5 66 0.107(0.046-0.227) 0.000 0.478

Subject number-ORR

>20 9 301 0.319(0.177-0.505) 85.093 0.000 0.251(0.175-0.347)
Q-value 7.519, df 2 (p=0.023),
I2 77.192≤20 15 234 0.341(0.198-0.520) 76.646 0.000

≤10 7 56 0.103(0.045-0.219) 0.000 0.906

Age-ORR

≥12 28 546 0.291(0.199-0.403) 77.557 0.000 0.291(0.200-0.402)
Q-value 0.003, df 1 (p=0.960),
I2 76.932<12 2 22 0.274(0.014-0.911) 79.154 0.029

Type of cancer-ORR

HCC 3 49 0.723(0.527-0.859) 36.038 0.209 0.357(0.266-0.459)
Q-value 18.898, df 2 (p=0.000),
I2 77.192NSCLC 7 178 0.318(0.190-0.481) 72.165 0.001

Others 21 364 0.188(0.103-0.319) 77.769 0.000

Origin-ORR

Allogeneic 16 393 0.396(0.261-0.549) 81.494 0.000 0.248(0.178-0.333)
Q-value 11.860, df 2 (p=0.003),
I2 77.192Autologous 12 135 0.217(0.121-0.359) 51.050 0.021

Others 3 63 0.087(0.037-0.333) 0.000 0.551

Expansion duration-ORR

>2wks 7 77 0.164(0.077-0.317) 30.799 0.193 0.306(0.217-0.412)
Q-value 4.791, df 1 (p=0.029),
I2 76.692≤2wks 19 431 0.381(0.262-0.516) 79.938 0.000

Dose-ORR

≥10^9 11 223 0.458(0.305-0.620) 74.873 0.000

<10^9 6 74 0.157(0.049-0.406) 65.262 0.013 0.353(0.239-0.486)
Q-value 5.807, df 2 (p=0.055),
I2 73.610Mixed 5 50 0.167(0.038-0.502) 66.858 0.017

LD-ORR

Yes 5 69 0.157(0.037-0.470) 70.557 0.009 0.285(0.197-0.395)
Q-value 1.023, df 1 (p=0.312),
I2 77.192No 26 522 0.303(0.206-0.421) 78.226 0.000

IL-2-ORR

Yes 8 123 0.160(0.066-0.342) 63.483 0.008 0.285(0.198-0.391)
Q-value 2.665, df 1 (p=0.103),
I2 77.192No 23 468 0.330(0.223-0.459) 78.634 0.000

Comb. Therapy-ORR

Local Tx. 6 155 0.699(0.555-0.813) 64.576 0.015 0.300(0.236-0.373)
Q-value 49.575, df 2 (p=0.000),
I2 77.295Systemic Tx. 12 248 0.295(0.190-0.428) 66.434 0.001

(Continued)
F
rontiers in Immuno
logy
 08
 frontiersin.org

https://doi.org/10.3389/fimmu.2024.1454427
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Park et al. 10.3389/fimmu.2024.1454427
TABLE 2 Continued

Clinical
factors

Studies
number

Patients
number

Pooled ES
(95% CI)

Heterogeneity Metaregression

I2 static
P-value

(Q statistic)
p-value

Comb. Therapy-ORR

No 12 176 0.124(0.078-0.190) 0.000 0.594

Risk of bias-ORR

Low 19 417 0.420(0.301-0.550) 78.224 0.000 0.276(0.200-0.368)
Q-value 16.718, df 1 (p=0.000),
I2 77.192Moderate 12 174 0.103(0.053-0.190) 31.797 0.136

Study year-DCR

>2010 21 453 0.384(0.268-0.515) 78.895 0.000 0.289(0.204-0.391)
Q-value 9.580, df 1 (p=0.002),
I2 78.246≤2010 5 66 0.107(0.046-0.227) 0.000 0.473

Subject number- DCR

>20 9 301 0.709(0.581-0.810) 73.309 0.000 0.616(0.531-0.693)
Q-value 8.353 df 2 (p=0.015),
I2 68.347≤20 15 234 0.657(0.517-0.774) 65.235 0.000

≤10 7 56 0.413(0.265-0.578) 20.191 0.276

Age- DCR

≥12 28 546 0.652(0.568-0.727) 63.081 0.000

<12 2 22 0.704(0.027-0.995) 86.868 0.006 0.652(0.569-0.727)
Q-value 0.011 df 1 (p=0.917),
I2 64.748

Type of cancer- DCR

HCC 3 49 0.889(0.749-0.956) 0.000 0.426 0.668(0.595-0.734)
Q-value 17.102 df 2 (p=0.000),
I2 68.347NSCLC 7 178 0.760(0.653-0.843) 49.108 0.067

Others 21 364 0.533(0.427-0.637) 64.467 0.000

Origin- DCR

Allogeneic 16 393 0.719(0.603-0.812) 73.861 0.000 0.628(0.544-0.705)
Q-value 5.133 df 2 (p=0.077),
I2 68.347Autologous 12 135 0.561(0.442-0.674) 36.253 0.101

Others 3 63 0.355(0.079-0.780) 85.461 0.001

Expansion duration- DCR

>2wks 7 77 0.484(0.353-0.616) 18.284 0.290 0.644(0.567-0.714)
Q-value 8.916 df 1 (p=0.003),
I2 62.713≤2wks 19 431 0.723(0.636-0.796) 60.503 0.000

Dose- DCR

<10^9 6 223 0.542(0.342-0.729) 54.352 0.052 0.599(0.497-0.693)
Q-value 1.699 df 2 (p=0.428),
I2 61.269≥10^9 11 74 0.671(0.522-0.792) 67.245 0.001

Mixed 5 50 0.539(0.358-0.709) 32.907 0.202

LD- DCR

Yes 5 69 0.438(0.182-0.731) 75.594 0.003 0.642(0.556-0.720)
Q-value 1.868 df 1 (p=0.172),
I2 68.347No 26 522 0.659(0.571-0.738) 65.055 0.000
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activation and induction of tumor cell death through Fc g receptor
binding, our meta-analysis revealed lower ORR and DCR when

combined with IL-2, with respective values of 0.160 (95% CI: 0.066-

0.342) and 0.522 (95% CI: 0.353-0.686), compared to non-

combined scenarios (ORR 0.330, 95% CI: 0.223-0.459; DCR

0.665, 95% CI: 0.566-0.751) (47).

One of the known function of IL-2 is to promote T cell

proliferation. However, at low doses, IL-2 selectively stimulates

the expansion of regulatory T cells (Tregs). This increase in Tregs

can suppress the overall immune response against tumors by

inhibiting the activity of cytotoxic T cells and NK cells. Although

the exact doses of IL-2 used in the studies were not specified, it is

plausible that low-dose IL-2 contributed to reduced NK cell efficacy

by promoting Treg expansion. Elevated Treg levels may have
Frontiers in Immunology 10
suppressed NK cell activity, thereby diminishing the effectiveness

of NK cell therapy (48).

Similar trends were observed regarding the use of

lymphodepleting chemotherapy (LD). Although LD is commonly

used in CAR-T cell therapy to enhance therapeutic efficacy, it was

performed in five clinical cases in our meta-analysis (49).

Surprisingly, our meta-analysis found that cases without LD

showed higher ORR 30.3% (95% CI: 0.206-0.421) and DCR 66.5%

(95% CI: 0.566-0.751) compared to those with LD (ORR 15.7%,

95% CI: 0.037-0.470; DCR 43.8%, 95% CI: 0.182-0.731) (50).

Despite potential biases due to limited sample sizes and study

numbers, the observed results raise questions about the application

of IL-2 and LD in solid tumors, indicating the need for

further investigation.
TABLE 2 Continued

Clinical
factors

Studies
number

Patients
number

Pooled ES
(95% CI)

Heterogeneity Metaregression

I2 static
P-value

(Q statistic)
p-value

IL-2- DCR

Yes 8 123 0.522(0.353-0.686) 59.490 0.016 0.628(0.541-0.708)
Q-value 2.090 df 1 (p=0.148),
I2 68.347No 23 468 0.665(0.566-0.751) 67.872 0.000

Comb. Therapy- DCR

Local Tx. 6 155 0.819(0.681-0.906) 57.220 0.039 0.664(0.590-0.730)
Q-value 19.352 df 2 (p=0.000),
I2 68.526Systemic Tx. 12 248 0.729(0.636-0.806) 46.149 0.040

No 12 176 0.406(0.276-0.550) 62.997 0.002

Risk of bias-DCR

Low 19 417 0.737(0.652-0.807) 57.423 0.001 0.631(0.555-0.700)
Q-value 15.081
df 1 (p=0.000), I2 68.347Moderate 12 174 0.440(0.323-0.565) 51.561 0.019
FIGURE 2

Forest plot of the overall response rate and disease control rate with 95% CI. A random effects model was applied. ORR: 0.282 (95% CI: 0.914–
0.389). Heterogeneity: I2 = 77.192%; p = 0.000. DCR: 0.632 (95% CI: 0.543–0.713). Heterogeneity: I2 68.347%; p = 0.000. CRR, Complete response
rate; ORR, Overall response rate.
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Regarding NK cell sourcing, allogeneic cells demonstrated

superior efficacy compared to autologous cells (ORR 39.6%, 95%

CI: 0.261-0.549; DCR 71.9%, 95% CI: 0.603-0.812 vs. ORR 21.7%,

95% CI: 0.121-0.359; DCR 56.1%, 95% CI: 0.442-0.674). This

enhanced efficacy of allogeneic NK cells can be attributed to the
Frontiers in Immunology 11
donor-recipient incompatibility in killer cell immunoglobulin-like

receptors (KIRs) and major histocompatibility complex (MHC)

class I. In allogeneic settings, the mismatch between the KIRs on

donor NK cells and the MHC class I molecules on recipient cells

disrupts the inhibitory signaling that would normally suppress NK
FIGURE 3

Forest plot of the overall incidence AEs with 95% CI. (A). Grade 1 or 2 adverse events; (B) Grade 3 or higher adverse event.
FIGURE 4

Sensitivity analysis for the best overall response rate. The vertical line on the left indicated the total lower CI, the vertical line in the middle indicated
the total pooled effect size and the vertical line on the right indicated the total higher CI. The circle indicated the pooled effect size after deleting
the study.
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cell activity. This mismatch leads to greater NK cell activation,

allowing the allogeneic NK cells to target and destroy tumor cells

more effectively. Furthermore, autologous NK cells are often

derived from patients who have received extensive prior cancer

treatments, like chemotherapy or radiation. These treatments can

impair NK cell function by causing exhaustion, altering their

phenotype, and reducing their cytotoxic potential. As a result, NK

cells from pre-treated patients may be less effective compared to

those from healthy donors, further limiting the efficacy of

autologous NK cell therapy (51, 52).

The advantages of allogeneic NK cells, particularly their off-the-

shelf potential, were highlighted, considering the lengthy and costly

production process of CAR-T cells. Although recent developments aim

to simplify the manufacturing process and explore allogeneic CAR-T

cells, challenges such as graft-versus-host disease (GvHD) persist.

Notably, NK cell characteristics demonstrated higher efficacy without

reports of GvHD or cytokine release syndrome (CRS) (53).

The most commonly reported adverse event was fatigue,

highlighting the safety advantages of NK cells. Through this meta-

analysis, we have demonstrated that non-genetically modified NK cells

can be an effective and safe option for solid tumors. The diverse results

from subgroup analyses provide insights into various considerations

for the future development of NK cell therapies.

Our Robins-I analysis revealed a consistent trend of improved

ORR and DCR in studies with low risk of bias, emphasizing the

importance of reducing bias for reliable outcomes. Both ORR and

DCR analyses revealed a significant improvement in studies with

low bias, highlighting a stronger treatment effect. This emphasizes

the importance of reducing bias for reliable outcomes and

underscores the need for rigorous study design and execution

when evaluating treatment efficacy.
Strengths and weaknesses

Strengths

Pioneering Exploration in Solid Tumor Patients: This study

represents the first meta-analysis to explore the efficacy of NK cells

specifically in solid tumor patients. While there have been meta-

analyses on NK cell administration in hematologic cancers, this

study breaks new ground by focusing on solid tumor patients.

Considering the expanding scope of cell therapies, including NK

cells, beyond hematologic malignancies, this research is poised to

contribute significantly.

Conducting Diverse Subgroup Analyses: To address potential

heterogeneity from studies spanning an extended period, this
Frontiers in Immunology 12
research conducted diverse subgroup analyses. By exploring

factors such as study timelines, cell origins, cell culture durations,

and cancer types, the study aimed to identify sources of

heterogeneity and investigate efficacy outcomes based on

various characteristics.

Robustness in Pre-defined Sensitivity Analyses: The key findings

demonstrated robustness through pre-defined sensitivity analyses.

No Restriction on Publication Years: By including all research

on NK cell therapy up to the present without restricting publication

years, the study provides a comprehensive overview of the field.
Weaknesses

Inherent Challenges in Cross-Trial Comparisons: Ensuring

comparability across clinical trials conducted over several decades

is challenging. Given the diverse solid tumor types included and

changes in standard therapies for these cancers over the 20-year

period, the study may not be directly applicable to contemporary

clinical decision-making.

Confirmed Heterogeneity and Potential Bias in Analyses:

Despite using random-effect models to account for heterogeneity,

the diversity in concomitant treatment and patient populations may

introduce potential biases. Despite conducting various subgroup

analyses, differences in study designs might still impact the results.
Conclusion

This meta-analysis confirms the efficacy of NK cell administration

in patients with solid tumors, demonstrating a significant increase in

Overall Response Rate (ORR) and Disease Control Rate (DCR).

Additionally, the safety profile of NK cell therapy is reinforced by

the absence of significant adverse events, such as Graft-versus-Host

Disease (GvHD) and Cytokine Release Syndrome (CRS).

It is crucial to consider variations in efficacy based on cancer

types and combination therapies for informed treatment decisions.

Looking ahead, cell-based therapies, particularly those involving

advanced genetic manipulation of NK cells, represent a pivotal

frontier in drug development. Refining NK cells, especially through

the use of allogeneic cells, promises not only enhanced efficacy but

also a favorable toxicity profile. This progress is expected to lead to

the development of optimized NK cells as off-the-shelf products,

ushering in a transformative new era in cell-based therapies.

Continued exploration and integration of these advancements are

essential for improving patient outcomes and revolutionizing

therapeutic strategies.
TABLE 3 Publication bias and sensitivity analysis.

Outcome indicators
Publication bias Pooled effect size (95% CI)

p-value (Begg’s test) p-value (Egger’s test) Random effect model Fixed effect model

ORR 0.33321 0.00038 0.282(0.194-0.389) 0.398(0.350-0.449)

DCR 0.19302 0.30573 0.632(0.543-0.713) 0.646(0.600-0.689)
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