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Background: Understanding genetic underpinnings of immune-mediated

inflammatory diseases is crucial to improve treatments. Single-cell RNA

sequencing (scRNA-seq) identifies cell states expanded in disease, but often

overlooks genetic causality due to cost and small genotyping cohorts. Conversely,

large genome-wide association studies (GWAS) are commonly accessible.

Methods: We present a 3-step robust benchmarking analysis of integrating

GWAS and scRNA-seq to identify genetically relevant cell states and genes in

inflammatory diseases. First, we applied and compared the results of three recent

algorithms, based on pathways (scGWAS), single-cell disease scores (scDRS), or

both (scPagwas), according to accuracy/sensitivity and interpretability. While

previous studies focused on coarse cell types, we used disease-specific, fine-

grained single-cell atlases (183,742 and 228,211 cells) and GWAS data (Ns of

97,173 and 45,975) for rheumatoid arthritis (RA) and ulcerative colitis (UC).

Second, given the lack of scRNA-seq for many diseases with GWAS, we further

tested the tools’ resolution limits by differentiating between similar diseases with

only one fine-grained scRNA-seq atlas. Lastly, we provide a novel evaluation of

noncoding SNP incorporation methods by testing which enabled the highest

sensitivity/accuracy of known cell-state calls.

Results: We first found that single-cell based tools scDRS and scPagwas called

superior numbers of supported cell states that were overlooked by scGWAS.

While scGWAS and scPagwas were advantageous for gene exploration, scDRS

effectively accounted for batch effect and captured cellular heterogeneity of

disease-relevance without single-cell genotyping. For noncoding SNP

integration, we found a key trade-off between statistical power and confidence

with positional (e.g. MAGMA) and non-positional approaches (e.g. chromatin-

interaction, eQTL). Even when directly incorporating noncoding SNPs through 5’

scRNA-seq measures of regulatory elements, non disease-specific atlases gave

misleading results by not containing disease-tissue specific transcriptomic

patterns. Despite this criticality of tissue-specific scRNA-seq, we showed that

scDRS enabled deconvolution of two similar diseases with a single fine-grained
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scRNA-seq atlas and separate GWAS. Indeed, we identified supported and novel

genetic-phenotype linkages separating RA and ankylosing spondylitis, and UC

and crohn’s disease. Overall, while noting evolving single-cell technologies, our

study provides key findings for integrating expanding fine-grained scRNA-seq,

GWAS, and noncoding SNP resources to unravel the complexities of

inflammatory diseases.
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1 Introduction

The efficacy of treatments for immune-mediated inflammatory

diseases, such as rheumatoid arthritis (RA) and ulcerative colitis

(UC), varies across patients (1). Single-cell RNA sequencing (scRNA-

seq) technology enables the development of effective treatments for

patients with immune-mediated inflammatory diseases by allowing

the identification of specific cell states expanded in diseased tissue or

blood (2). However, most scRNA-seq analyses do not consider

genetic causality, and due to its high expense, available single cell

datasets are often confined to small patient cohorts. Understanding

the genetic underpinnings of diseases is key for preventative care,

unraveling physiological and environmental contributions to

pathology, and allowing personalized treatments. Genome wide

association studies (GWAS) have been the gold standard to identify

disease-associated genetic loci and summary statistics for large

cohorts are often publicly accessible (3). Therefore, recent work has

gone into combining the physiological insights from scRNA-seq with

genetic associations from GWAS for unraveling disease causality (4–

10). Indeed, attempts to integrate bulk RNA-seq studies with GWAS

have been implemented, yet still only explain about 30% of the

heritability by gene expression for complex traits (11). This pitfall is

likely explained by the less fine-scale cell states available with bulk

RNA-seq compared to scRNA-seq, where immune cells exhibit

divergent expression profiles at nuanced cell states, and different

cell phenotypes are uniquely associated with disease (12–14).

Recently, several computational tools have been developed to link

disease relevant loci from GWAS to nuanced cell states revealed by

scRNA-seq to identify disease-associated cell states and genes with both

transcriptomic and genomic support (4–7, 9, 15). For each tool, major

steps include summarizing variably expressed genes/pathways from

single cell expression data, using a third-party method to link GWAS

based single nucleotide polymorphisms (SNPs) to genes/pathways, and

then using statistical tests to identify significant associations. However,

a thorough comparison and assessment of these tools is lacking.

Additionally, a critical step for all these tools, linking SNPs from

GWAS to the genes they potentially impact, has been challenging with

no clear solution (16–20). With more than 90% of immune-disease
02
associated SNPs falling into noncoding regions, most of which are in

cis-regulatory regions, the need to link these SNPs to physiological

mechanisms cannot be overstated (21). The most common method for

linking SNPs to genes does so according to a user-selected window size

outside the gene. MAGMA, one of the most common tools that does

this, can take both genotype data and summary statistics as input while

accounting for Linkage Disequilibrium (16). It outputs a list of

thousands of genes with the corresponding GWAS statistics

reestablished at the gene level. However, many target genes of cis-

regulatory regions are not the closest gene and can even be farther than

1 Mb away, contradicting the assumptions of tools like MAGMA (18).

Therefore, alternative methods focusing on eQTL, chromatin contact

(e.g. Hi-C), and similarly relevant enhancer-gene linking data have

been introduced (17, 22). Additionally, newer studies have begun

introducing single-cell transcriptomics methods that measure cis-

regulatory elements to directly consider noncoding SNPs (10). The

influence of incorporating noncoding SNPs using non-positional

compared with positional methods, specifically within the context of

these algorithms, has not been formally evaluated.

Beyond SNP-gene linking complexities, transcriptomics-genomics

integration algorithms have currently been assessed for capturing

broad associations (e.g. metabolic cells for metabolic diseases) (4, 5,

9). This limited analysis is primarily due to the usage of non-disease

specific scRNA-seq atlases rather than disease-specific atlases with

highly refined cell states identified. Disease specific, scRNA-seq atlases

are quickly being developed and revolutionizing the understanding of

diseased tissue heterogeneity. Yet the ability for tools tested on broader

cell types to work with these more refined atlases with disease

confounders has not been tested. Additionally, these tools might still

be usable for diseases without atlases currently available by using atlases

of similar diseases but the appropriate GWAS summary statistics.

Overall, despite the recent influx of tools integrating genetics

and single-cell transcriptomics, a thorough comparison and

assessment of different types of recent algorithms and major

challenges of the domain is lacking. To address this, we

conducted a benchmark analysis of the three most recent, open-

source algorithms, scGWAS, scPagwas and scDRS, by objectively

linking GWAS data with single-cell phenotypes across four
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immune-mediated disease datasets (4, 5, 9, 14, 23). We further

annotated our results based on literature support of calls (detailed in

Methods and Supplementary Tables 1, 2), and evaluated the

computational efficiency and result interpretability. Given most

immune relevant SNPs are noncoding, we then evaluated the

influence of different methods incorporating these SNPs for use

in the algorithms (16, 17). As a result, we first showed that all three

tools successfully identified expected significant cell types for tested

diseases when using fine-grained scRNA-seq atlases, although with

varying consistency and agreement. Single-cell scoring tools scDRS

and scPagwas identified more significant results with literary

support, although pathway-based scPagwas invokes a higher

computational cost and cannot effectively consider batch effects.

We also found that scDRS can be used to distinguish cell

phenotypes for different diseases while using the same fine-

grained scRNA-seq atlas. Finally, we provided evidence

supporting the usage of positional based methods to incorporate

noncoding SNPs until other methods can increase in statistical

power and include more relevant atlases. Overall, our in-depth

benchmarking and application on disease-tissue data demonstrated

that current tools could identify associations between cell

phenotypes and disease with high resolution and specificity. Our

work pinpoints the capabilities and benefits of using atlases with

fine-grained cell subtype annotations, while also showing that a

single atlas could still be used to understand multiple diseases.
2 Materials and methods

We first benchmarked the three most recent and representative

algorithms in the field according to the number of literature

supported clusters called significant, computational efficiency, and
Frontiers in Immunology 03
result interpretability (Figure 1A). Brief descriptions of the tools can

be found in sections 2.1 and 2.4. Expected results were based on a

literature search for each individual cell phenotype for expansion in

a disease and/or genetic connections, the results of which can be

found in Supplementary Tables 1 and 2. If a general cell state with

multiple, more detailed cell states was significant, the cell states were

marked as having “general” literature support while if a specific cell

state was supported, it had “specific” literature support. Due to the

robustness of the available atlases and studies, we used scRNA-seq

data generated from inflamed RA synovial and UC colon to

determine disease-associated cell states (14, 23). Next, we assessed

the feasibility of using identical scRNA-seq atlases to distinguish

between two clinically similar diseases, using RA inflamed synovial

tissue for RA and ankylosing spondylitis (AS), and UC colon for UC

and Crohn’s disease (CD) (Figure 1B). Finally, we evaluated the

incorporation of noncoding SNPs when using positional

(MAGMA) vs non-positional based SNP-gene linking methods or

cis-regulatory element focused single-cell omics like ATAC-seq or

5’-scRNA-seq (Figure 1C). We deploy all the code and analytical

pipelines at our Github repository for reproducible research at

https://github.com/fanzhanglab/SCRNA-GWAS-Benchmarking.
2.1 Selection of tools

We summarized the attributes of six currently available and

supported packages that integrate scRNA-seq data and GWAS

summary statistics to identify significant cell types and/or the

GWAS-linked genes that best explain these cell types (Table 1).

Other methods like RolyPoly, CocoNet, and sc-linker are described

in Supplementary Table 3, and are either no longer maintained or not

designed as user-friendly packages but instead open-source code (22,
FIGURE 1

Overview of study design. (A) We first benchmarked the three most recent tools built to identify cell states and genes associated to disease
according to both genetics (GWAS) and transcriptomics (scRNA-seq). (B) We next assessed if a single scRNA-seq atlas could be used with summary
statistics from two diseases to reveal well separated disease associated cell states of the different diseases. (C) Finally, we assessed the robustness
and accuracy of results of these tools when using different SNP-Gene linking methods. Figure made in Biorender.
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24, 25). Briefly, RolyPoly was one of the first tools to employ the use of

polygenic modeling to identify trait-relevant cell states, CocoNet

pioneered gene-network based analyses, and sc-linker leveraged

enhancer-gene linkages to assign SNPs to genes. The three tools

chosen for more detailed benchmarking were the most recent tools

and provide unique results as either gene-gene networks or single-cell

based scores. The other methods differ most by their incorporation of

noncoding SNPs which is addressed separately in this work.
2.2 Data availability

The GWAS data used in this work can be found in Supplementary

Table 4. Due to the most robust LD score data belonging to those with

European descent, and the larger sample size of this group in both

GWAS and scRNA-seq data, we focused on this subpopulation for the

purpose of this benchmarking analysis. The major histocompatibility

complex region was not included due to its complex genetic

architecture. For GWAS summary statistics without rsids for RA,

SNPs were assigned to rsids using BEDOPs and for duplicate/

synonmous rsids, those with the lowest p-values were kept. The code

for these steps can be found on our github under SCRNA-GWAS-

Benchmarking/src/00B_Preprocess_GWAS.
Frontiers in Immunology 04
For RA and AS, we analyzed a scRNA-seq data set developed by

(14). To stay consistent with GWAS data, we only included cells from

individuals of European descent with RA, leaving 183,742 cells. We

used their most updated cell-state and cell-type annotations

determined by their analysis of 314,011 cells with scRNA-seq,

CITE-seq, experimental evidence and batch control to ensure the

best validation. All expression was normalized with log(1 + UMIs for

gene/totl UMIs in cell *10,000), and cells expressing fewer than 500

genes or that contained more than 20% if their total UMIs mapping

to mitochondrial genes were removed. Further QC analysis is

described in their paper (14). For UC and CD, we analyzed the

scRNA-seq dataset from (23) which contained 228,211 cells passing

quality control by using the raw counts and metadata they provide.

For batch correction in both datasets, we applied Harmony, one of

the best recommended methods for correcting for technical batch

effect in single-cell batch data analysis and integration (26, 27). We

used identical batch variables for correction as used in the original

analysis for RA: the individual from which the cells were isolated

(“sample”) (28). Combat was used for batch correction originally in

Smillie et al., but is not designed for single-cell data, therefore we

applied Harmony with “sample” to the UC scRNA-seq data instead

(23, 29). Both scRNA-seq data only contained individuals of non-

Hispanic, European descent. For scPagwas, we created Seurat objects
TABLE 1 Summary table of the currently maintained and operable packages for identifying significant cell types and/or genes based on the
integration of GWAS and single-cell RNA-seq data.

Package
(Citation)
Interface

Inputs Relevant
Outputs

SNP-Gene
Linking

Summary Highlights

scPagwas (9)
R package

1. Seurat Object
2. GWAS summary stats

1. Cell score file
2. Cell Pathway Scores
3. Opt: Cell group score
4. Opt: Gene PCCs

Window-based Pathway-based polygenic
regression: linear regression of
GWAS signals with pathway
activation in cells.

Pathway-based while
maintaining single-
cell analysis

scGWAS (5) CL
JAR, pre/post
processing in R

1. Boxcox transformed
gene p-values
2. Pseudobulk
3. Gene-gene
network file

1. Significant gene
modules in each
cell type

Window-
based: MAGMA

Network-based approach to
identify cell types overexpressed
with disease-significant genes

Pathway based for more
meaningful output

scDRS (4)
CLI or API

1. Anndata single cell
expression data
2. Gene p-values or
z-scores

1. Cell score file for a
given trait
2. Opt: Cell group score
and heterogeneity
3. Opt: Cell variable
(e.g. gene) correlation to
disease scores

Window-
based: MAGMA

Monte Carlo simulation method
that scores individual cells for
disease association based on
increased expression of sets of
putative disease genes

Single-cell level allows
unique post analyses

EPIC (6)
R package

1. Pseudobulk gene
expression
2. GWAS summary stats

1. Enrichment score of
trait for each cell type
2. Relevant genes
from DFBETAS

Sliding-window
based LDSC

Gene-level chi-square association
testing, then gene-level
regression- association testing for
each cell type

Adapted for rare and
common variants

ECLIPSER (7)
Scripts on Github

1. GWAS summary stats
2. Gene differential
expression table

1. Prioritized cell types
2. Leading edge causal
genes and eQTL impact

eQTL and other
functional evidence

Cell-type specificity score for
each GWAS locus, cell-type
specific genes (from differential
expression analysis mapped
to locus)

Provides putative
regulatory impact
of genes

CELLECT (15) CLI 1. Specificity input from
CELLEX
2. GWAS summary stats

1. Prioritized cell types
2. Opt: Gene heritability

LDSC or MAGMA Heritability regression based
method with CELLEX gene
specificity scores

Allows easy usage of
LDSC or MAGMA
A similar table for methods no longer maintained (RolyPoly) or not designed as packages for complete analysis workflows (CocoNet and SC-Linker) is available in Supplementary Table 3.
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with the same QC-based cells but using the Seurat based

normalization. Due to the high computational expense of

scPagwas, we excluded certain cell states from the RA and UC

datasets that were not found significant by the literature on RA

and UC, including Endothelial (RA & UC), Glia, Macrophages, TA 1

& TA 2(UC), and fibroblast cell states except for F-7: NOTCH3+

sublining and F-2: CD34+ sublining (RA). The code for these steps

can be found on our github repository under SCRNA-GWAS-

Benchmarking/src/00A_Preprocess_scRNA.
2.3 SNP-gene linking

MAGMA-based SNP-gene linking was done using version v1.10

with NCBI37.3.gene.loc and NCBI38.gene.loc downloaded from the

MAGMA website as the gene locations files, and European UK

Biobank Phase 3 LD scores. The window sizes of 10-10kb and 50-

35kb were chosen for final comparison of significant cell states as the

most common window size and that used in the original scGWAS

paper, respectively. When assessing the impact of this window size

parameter on scDRS, sizes 0kb, 5kb, and 100kb were also chosen

based on the window sizes used across the literature (Supplementary

Table 5). For this parameter stability assessment, the top-ranking

genes according to MAGMA that were also found in the scRNA-seq

expression data were used, with a final total of 1000 genes. Synonyms

according to genecards.org and humanproteinatlas.com were also

considered to verify proper comparison of genes between MAGMA

and scRNA-seq. Genes from the scRNA-seq dataset still not found in

the MAGMA file were added to allow their inclusion in the analysis.

The genes identified by MAGMA but not found in scRNA-seq data

are discussed further in the Supplementary Material, with numbers

dictated in Supplementary Table 6.

The code for all these steps can be found on our github under

SCRNA-GWAS-Benchmarking/src/01_MAGMA_Gene_Alias.

FUMA is a web-based tool that determines statistically significant

disease associated genes using positional, eQTL, and 3D chromatin

based mapping, but does not calculate a summary p-value like

MAGMA (17). Therefore, to explore the implications of including

these forms of mapping, we used the minimum GWAS SNP P-value

(minGwasP in genes.txt output file) for each gene as a proxy for a

disease-association p-value to allow input for scDRS and scGWAS.

FUMA identifies lead SNPs, maps to rsIDs, addresses duplicate and

synonymous rsIDs, and filters out the MHC region in its analysis from

the summary statistics. Default parameters were used including a

MAGMA window of 10kb, with MAGMA expression data being

based on GTEx v8. We also used eQTL and Chromatin Interaction

Mapping, both including the options of available blood cell eQTL data.

Versions include FUMA v1.5.3, MAGMA v1.08, GWAScatalog

e0_r2022-11-29, and ANNOVAR 2017-07-17.
2.4 scGWAS, scDRS, & scPagwas

scGWAS uses a network-based approach to uncover cell types

that significantly express disease-associated genes and identify gene

modules representing disease-specific processes (5). Unlike other
Frontiers in Immunology 05
methods where cell types are assigned a disease-significance score,

scGWAS assigns significance scores to gene modules with strong

representation in both scRNA-seq cell type expression and GWAS

based on a proportional test (Figure 1A). scGWAS is implemented in

Java via a JAR package (ver. scGWAS_r1.jar) on the authors’ GitHub

repository (https://github.com/ElkonLab/scGWAS) and can be run

through the command line. Based on author recommendations on

their GitHub repository, configuration file parameters were kept at

default values. Further, we first used the same PathwayCommons

input network file as Jia et al. (5), with gene-gene relationship

information used for constructing the background network. We

also created a second PathwayCommons input network file

following their same steps but with v14 rather than v12 (what

they used originally). Briefly, housekeeping and ribosomal genes

were removed as well as any genes within 50kb of one another

(detailed jupyter notebook and output pathway file found on our

github under SCRNA-GWAS-Benchmarking/data/Pathway). We

followed the analysis pipeline described on the authors’ GitHub

repository for the following steps. For the screen expression input

file, we processed the scRNA-seq dataset using their R-script to

calculate the average log-transformed gene-based CPM per defined

cell type. We processed the MAGMA output using the box-cox

transformation script as the GWAS node input file. We ran

scGWAS on the same scRNA-seq dataset first with general cell

types and then on fine-scale defined cell states. The code for these

steps can be found on our github under SCRNA-GWAS-

Benchmarking/src/03_scGWAS.

scDRS assesses disease-associations at the individual cell level

using a gene set enrichment analysis with genes with scored

associations to the trait of interest according to a third party

method (4) (Figure 1A). It then presents downstream analyses

that use unified Monte Carlo tests to identify significant pre-

annotated cell states according to a group Z score, and the genes

whose expressions correlate with disease scores. It is the only tool

designed to take cell-level covariates to address potential batch

effects. The CLI version (Version v102 v1.0.2) of scDRS was used

according to their GitHub repository (https://github.com/

martinjzhang/scDRS). All default parameter values were used,

and P-value files output from MAGMA served as input to scdrs

munge-gs. The covariates files used in computing scDRS scores

included nUMI, number of genes, and sex for both RA & UC, and

age and duration for RA, and sample location, percent of

mitochondrial reads, and smoking status for UC (found in our

github at SCRNA-GWAS-Benchmarking/data/SC_data). We ran

downstream analyses to identify significant cell groups on the same

scRNA-seq dataset using annotations of general cell types and then

with fine-scale defined clusters. The code for these steps can be

found on our github repository under SCRNA-GWAS-

Benchmarking/src/02_scDRS.

scPagwas associates cells and cell types to traits through

pathways rather than only individual genes, while maintaining

associations at the individual cell level (9). Rather than using a

pre-determined GWAS based gene set list with scores like scDRS

and scGWAS, scPagwas calculates genetically associated pathway

activity scores (gPAS). Briefly, the gPAS is the product of a per-cell

coefficient of a linear regression between SNP effect sizes and gene
frontiersin.org
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expression within a pathway, and the pathway activity score of the

cell (first principal component of an SVD). Finally, following a

similar logic of scDRS, a trait-relevance score is calculated using the

Seurat cell scoring method which considers the expression of the

top 1,000 genes most correlated with the summed gPAS in cells

(Figure 1A). We followed installation instructions from the

scPagwas github (https://github.com/sulab-wmu/scPagwas) for

version 1.3.1, using Seurat version 5.1.0 and SeuratObject version

5.0.2. Code for these steps can be found on our github repository

under SCRNA-GWAS-Benchmarking/src/04_scPagwas. To run

scDRS with scPagwas genes, the 1,000 genes with the highest

Pearson correlation coefficient (PCC) values output by scPagwas

were used without weights (scDRS automatically assumes all

weights are 1 if none are provided) (4). The use of PCC values as

weights did not lead to a significant difference, so only unweighted

based results are discussed. Code to generate the scDRS

input can be found in SCRNA-GWAS-Benchmarking/analysis/

0A_Tool_Benchmarking/Genes/Gene_comparison.ipynb.
2.5 Benchmarking methods

All packages provide results indicating which cell clusters are

significant for the disease, but the exact format and calculation of

these results differs. scGWAS provides significance in the form of

gene modules within clusters that have disease-relevance, whereas

scDRS and scPagwas provide disease scores at the single cell and

cluster levels. scDRS additionally provides measurements regarding

the heterogeneity of these disease scores within each cluster. To

compare results across the three packages, we defined significant

cell clusters in scGWAS as clusters with at least one disease-

significant gene module. We then assessed whether the packages

identified significant cell types similarly across a given disease. We

also evaluated possible bias of scores from the health status of

individuals and the sensitivity of scDRS to different numbers of top-

ranking MAGMA genes (100, 300, 500, 1000, 1500, 2000).

Additionally, we assessed the change in results of scGWAS to

different pathway files (details in scGWAS and scDRS section

above) according to both the significant gene modules and

significant cell-states. Jupyter notebooks outlining these

comparisons can be found at our github under SCRNA-GWAS-

Benchmarking/analysis/0A_Tool_Benchmarking/Sensitivity and

CT_Clusters. We also compared the genes considered most linked

to the traits by the tools: scGWAS gives the significant gene

modules, scDRS gives the correlation of gene expression to

disease scores, and scPagwas gives the PCCs of gene expression

according to a singular value decomposition method to calculate

pathway activity scores in cells. We assessed the expression and

correlation of significant gene modules identified by scGWAS or

MAGMA top-ranking genes with scDRS and scPagwas disease

scores, and compared scDRS and scPagwas correlation

coefficients under SCRNA-GWAS-Benchmarking/analysis/

0A_Tool_Benchmarking/Genes. Finally, the relationship of scDRS

heterogeneity scores with cell-state population sizes and granularity

was done with code under SCRNA-GWAS-Benchmarking/analysis/

0A_Tool_Benchmarking/.
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To compare genes, we analyzed the top 1,000, 500, and 100

genes ranked by MAGMA, scDRS, and scPagwas, as well as all

significant gene modules identified by scGWAS. Using Gene Set

Enrichment Analysis (https://www.gsea-msigdb.org/gsea/msigdb/

human/compute_overlap), we examined gene sets enriched across

our genes belonging to the Cell type (C8) collection, just Curated

Pathways (C2-CP), or a combination of Hallmark, Curated (C2),

Regulatory (C3), Biological Process (GOBP), and IMMUNESIGDB

(C7-IMMUNE) (30, 31). GSEA allows a maximum of 500 genes.

We ran scGWAS with all significant gene modules collectively

or individually for C8 to ensure logical results given the

smaller gene numbers. We also conducted GO analysis with

clusterProfiler_4.12.2 and org.Hs.eg.db_3.19.1 (32, 33). Code for

this analysis can be found in SCRNA-GWAS-Benchmarking/

analysis/0A_Tool_Benchmarking/Genes/Gene_comparison.ipynb.

To determine whether a single atlas could distinguish between two

similar diseases, we ran scDRS on the RA and UC cell atlases using

MAGMA results from summary statistics of AS and CD GWAS,

respectively. The code for analyzing scDRS results for this can be found

under SCRNA-GWAS-Benchmarking/analysis/0B_Dist_path. The

code for analyzing the effects of using different MAGMA window

sizes and FUMA can be found under https://SCRNA-GWAS-

Benchmarking/analysis/0C_Preproc.
3 Results

3.1 Single-cell disease scores allow greater
sensitivity while gene-network analyses
allow greater interpretability of
gene targets

We built our initial benchmarking pipeline on evaluating both

cell types and finer grained cell states as well as gene modules using

RA and UC datasets.

3.1.1 Comparison of disease-significant cell
types/cell states

At the scale of cell types, all tools imply significance of NK cells

in RA (Supplementary Figure 1). Both scDRS and scPagwas

identified T cells as significant, while scPagwas and scGWAS

identified B cells as significant. scDRS alone determined Myeloid

cells to be significant for RA (Supplementary Figure 1). For more

specific cell-states, the three tools shared the same significance calls

for 24/63 (38%) fine-grained cell states. In general, all three tools

identified significant cell states within the T and B cell

compartments. This overlap was particularly notable in the results

from scDRS and scPagwas. scGWAS called only 20 significant cell

states (45% with literary support) compared to the 46 (54% with

literary support) and 43 (53% with literary support) calls from

scDRS and scPagwas (Figure 2). scDRS alone identified MERTK+

myeloid cell states as significant (14, 34, 35). scDRS still identified

MERTK+ myeloid cell states as significant when using the same

genes used by scPagwas (top 1000 correlated with gPAS cell scores)

as input rather than the top 1000 MAGMA genes (Supplementary

Figure 2). Additionally, scPagwas called all NK cell cell states
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significant for RA, while opposing subsets of NK cell states were

called by scGWAS and scDRS (Figure 2).

There were a smaller number of significant cell types/states

identified for UC. All tools identified epithelial cells as significant

and T cells as not; all other cell types had mixed calls from tools

(Supplementary Figure 1). For fine-grained cell states, all tools

shared the same significance calls for 20/43 (47%), including M

epithelial cells, Immature Enterocytes, and Secretory TA cells.

Again, scPagwas called a high number of significant cell states

(25, 44% with literary support) and was the only tool to identify

most myeloid and fibroblast cell states as significant, including the

inflammatory subtypes. scDRS and scGWAS showed similar

numbers for significant cell states with seven (57% with literary

support) and eight (50% with literary support), respectively

(Figure 2). When running scDRS with the genes used by

scPagwas, scDRS also identified the fibroblasts and non-mast

myeloid cell states as significant (Supplementary Figure 2).

3.1.2 Significant genes
Significant modules identified by scGWAS are networks of genes

that may represent a biological pathway and contain genes important

for disease pathogenesis. scGWAS assesses these gene modules with

each annotated cell type cluster. Notably, significant gene modules

strongly align with functional annotations of their corresponding cell-

states, as confirmed by gene set overlap analysis (30, 31)
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(Supplementary Table 7). For example, T cell gene modules were

frequently enriched with cytotoxic or T helper cell surface molecules

while gene modules associated with NK cell states were enriched in

genes involved in upregulating CD4 T cells and cellular responses to

cytokines, chemokines, and cellular ligands. Many of these gene

modules had overlapping genes and similar functions; despite having

a total of 204 and 472 genes in NK and T cell cluster significant

modules, there were only 63 and 87 unique genes, respectively. One

gene in particular was found in nearly every significant gene module

across cell states–CD2, which encodes for a surface antigen in all T cells

and is involved with triggering T cells (36). Both scDRS and scPagwas

provide genes whose expressions correlate with the scDRS cell disease

scores and scPagwas gPAS, respectively (4, 9). The majority (59-85%)

of the top 1,000 scoring genes in MAGMA, scPagwas, and scDRS are

unique to each tool, while 75-90% scGWAS significant genes are

identified by at least one other tool (Figure 3A). Additionally,

significant genes from MAGMA and scGWAS show low median

correlations to scDRS and scPagwas disease Z-scores (MAGMA:

0.02,0.05 for RA and 0.02,0.01 for UC; scGWAS: 0.06,0.09 for RA

and 0.04,0.01 for UC) (Figure 3B). For RA, scDRS, scGWAS, and

MAGMA but not scPagwas top ranked genes were enriched inmyeloid

cell type genesets (Supplementary Table 8). For UC, all tools except

scGWAS showed myeloid cell-specific gene set enrichment, with

scPagwas being the only tool to show significant enrichment for

stromal terms in the top 50 pathways (Supplementary Table 9).
FIGURE 2

Comparison of cell-state-specific significance results for RA and UC. For each cell-type and cell-state, the single-cell level scDRS Z-scores and
scPagwas TRS Z-scores are displayed in boxplots colored according to the group scDRS Z-score or group scPagwas bootstrap Z-score. Non-
significant cell states in scDRS or scPagwas are shown unbolded with grey outliers, while significant cell states are bolded. scGWAS called gene
modules and their disease scores are also plotted with colors following the scDRS group Z-score gradient for easier comparison. Cell states
considered significant by all three tools are bolded. “General literary support” means the general cell type has been shown to associate with the
disease while “specific” denotes evidence in the literature linking the specific cell state. Left: RA (rheumatoid arthritis). Right: UC (ulcerative colitis).
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The top 100 ranking genes for scPagwas were largely ribosomal genes

regardless of the disease (43% and 68% in RA and UC, respectively)

while scDRS’s top 1,000 genes contained very few if any (Figure 3B).

Indeed, the top 20 enriched gene ontology terms for scPagwas were

related to translation or general differentiation while scDRS was

dominated by leukocyte-specific pathways (Supplementary Figure 3).

Gene sets uniquely enriched in scPagwas genes focused on translation,

ribosomes, and general cell differentiation, unlike those specific to

scDRS, MAGMA, and scGWAS which were immune-cell state or

process focused (Supplementary Tables 8, 9). Removal of the ribosomal

genes when using scPagwas genes as input to scDRS only led to one

and four cell states to change in significance in RA and UC,

respectively, compared to scDRS results using all scPagwas genes

(Supplementary Figure 2).

3.1.3 Investigating result differences between
pathway-based tools and scDRS

We first explored if variance in significant genes between

methods might explain the different significant cell states identified

by scGWAS and scDRS. We evaluated if the genes that most highly

correlated with scDRS disease scores for cells in the MERTK+ cell

states were found in networks in the original scGWAS pathway file
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and KEGG pathways. Indeed, pairs of genes that are strongly

associated with scDRS disease scores were connected in the

scGWAS pathway file, however, relationships between the genes

beyond two were not supported and the 40 genes with the highest

correlation to scDRS disease scores had only 6 pairings between them

in the pathways file (Supplementary Table 10). The top 20 KEGG

pathways uniquely enriched for MERTK+ cells according to

scPagwas genetically associated pathway activity scores included

Wnt signaling, cGMP-PKG signaling, and Inositol phosphate

metabolism. We also explored the large discrepancy between NK

calls across scGWAS and scDRS. As a controlled comparison, we

looked at a cell cluster with strong agreement between scGWAS and

scDRS: CD4+ Tph (T-7). scDRS disease scores in all cells positively

correlated with the expression of the NK scGWAS module genes

although T-7 scGWAS module genes had a slightly higher median

correlation (0.08 vs 0.13) (Supplementary Figures 4A, B). This

relative increase was maintained when the eight genes identified by

scGWAS as significant for both groups were removed (median

correlations 0.005 NK vs 0.02 T-7). Importantly, these correlations

were comparable to that observed for all scGWAS genes and the top

100 genes ranked byMAGMAwith scDRS disease scores (Medians of

0.01-0.09) (Figure 3B). Median correlations decreased when only
FIGURE 3

Gene comparisons show low correlation across tool-based genes and single-cell disease scores. (A) UpSet plots of the top 1000 ranked genes for
scDRS (highest correlation to scDRS disease scores), scPagwas (highest correlation to genetically associated pathway activity scores) and MAGMA as
well as the significant scGWAS genes. RA=Rheumatoid arthritis, UC=Ulcerative colitis. (B) Scatter plots of the correlations of all studied genes with
scDRS disease scores and scPagwas gPAS with (top) scGWAS genes, (middle) MAGMA genes, or (bottom) ribosomal genes highlighted. Genes
reaching the top 1000 ranked genes for scPagwas and scDRS are colored in light and dark turquoise, respectively. (C) scGWAS results when using a
pathway file based on Pathway Commons v12 or 14. Results are highlighted according to the number of significant gene modules called per RA cell
state and max disease Z score across the modules for each cell state. Only cell states with a significant gene module from using either pathway file
are shown. Cell states without a significant gene module called when only one of the pathway files was used are bolded.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1454263
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Townsend et al. 10.3389/fimmu.2024.1454263
considering cells within the corresponding cell states (NK-cells & T-

7) unlike those of the top ranking scDRS genes for each cell state

(Supplementary Figures 4C, D, 5). These findings led us to assess the

impact of the pathway file used by scGWAS on results. When using

gene pairings from Pathway Commons v14 instead of v12 (see

Methods for details), 20 RA and 8 UC cell states changed in

whether they had at least one significant gene module identified. Of

these, 13 RA cell states and 1 UC cell state had been originally called

significant by scDRS, scGWAS, and scPagwas (Figures 2, 3C,

Supplementary Figure 6A). Extending the gene-SNP linking

window from 10-10kb to 50-35kb resulted in 14 cell states no

longer having a significant gene module (Supplementary

Figure 6B). Despite having 319,042 more gene pairings, use of

Pathway Commons v14 led to an overall decrease in significant

gene modules called regardless of window size used. Even when cell

states were called with both pathway files, the genes within significant

gene modules were also dependent on pathway input despite all

changing genes being found within both pathway input files

(Supplementary Figures 7, 8).

While scDRS single cell disease scores followed an expected

normal distribution, disease scores from scPagwas or from scDRS

run with scPagwas genes showed large polarization (Figure 2,

Supplementary Figures 2, 9). Specifically, 23% and 12% of cells in

RA and UC, respectively, had scPagwas Z-scores of -10 despite the

next nearest Z-score being -5. These percentages decreased to 17.5%

and 3% when applying the scDRS framework to scPagwas genes,

and further to 15% and 3% when ribosomal genes were removed for

RA and UC, respectively. These cells were distributed across cell

states, although most were found in plasma and MERTK+ cells for

RA (Supplementary Figures 9, 10).

Finally, although all tools may be impacted by covariates within

the data, only scDRS allows for their inclusion for batch-effect

analysis. In both RA and UC datasets, certain cell states contain

significantly different proportions of cells from individuals

according to health status (Supplementary Figure 11). scPagwas

shows clear, significant differences in its single cell trait relevant

scores, whereas scDRS exhibits minimal to no batch effects

(Supplementary Figures 12, 13). When scPagwas genes are used,

biases in scDRS disease scores related to health status become more

pronounced but remain less substantial than those in scPagwas

disease scores (Supplementary Figures 12, 13).
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3.1.4 Additional features
Although all scDRS additional features are outside the scope of

this work, we evaluated the usage of the tools’ group-level metric to

consider the heterogeneity of disease scores within a cell state (4).

This metric can hypothetically indicate if a provided cell state has

inner-clusters of cells that should be further separated out based on

the groupings of disease score. All large-scale cell types in RA (T

cell, B cell, Myeloid, NK, Fibroblast, Endothelial) had significant

heterogeneous disease scores that positively correlated with the

number of cells (adjusted R2 0.29) and annotated clusters in each

group (adjusted R2 0.37) (Supplementary Figure 14). Eighty-seven

percent (67/77) of RA fine-scale cell states had significant levels of

heterogeneity in disease score with similarly low positive correlation

with the number of cells (Figure 2, Supplementary Figures 15, 16).

3.1.5 Resources
Despite these additional features and working at the single-cell

level, scDRS was the most robust in memory usage and speed, although

this is primarily due to the initial preprocessing step for scGWAS

(Table 2). scPagwas took the longest by 45 hours compared to scDRS

and 32 hours compared to scGWAS (Table 2). Notably, the number

and size of cell states had a negligible effect on resource usage in scDRS

and scGWAS unlike scPagwas.
3.2 scDRS can distinguish similar diseases
from pathological cell clusters

While atlases with fine-grained annotations may allow more

detailed analyses, it raises the question of whether a single atlas can

still be used to study multiple diseases. This is particularly relevant

for diseases without single-cell data available. Given the high

sensitivity of single-cell disease scores, we used scDRS to assess

the feasibility of using one atlas to identify pathological cell clusters

distinguishing similar diseases. We used summary statistics from

GWAS for RA and ankylosing spondylitis (AS) on the scRNA-seq

data from inflamed RA synovial tissue to determine if scRNA-seq

from a clinically similar disease can provide fine-grained insight on

disease-relevant clusters (14, 37, 38). We also applied the GWAS

statistics from UC and crohn’s disease (CD) on the scRNA-seq data

from UC colon tissue (23, 39). We considered both 10-10kb and 50-
TABLE 2 Resource usage of each package when running for the RA cluster-level data.

Package CPU used (time) Wall clock time Memory Used Relevant Function (script)

scDRS 00:00:05 00:00:07 488 KB Preprocess GWAS stats (run_scdrs.sh)

scDRS 00:54:13 00:38:43 12.26 GB Compute single cell scores (run_scdrs.sh)

scDRS 00:23:41 00:25:11 17.89 GB Cell-type scores & Gene analysis (run_scdrs.sh)

scGWAS 04:32:03 04:33:37 208.4 GB Preprocessing single cell data (process_sc_data_R.sh)

scGWAS 08:50:26 08:50:24 2.55 GB Running scGWAS (run_scGWAS_2023_clusters.sh)

scPagwas 1-16:48:25 1-21:47:25 185 GB Running scPagwas

scPagwas 1-19:00:00 Link GWAS and Pathway block annotations
Memory used refers to the max amount of memory required for a single step. All tools were run with 15 CPUs.
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35kb window sizes on these analyses, focusing main figures on 50-

35kb window results due to the larger number of significance calls.

3.2.1 RA and AS
Although both analyses used the same scRNA-seq atlas references,

scDRS successfully distinguished RA from AS. We identified 46

candidate cell clusters in RA and 23 in AS, with 10 clusters shared

between the two diseases. We found that while most T, myeloid, and B

cell cell-states were significant for RA, very few were significantly

associated with AS (Figure 4A). CD8+ activated/NK-like (T-17), pDC

(M-13), and unswitchedmemory cells (B-1) were significant for AS. AS

and RA showed the greatest differences across the T, NK, and myeloid

cells. While essentially all T cell states showed significance for RA, only

CD8+ activated NK-like (T-17) and proliferating (T-18) T-cells

showed significance for AS. Conversely, far more NK cell clusters

were called significant for AS (43, 44). Specifically, most of the

CD56bright CD16- (NK4,6,8) NK cell clusters were called significant

for AS. This AS and RA separation was consistent when using different

MAGMA windows (Supplementary Figure 17).
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3.2.2 UC and CD
Although fewer significant cell states were identified for UC and

CD (eight and six, respectively) (Figure 4B), we still observed

differences in pathological cell types. None of the significant cell-

states were shared between UC and CD. Epithelial cells linked to

UC and fibroblasts linked to CD most clearly distinguish the

diseases, a finding maintained when using different MAGMA

windows (Supplementary Figure 18). For example, we found that

NK cells, CD4+ activated, and CD8+ lamina propria (LP) cells were

enriched in CD compared to UC while only Tregs, CD8+ IL17+,

and Cycling T cells were enriched in UC.
3.3 Positional SNP-gene linking methods
provide greater statistical power than
tested alternatives

Methods integrating scRNA-seq and GWAS summary statistics

rely largely on the same preprocessing steps, yet a standardized
FIGURE 4

Comparison of similar diseases with scDRS. Summary statistics unique to each disease were used on the same scRNA-seq data for each pair (14, 23).
scDRS defines significant clusters (annotated according to original papers) with a group disease Z-score as shown in the gradient legend. Cell
clusters with literary support for either disease are labeled in purple/orange for RA/UC and green/blue for AS/CD, respectively. General literary
support means that a cell type with multiple cell states is supported by the literature while specific means a specific single cell state was supported.
(A) Rheumatoid arthritis (RA) vs Ankylosing Spondylitis (AS). (B) Ulcerative Colitis (UC) vs Crohn’s Disease (CD).
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guidance for these steps is lacking. Therefore, we evaluated the

impact of inputs and preprocessing steps on results, focusing on

scDRS due to its high sensitivity and covariate analysis.

First, we considered the robustness of results when using solely

positional information to connect noncoding SNPs to genes. The

primary positional method to link SNPs to genes is MAGMA which

relies on a window size parameter determining the distance a SNP

can be from a gene to be incorporated (16). Because there is no

standardization on MAGMA window size beyond the notion that a

larger window size incorporates SNPs falling in cis-regulatory

elements, we evaluated the impact of the most used window sizes

on results (details in Methods) (4, 5, 8, 17, 49–53). Different window

sizes for RA analyses only changed the significance calls for 16 of

the 77 cell states in at least one of the window-sizes, half of which

are only different in one window size (Figure 5). Importantly, none

of these cell states had the top 20 group disease scores in our

original results (50-35kb window). There also did not appear to be a

clear pattern across the window sizes in terms of the numbers of

significant cell states or the cell states changing in significance.

These findings were similar with our three other diseases of study,

with results for CD having the greatest differences across window

sizes (Supplementary Figures 17, 18). Despite only 54% of genes

being shared across the top 1000 MAGMA ranked genes in all

window sizes, these shared genes consistently had most of the

lowest p-values (Supplementary Figure 19). In comparison,

scGWAS showed 20 cell states with change in significance just

between 10-10kb and 50-35kb window sizes in RA, including four

cell states originally identified as significant by all three tools: T-22,

B-5, B-0, and B-1 (Figure 3C, Supplementary Figure 6).

Given the growing concern over positional methods

inaccurately assigning SNPs to genes, we next explored the usage

of non-positional based data within the framework of FUMA.

Although other SNP-gene linking tools can be found in Table 3,

we focused on FUMA as a commonly used alternative to MAGMA

and because it can incorporate eQTL, chromatin contact data and

positional information from MAGMA to express summary

statistics at the gene-level (16–20). Therefore, while FUMA uses a

different summary statistics processing that doesn’t allow direct

comparison to our own MAGMA based analyses, we used its

MAGMA pipeline to consider the impact of alternative linkage

methods (details in Methods). The 1000 genes with the lowest p-

values were significantly different between positional and non-

positional methods, regardless of exact summary statistics used

(Supplementary Figure 20). When only considering genes

supported from non-positional methods, 445 genes were

significant, a number consistent across usual non-positional

methods (Supplementary Table 9, Table 3). : The smaller number

of genes was maintained regardless of p-value cutoff

(Supplementary Table 11). Indeed, FUMA analysis that combined

positional with non-positional methods showed similar results to

purely using MAGMA but with only 28 of the 52 original cell states

called significant (Supplementary Figure 21). Conversely, scDRS

only lost nine and five significant cell state calls when only using the

top 300 and 500 ranking genes according to MAGMA, respectively

(Supplementary Figure 21). Only restricting scDRS to the top 100

ranking genes allowed loss of significant results at the same
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magnitude (23 vs 24 by FUMA) (Supplementary Figure 22). Still,

incorporating non-positional methods added 2 significant clusters:

HLA-DR+IgG+ plasmablasts (B-7) and MKI67+ Proliferating NK

cells (NK-11), which were still not called significant when

increasing the MAGMA window size to 100kb, a size commonly

used to capture cis-regulatory element SNPs (Figure 5).
4 Discussion

In this study, we evaluated three software for linking genetics to

single-cell phenotypes according to the enrichment of literature

supported calls, robustness, and interpretability of results. Although

all strategies identified disease-relevant cell states, single-cell based

scDRS and scPagwas identified the greatest number supported by

previous findings. B and T cell subsets were identified as significant

for RA across all tools, aligning with the literature highlighting the

disease relevance of lymphocytes (13, 14, 28, 35, 54, 55). Gene set

enrichment analyses indicated the significance of monocytes and

macrophages across all tools for RA, consistent with the recent work

discovering the cell phenotype expanded in inflamed synovial

tissue. However, only scDRS called the best defined RA induced

cell states, MERTK+ myeloid cells, significant (14, 34, 35). In

addition, all methods recognized autoimmune-associated B-cells

(ABCs) as significant, a cell phenotype recently shown to be

expanded in RA inflamed synovial tissue (14, 34, 35).

Importantly, none of the algorithms identified significant

fibroblast cell types despite the expansion of NOTCH3+ and

CD34+ sublining fibroblasts in RA (28, 56). This finding supports

previous hypotheses that these phenotypes arise only after the

expansion of other genetically driven cell states called significant

by scDRS (56). For UC, we found few disease-significant cell states.

However, all methods identified M cells – a recently discovered cell

group with the highest expression of putative IBD risk genes in

inflamed vs healthy tissue corroborated by two separate cohorts (23,

57). Interestingly, no algorithm called CD8+ IL17+ T cells despite

their significantly different proportions between individuals with

and without UC (23, 58). However, transcriptional changes in this

group occur downstream of proportional shifts of Tregs and

epithelial cells, both of which were called by scDRS (59–61).

scGWAS is more distinctly built to identify probable gene sets

relevant to pathological cell states, but is significantly impacted by the

pathway networks on which it bases its analyses. While removing false

positives by requiring a known set of connected genes to have increased

expression compared to single genes, the algorithm also assumes that

the pathway file contains all possibly relevant gene connections.

Therefore, true positives can be lost such as was likely with MERTK

+ cells. Additionally, many of the significantly called scGWAS gene

modules overlapped, depleting information content, perhaps due to the

lack of cell type specificity in the pathways. This finding underscores

the importance of not necessarily using the number of significant gene

modules identified as a relative metric of significance for a cell type.

Although scGWAS provides gene modules more conducive for certain

analyses, the original network file should be considered according to a

researcher’s specific focuses. In contrast, scDRS focuses on single cell

based exploration by only providing genes correlated with single-cell
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disease scores (4). Historically, purely correlational approaches tend to

be noisy and significantly impacted by data heterogeneity (62, 63). This

fact might explain why both MAGMA and scGWAS genes showed

relatively low correlation with single-cell disease scores, even within the

annotated cell-state.

Although scPagwas uniquely integrates gene pathways with

single-cell scoring, it currently has three limitations compared to

scDRS. First, the computational expense of scPagwas makes scDRS

far more feasible for large scale analyses; this could potentially be

addressed by enabling multiprocessing for the current bottleneck in

linking pathway blocks and GWAS, as done in the regression portion.

Second, scPagwas currently lacks covariate adjustment, making it

susceptible to batch effects, which may explain the highly polarized
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disease scores observed in scPagwas mitigated by scDRS. Finally,

while both scDRS and scPagwas consider genes correlated with

single-cell disease scores, scPagwas relies on these genes—rather

than SNP-linked genes—for final cell-type analysis. Our results

suggest that gene correlations can be heavily influenced by dataset

heterogeneity and often poorly reflect SNP-based gene associations

(e.g. MAGMA). This finding may help explain the overrepresentation

of ribosomal genes among scPagwas genes despite their minimal

impact on cell-state identification. Importantly, these results might

also be based on the pathway size of scPagwas (default 5-300 genes);

this range was optimized by the original authors but may require

further optimizing for more heterogeneous datasets like those tested

here. The scDRS simulated control set may also allow amore accurate
FIGURE 5

scDRS results for RA of clusters that show different levels of significance with different MAGMA windows being used to generate the GWAS inputs
(0-0kb, 5-5kb, 10-10kb, 50-35kb, 100-100kb). scDRS defines significant clusters with a group disease Z-score as shown in the gradient legend
(significant scores marked with square). Cell states with significant heterogeneity scores are marked by an X. General literary support means that a
cell type with multiple cell states is supported by the literature while specific means a specific single cell state was supported. Cell states with
changes in just scDRS disease score, heterogeneity score, or both significance calls across MAGMA windows are marked in bold and with grey or
turquoise squares.
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prediction of significance given scDRS using scPagwas gene input,

but not scPagwas, called MERTK+ cells significant despite the

MERTK+ genetically enriched scPagwas pathways being linked to

RA (64–67).

Importantly, the use of broad cell types, as mostly done in

previous applications of scDRS, scPagwas and scGWAS, lacked the

insight provided by fine-tuned cell state annotations. Indeed, all

tools missed calling some cell types significant despite them calling

significant cell states within them. The heterogeneity of disease

scores as called significant by scDRS might indicate when a cell type,

even when not called significant as a group, might contain cell states

with significance. However, statistically significant heterogeneity

does not always imply biological significance, as even small cell

states with as few as 50 cells showed significant heterogeneity.

Similarly, potential biases from including cells from diseased tissue

in these atlases must be considered. For example, scDRS relies on

normalized single-cell scores so statistical significance is partly

driven by the comparison of cells. Despite these caveats, we were

able to explain the lack of significance for certain cell states

according to lack of genotypic support in the literature and their

links to upstream cell states that had genotypic backing.

Given the increased sensitivity when using fine-grained cell

states, we evaluated whether a single atlas could be used to assess

multiple diseases. scDRS clearly distinguished between diseases

with a single atlas, with literary support for the found differences

from other single-cell based analyses. We were able to determine

RA vs. AS and UC vs. CD pathogenesis based on the results of

scDRS, using one scRNA-seq atlas for the respective comparisons.

Cell states causally linked to AS according to a recent Mendelian

randomization study were all called significant in AS: CD8+

activated/NK-like (T-17), pDC (M-13), and unswitched memory

cells (B-1) (40). Additionally, CD8+ activated NK-like (T-17) and

proliferating (T-18) T-cells showed significance here and in other

studies (41, 42). NK cells were heavily implicated in AS. The unique

significance of CD56dim CD16+ GZMB- cells (NK-3) in AS was

supported by GZMB being expressed at much lower levels in AS

patients in previous NK-focused scRNA-seq analysis and ELISA
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studies (43). Similarly, the significantly called IL7R+ ILC (NK-12)

cell state showed similar upregulation of genes, including IL7R, as a

NK cluster upregulated in AS according to previous single cell

analyses (43, 44). Finally, most of the CD56bright CD16- (NK4,6,8)

NK cell clusters were called significant for AS, supported by the

previous findings of upregulation of CD56bright NK cells in AS (43,

44). On the other hand, epithelial cells and fibroblasts most clearly

separated UC and CD respectively. Indeed, the enrichment of CD8+

LP cells, NK cells, and activated CD4+T cells has been supported by

independent CD single cell analyses (45). We were also able to

distinguish fibroblasts with genetic bases for CD and UC. We called

RSPO3+ fibroblasts significant when multiple CD specific SNPs

have previously connected this phenotype (48). Similarly, WNT2B+

fibroblasts were only called significant for CD, matching the

previous finding that the group only shows genetic connection to

CD despite it being expanded in both UC and CD (46, 47). Publicly

available scRNA-seq data is not always available or sufficient for a

certain disease, so instead researchers might need to apply the

existing and relevant GWAS summary statistics to the scRNA-seq

data generated from a clinically similar disease. Our findings

support the ability for researchers previously constrained by the

lack of appropriate scRNA-seq atlases to study diseases while not

sacrificing fine-scale analyses.

Finally, we also evaluated methods incorporating noncoding

SNPs for identifying pathogenic cell states. Unsurprisingly, the

input gene set used can have major implications on results,

regardless of the tool. We determined that MAGMA-based results

in scDRS are robust to window sizes while scGWAS appeared to

have larger changes. This different robustness might be explained by

our finding that the genes consistent across window sizes had the

highest significance scores while scGWAS considers the full list of

MAGMA based scores rather than the top 1000. We also considered

non-positional methods to link SNPs to genes with FUMA and

found the decreased power from these tools have significant impacts

on results. Non-positional methods provide significantly smaller

genesets due to a focus on highly confident linkages and noisy data

sources (Table 3). Our findings show that these low gene numbers,
TABLE 3 Current methods to link SNPs to genes and the estimated number of genes output, form of significance output, and interface.

Name (Citation) Method Est. Gene list size Score Interface

cS2G (18) Linear combination of linking scores from main S2G
strategies, exon, promoter, eQTLGen, and GTEx cis-
eQTL, EpiMap, ABC, and Cicero. Restricts each strategy
to gene w/highest linking score.

<500 (depends on #
lead variants)

cS2G score Scripts provided

PoPs (19) Similarity based filtering of MAGMA results (although
paper described other input options).

<200 (depends on #
lead variants)

PoPs score (for
relative ranking)

CLI

nMAGMA (20) Network-enhanced MAGMA links SNPs to genes by
considering tissue specificity (Hi-C and eQTL) and
functional interactions (WGNCA), then use MAGMA to
get significance of genes.

1000+ Z-scores and P-values Scripts provided

FUMA (17) SNP2GENE Module: Identifies lead SNPs, can run
MAGMA or map using eQTL, position, and
chromatin-interaction

MAGMA based 1000+,
otherwise <700

MAGMA Z-scores/P-
values or min p-value of
linked SNPs

Web tool

MAGMA (16) Maps SNPs to genes via positional window, empirical
gene p-value via permutation followed by PCA regression

1000+ Z-scores and P-values CLI
All tools address linkage disequilibrium.
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regardless of confidence, lead to significant decline in sensitivity.

Ideally, one would be able to combine strict window MAGMA

results with that of a non-positional method, however the need to

combine different significance scales complicates this. The p-values

output by FUMA and similar methods also often do not account for

the uncertainty in the predicted SNP-gene linkages. For now, if

using tools reliant on a long list of genes, we suggest focusing on cell

types consistent across window sizes for MAGMA and adding genes

called by other tools like FUMA. It’s important to note that

regardless of the window sizes used, many SNPs were still not

assigned to a gene with MAGMA. For example, with a moderately

large window size of 50-35kb, about 60% of SNPs for RA and UC

were linked to a gene which decreased to about 40% when that

window was reduced to 10-10kb. Outside of these methods,

repeating analyses with multiple GWAS summary statistics and

scRNA-seq cohorts is equally relevant to ensure repeatability

of results.

One way to circumvent linking SNPs to genes is using cis-

regulatory elements (cREs) SNPs fall in directly. Given cRE activity

is highly dependent on cellular behavior and allows accurate

deconvolution of cell types, this switch could also allow

separation of more nuanced cellular states (68). Additionally,

tools like Cicero link cREs to their regulated genes from single

cell data (69). While classic scRNA-seq data cannot capture the

activity of these elements well, 5’ scRNA-seq is more sensitive to

them. Moody et al. successfully applied 5’ sc-RNA-seq to detect the

transcription of cREs and genes simultaneously and developed a

metric to identify cell types enriched in trait heritability (10).

Interestingly, they used the same summary statistics as our work

for crohn’s disease (CD) and ulcerative colitis (UC). Despite using

gene-based methods, we captured the same fibroblast and dendritic

cell enrichment for CD that they found. However, unlike their

results, we did not find an overall enrichment of T/NK cells in UC

compared to CD but found some specific states in these cell types

oppositely enriched and supported by the literature (45). These

differences can be explained by the fact that Moody et al. relied on

general lymphocyte 5’-scRNA-seq for analysis while we used

scRNA-seq specifically from the colon mucosa of UC patients.

The cell states we identified as seeming to conflict with findings

from Moody et al. are unique to intraepithelial lymphocytes and

likely would not be in their data. Overall, these results showcase the

need for careful interpretation when relying on non-disease tissue

specific scRNA-seq data. Exciting insight will come from evaluating

the adaptation of algorithms like scDRS, scPagwas, and scGWAS to

the growing cRE-based single cell data (10, 70–72).

While disease-specific and fine-scaled single-cell cRE atlases

continue being developed, tools like MAGMA, scGWAS, scPagwas

and scDRS provide key opportunities to identify cell states and

genes associated with disease through both transcriptomics and

genomics. We’ve also showed that these tools can even allow single-

cell level analyses for diseases without fine-scaled sc-RNA-seq

atlases currently accessible if an atlas for a similar disease is

available. We note that our focus on four immunological diseases,

including RA, AS, UC, and CD, may not be generalizable to all other

disorders. However, these analyses represent the consistency of key
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genetic-relevant cell phenotypes across autoimmune disorders,

providing valuable guidance for future investigations to other

similar diseases. Overall, the development of tools like scDRS,

scGWAS, scPagwas, along with improved SNP-Gene-cell state

linking methods, are essential steps for using existing data to

pinpoint the search of biological targets for treatment development.
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