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Mitochondrial regulation plays a crucial role in cancer immunity in the tumor

microenvironment (TME). Infiltrating immune cells, including T cells, natural killer

(NK) cells, and macrophages, undergo mitochondrial metabolic reprogramming

to survive the harsh conditions of the TME and enhance their antitumor activity.

On the other hand, immunosuppressive cells like myeloid-derived suppressor

cells (MDSCs), regulatory T cells (Tregs), mast cells, and tumor-associated

macrophages (TAMs) rely on mitochondrial regulation to maintain their

function as well. Additionally, mitochondrial regulation of cancer cells

facilitates immune evasion and even hijacks mitochondria from immune cells

to enhance their function. Recent studies suggest that targeting mitochondria

can synergistically reduce cancer progression, especially when combined with

traditional cancer therapies and immune checkpoint inhibitors. Many

mitochondrial-targeting drugs are currently in clinical trials and have the

potential to enhance the efficacy of immunotherapy. This mini review

highlights the critical role of mitochondrial regulation in cancer immunity and

provides lists of mitochondrial targeting drugs that have potential to enhance the

efficacy of cancer immunotherapy.
KEYWORDS
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1 Introduction

The tumor microenvironment (TME) is a complex and dynamic environment that

plays a crucial role in cancer development, progression, and therapeutic response (1). From

the perspective of cancer immunity, the TME is not only occupied by cancer cells but also

consists of a variety of cell types, including both immunosuppressive cells and immune cells

(2). Among the many factors within this environment, mitochondria stand out as critical

regulators, not just serving as the powerhouse of the cell but also playing key roles in

metabolic pathways, apoptosis, and cellular differentiation (3–5). These mitochondrial
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functions can significantly impact the behavior of cells within the

TME. Immunotherapy has emerged as a new type of anticancer

treatment that aims to strengthen immune cell function to fight

cancer. Immune checkpoint inhibitors that block immune

checkpoints, such as CTLA-4, PD-1, and PD-L1, are the most

widely used immunotherapy. However, immune checkpoint

inhibitors are not always effective because some cancer cells do

not respond to the treatments (6, 7). Many studies have shown that

mitochondrial-targeting drugs synergistically enhance the efficacy

of immune checkpoint inhibitors while improving immune cell

function and reducing the activity of immunosuppressive cells.

Therefore, understanding the mechanisms of mitochondrial

metabolic reprogramming is crucial for developing strategies to

enhance immune cell function in the tumor microenvironment,

which could lead to more effective cancer treatments through

immunotherapy. In this mini-review, we briefly explain the role

of mitochondrial regulation in cancer immunity within the TME

and mitochondrial-targeting drugs that might serve as novel

immunotherapeutic treatments.
2 Mitochondrial metabolic
reprogramming in immune cells
of tumor microenvironment

Mitochondrial metabolic reprogramming refers to the process

by which the function and metabolic pathways of mitochondria are

altered, often in response to changes in the cell’s environment or

state (8). Within the TME, stress conditions, such as reduced

oxygen consumption, elevated reactive oxygen species (ROS)

generation, depolarized membrane potential, and impaired

biogenesis disrupt the mitochondrial metabolism of immune cells

and impair their function (9–11). Therefore, mitochondrial

metabolic reprogramming plays a key role in the antitumor

activities of immune cells that infiltrate the TME (12).

T cells are among the most important immune cells that are

responsible for identifying and destroying cancer cells. When T cells

are activated, their metabolism shifts from oxidative

phosphorylation (OXPHOS) to glycolysis, supporting their rapid

proliferation and effector functions (13). However, T cells show a

persistent loss of mitochondrial function and mass when infiltrating

tumors (14). Furthermore, continuous T cell stimulation in hypoxic

environments leads to Blimp-1-mediated suppression of PGC-1a-
dependent mitochondrial reprogramming (14). Several studies

showed that enhancing mitochondrial metabolism improves T

cell function. For instance, overexpression of PGC-1a enhanced

mitochondrial biogenesis and metabolic capacity, thus improving

CD8+ T cell antitumor effects (15). Stimulating T cell surface

receptor 4-1BB enhances mitochondrial fusion and biogenesis in

CD8+ tumor-infiltrating lymphocytes, independently of PGC-1a
and p38-MAPK signaling (16).

Natural killer (NK) cells are crucial cytotoxic lymphocytes that

are involved in the innate immune response against infected or

transformed cells (17). In their inactive state, NK cells generate ATP
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primarily via mitochondrial OXPHOS, and upon activation, both

glycolysis and OXPHOS increase, boosting ATP production

(18, 19). A decreased level of PGC-1a, a master regulator of

mitochondrial biogenesis, significantly impaired the ability of NK

cells to control B16F10 melanoma growth in vivo, showing that

mitochondria play a key role in NK cells (20). Upon infiltration of

the TME, NK cells exhibit significant disadvantages. NK cells

isolated from liver tumors exhibit fragmented mitochondria and

impaired metabolism characterized by suppressed glycolysis and

mitochondrial dysfunction (21). Furthermore, TGF-b induces

metabolic dysfunction in NK cells from patients with metastatic

breast cancer, leading to reduced glycolysis and OXPHOS and

increased mitochondrial fragmentation (22). Blocking TGF-b
and/or GARP can improve NK cell metabolism and function

(22). NK cells showed a significant enhancement in immune

activity and cytotoxicity when functional allogeneic mitochondria

were transferred, indicating that mitochondrial improvement may

restore NK cell function in the TME (23).

In the context of macrophage differentiation and function,

mitochondria play a vital role in the regulation of metabolic

reprogramming, signaling pathways, and immune responses (24).

Among the two macrophage phenotypes, M1 and M2, M1

macrophages promote antitumor immunity by producing

proinflammatory cytokines, such as IL-1b, IL-6, and IL-12 (25).

M1 macrophages rely primarily on glycolysis for ATP production,

favoring glycolysis even in the presence of oxygen, similar to the

Warburg effect observed in cancer cells (25). Most macrophages in

the TME exhibit the M2-like phenotype (25). This is due to the low

glucose, high lactate levels, and hypoxic conditions of the TME,

which drive macrophages to undergo M2 polarization (26, 27).

Furthermore, tumors secrete cytokines and chemokines, such as IL-

10, TGF-b, CCL2, and CSF-1, which recruit and polarize

macrophages to the M2 phenotype (27).
3 Mitochondrial metabolic regulation
in immunosuppressive cells

The TME comprises diverse immunosuppressive cells that

promote tumorigenesis and immune evasion (Figure 1). These

include myeloid-derived suppressor cells (MDSCs), regulatory T

cells (Tregs), mast cells, and tumor-associated macrophages (TAMs)

(28, 29). Many studies have highlighted the essential roles of

mitochondria and mitochondrial metabolism in immunosuppressive

cells, indicating their potential as therapeutic targets.

MDSCs are immunosuppressive monocytes and neutrophils

that rely heavily on glucose metabolism (30). For instance, b-
adrenergic receptor signaling activates the STAT3 pathway,

enhancing OXPHOS and glutamine utilization through the TCA

cycle in MDSCs, reducing mitochondrial ROS via the NRF2

pathway, thereby improving MDSC survival (31). Decreased

glucose availability, and consequently lactate production, results

in smaller tumors, fewer MDSCs, and improved antitumor immune

responses (32). Lipid metabolism is also crucial for MDSCs
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function. Tumor-derived cytokines activate STAT3 and STAT5

pathways and upregulate lipid transport receptors of MDSCs (33).

This increases lipid uptake and enhances oxidative metabolism and

immunosuppressive functions of MDSCs (33). Blocking fatty acid

oxidation (FAO) in MDSCs, where fatty acid uptake and oxidation

are crucial, reduces their immunosuppressive functions (34).

Tregs are another type of immunosuppressive cell that suppress

the function of various immune cells, including CD4+ T helper

cells, CD8+ cytotoxic T cells, NK cells, and NK T cells (35). Tregs

rely heavily on OXPHOS and FAO for their energy needs (36). In

the TME, where glucose is scarce and lactate is abundant,

expression of Foxp3 increases, which in turn suppresses Myc and

glycolysis, promotes OXPHOS, and helps Tregs adapt to their

environment (37). HIF-1a serves as a metabolic switch in TME,

oscillating between glycolysis-driven migration and OXPHOS-

driven immunosuppression in Tregs (38). Tregs absorb fatty

acids, store them as lipid droplets, and utilize fatty acid synthesis

to aid their functional maturation (39). Blocking fatty acid-binding

protein 5 in Tregs leads to the release of mitochondrial DNA, which

activates cGAS-STING-dependent type I interferon signaling. This
Frontiers in Immunology 03
process increases the production of the regulatory cytokine IL-10

and suppresses the function of Tregs (40).

TAMs are predominantly of the M2 phenotype and support

tumor growth and metastasis by releasing cytokines, chemokines,

and growth factors (41). TAMs shift their metabolism towards

OXPHOS and FAO while reducing glycolysis and the pentose

phosphate pathway in the TME (42). This metabolic

reprogramming promotes immunosuppressive signaling, which

is favorable for tumor growth in the TME (43). Mast cells induce

inflammation by releasing various chemokines and cytokines

upon activation by a stimulus, which rapidly degranulates and

releases their granule contents into the extracellular space

through exocytos i s (44) . They conta in extrace l lu lar

mitochondrial particles and DNA, which can trigger cytokine

release and exacerbate inflammation via autocrine or paracrine

signaling (45). Overall, these findings illustrate the complex

interplay between mitochondrial metabolic processes and

immunosuppressive mechanisms within the TME and highlight

potential targets for therapeutic interventions to enhance

antitumor immune responses.
FIGURE 1

Cancer immune evasion and immunosuppressive cells. Cancer cells exhibit increased glucose uptake and heavily rely on glycolysis through a
phenomenon known as the Warburg effect, a form of metabolic reprogramming. This heightened glucose uptake restricts glucose availability for
immune cells, while lactate itself suppresses the antitumor activity of immune cells. Cancer cells can hijack mitochondria from T cells via
mitochondrial transfer. Various immunosuppressive cells aid in tumorigenesis, and metabolic pathways, such as fatty acid oxidation (FAO) and
oxidative phosphorylation (OXPHOS), adapt depending on the circumstances. NK, natural killer; Tregs, regulatory T cells; MDSCs, myeloid-derived
suppressor cells; TAMs, tumor-associated macrophages.
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4 Mitochondrial regulation of cancer
cells for immune evasion

Cancer cells exhibit considerable alterations in their metabolic

processes, profoundly impacting cancer immunity in TME (Figure 1).

One of the most prominent mechanisms of metabolic

reprogramming is the Warburg effect, wherein glucose uptake and

lactate production increase significantly in tumor cells, even in the

presence of oxygen (46). Glycolytic activity and elevated glucose

uptake by cancer cells can restrict glucose availability to tumor-

infiltrating immune cells, thereby promoting immune escape (47).

Furthermore, increased glycolytic activity in tumor cells correlates

positively with elevated PD-L1 expression (48). Lactate, a primary

metabolite generated by glycolysis, plays a direct role in facilitating

the immune evasion of cancer cells (49). Lactate inhibits the

maturation of dendritic cells and impairs their ability to

present antigens by downregulating the expression of major

histocompatibility complex class II molecules (50). Lactate impairs

the effectiveness of cytotoxic T lymphocytes (CTLs) by lowering the

production of proinflammatory cytokines, such as IFN-g, which are

essential for CTL-mediated antitumor activity, and by impairing the

secretion pathways of cytolytic molecules (51). Tumor-derived lactate

reduces NK cell activity by directly inhibiting their cytolytic function,

decreasing the expression of activation receptors, such as NKp46,

triggering apoptosis in NK cells, and indirectly increasing the number

of MDSCs that suppress NK cytotoxicity (32, 52).

Other studies have demonstrated that mitochondrial function

positively correlates with the immune evasion ability of cancer cells.

In N-acetyltransferase 1-depleted breast cancer cells, a reduction in

OXPHOS and mitochondrial biogenesis proteins was observed

along with an elevation in antigen presentation proteins (53). The

elevated expression of CD147, which is upregulated in various

malignant tumors, is associated with increased GLUT1 and

MCT1 levels (54). This enhanced glycolytic metabolism in

hepatocellular carcinoma (HCC) cell lines correlated with

immunosuppressive lymphocyte infiltration in HCC tissues (55).

Furthermore, deletion of Complex II, one of the key components of

the electron transport chain, inhibits melanoma tumor growth by

enhancing antigen presentation and T cell-mediated death (56).

Cancer cells also disrupt mitochondrial metabolism in immune

cells. For example, HCC secretes a-fetoprotein, which reduces

SREBP-1 and PGC1-a in dendritic cells, leading to lower

lipogenesis, oxygen consumption rate, and ATP synthesis of the

cell (57). Interestingly, cancer cells can directly hijack mitochondria

from immune cells in the TME to evade immune detection and

destruction. The transfer of mitochondria from immune cells to

cancer cells enhances cancer cell metabolism (58). Furthermore,

mitochondria from T cells can transfer to cancer cells, leading to the

upregulation of genes involved in cytoskeleton remodeling, energy

production, and TNF-a signaling pathways, along with increasing

cell cycle activity (59). In conclusion, cancer cells reprogram their

metabolism, notably via the Warburg effect, to enhance their

growth and evade immune responses. They also disrupt the

mitochondrial metabolism and steal mitochondria from immune

cells to evade immune detection.
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5 Targeting mitochondria in
cancer immunity

Since mitochondrial regulation plays a key role in cancer

immunity, mitochondria-targeting drugs have the potential to

boost immune cell function and immunotherapy for cancer.

Many drugs targeting mitochondria are being investigated from

an immunotherapy perspective, with some currently in clinical

trials (Table 1).

Metformin is one of the most extensively studied

mitochondria-targeting drugs that enhances immune responses

in cancer therapy, which inhibits Complex I of the mitochondrial

respiratory chain (60, 61). Metformin improves cancer

immunotherapy by directly protecting tumor-infiltrating CD8+

T cells from hypoxia-induced immunosuppression, potentially by

reducing ROS production and preventing apoptosis (62).

Combining metformin with an anti-PD-L1 antibody has been

shown to induce tumor necrosis by enhancing CD8+ T cell

infiltration and increasing IFN-g expression (63). Furthermore,

in STK11 mutant lung cancer, the combination of metformin with

a PD-1 inhibitor boosts antitumor effects by inhibiting

STING ubiquitination in an AXIN-1-dependent manner (64).

Additionally, metformin activates AMPK phosphorylation in

various cancer cells, which bolsters antitumor immunity by

inhibiting immunosuppressive cells like MDSCs (65, 66).

Phenformin, a drug structurally similar to metformin but with a

stronger effect on Complex I inhibition, selectively targets MDSCs

in vivo (67). Furthermore, combining phenformin with anti-PD-1

antibody therapy reduced tumor growth with greater infiltration

of CD8+ T cells into a melanoma mouse model (67).

Canagliflozin, a medication used to treat type 2 diabetes, is

another drug that has been discovered to inhibit mitochondrial

complex I activity. On the plasma membrane, SGLT2 (sodium/

glucose cotransporter 2) physically interacts with PD-L1,

preventing its proteasome-mediated degradation. Canagliflozin

disrupts this interaction, leading to PD-L1 degradation by E3

ligase and consequently enhancing the activity of antitumor

cytotoxic T cells (68, 69). Additionally, canagliflozin inhibits

both the MAPK/ERK and PI3K/AKT signaling pathways,

thereby suppressing cancer progression (69). A small molecule

that inhibits mitochondrial complex I activity named IACS-

010759 decreases radiation-induced Tregs, increases activated

CD8+ T cells, and, when combined with radiotherapy and anti-

PD-1, promotes abscopal responses and prolongs survival in a

non-small cell lung cancer (NSCLC) xenograft mouse model (70).

Atovaquone is a mitochondrial complex III inhibitor and

alleviates hypoxia in TME in colorectal cancer in vivo.

Furthermore, combination of atovaquone with anti-PD-L1

antibody greatly enhances tumor eradication in the CT26

colorectal cancer model by establishing a tumor-specific

memory immune response (71).

Statins, which inhibit the enzyme HMG-CoA reductase

involved in cholesterol synthesis, impair mitochondrial function

by inhibiting mitochondrial respiratory chain (72). Seven statin

drugs were tested for their ability to inhibit tumor cell proliferation
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TABLE 1 Impact of mitochondria-targeting drugs on immunotherapy.

Selected
clinical trials

Purpose

NCT03800602
Phase II. Evaluating the effectiveness of
metformin with PD-L1 inhibitor nivolumab and
metformin in stage IV colorectal cancer

NCT03026517
Phase I. Evaluating the effectiveness of
phenformin with BRAF and MEK inhibitor in
metastatic melanoma with a BRAF mutation

NCT05090358
Phase II. Evaluating the effectiveness of
canagliflozin with alpelisib and fulvestrant in
metastatic PIK3CA-mutant breast cancer

– –

NCT03568994
Early Phase I. Evaluating the tolerability of
atovaquone with chemotherapy in pediatric
AML patients

NCT03324425
Phase II. Evaluating the effectiveness of
simvastatin with dual anti-HER2 therapy in
metastatic breast cancer

NCT04862260
Early Phase I. Evaluating the effectiveness of
atorvastatin with chemotherapy in solid tumor
and acute myeloid leukemia

NCT03107182
Phase II. Evaluating the effectiveness of
hydroxyurea with chemotherapy in head and
neck cancer

– –

NCT04277442
Phase I. Evaluating effectiveness of venetoclax
with nivolumab and decitabine in TP53-mutated
acute myeloid leukemia

NCT01111097
Phase I. Evaluating effectiveness of dichloroacetate
in malignant brain cancer

– –

– –
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Drugs Function Effects on cancer immunity FDA-approved
Ongoing

clinical trials

Metformin
Mitochondrial

Complex I inhibitor

Protects infiltrating CD8+ T cells from hypoxia-induced
immunosuppression, boosts antitumor effects when combined with a
PD-1 inhibitor, inhibiting immunosuppressive cells like MDSCs

O O

Phenformin
Mitochondrial

Complex I inhibitor

Selectively inhibits granulocytic myeloid-derived suppressor cells, boosts
antitumor effects when combined with a PD-1 inhibitor Increased
infiltration of CD8+ T cells in tumor

X △

Canagliflozin
Mitochondrial

Complex I inhibitor
Promotes PD-L1 degradation by E3 ligase, suppressing cancer
progression by inhibiting the MAPK/ERK and PI3K/AKT pathways

O △

IACS-010759
Mitochondrial

Complex I inhibitor
Boosts antitumor effects when combined with radiotherapy and anti-
PD-1

X X

Atovaquone
Mitochondrial

Complex
III inhibitor

Boosts antitumor effects when combined with a PD-L1 inhibitor O △

Simvastatin
Mitochondrial
Complex III,
V inhibitor

Shifts M2 to M1 macrophage, enhancing CD8+ T cell activity and TCR
signaling pathway, downregulates PD-L1 expression through the
DEPTOR/mTOR pathway

O △

Atorvastatin
Mitochondrial
Complex I, III,
IV inhibitor

Boosts antitumor effects when combined with a PD-1 inhibitor, inhibits
PD-L1 expression through the MAPK pathway

O △

Hydroxyurea

Mitochondrial
oxygen

consumption
inhibitor

Boosts antitumor effects when combined with a CDK1 inhibitor, impairs
differentiation of MDSCs while promoting T cell activation

O △

IR-780
Immunogenic cell
death inducer

Enhances dendritic cell maturation and effective T cell priming X X

Venetoclax
Mitochondrial

cytochrome c (Cyt
C) release inducer

Enhances NK cell function Boosts antitumor effects when combined with
a PD-L1 inhibitor

O O

Dichloroacetate

Pyruvate
dehydrogenase

kinases
(PDKs) inhibitor

Increases the number of CD8+ T cells and NK cells X △

Bezafibrate
PGC-1a/

PPAR agonist
Enhances CD8+ T cell activity Boosts antitumor effects when combined
with a PD-L1 inhibitor

X X

EnPGC-1
PGC-1a/b

Epigenetic activator
Enhances CD8+ T cell activity Boosts antitumor effects when combined
with a PD-L1 inhibitor

X X

A circle indicates that the drug is currently in clinical trials with immunotherapy. A triangle shows that the drug is currently in clinical trials but not relevant to immunotherapy. A c
r
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using an ex vivo co-culture assay with murine cancer cells and

tumor-infiltrating lymphocytes. Among these, simvastatin and

lovastatin enhance T cell-mediated tumor cell killing and shift

M2 to M1 macrophages in this model (73).

Simvastatin also boosts antitumor immunity by enhancing

CD8+ T cell activity and T cell antigen receptor (TCR) signaling

pathway (74). Simvastatin also reduced ILF3 expression by lowering

H3K14 acetylation levels, and ILF3, in turn, downregulated PD-L1

expression through the DEPTOR/mTOR pathway (75). Another

type of statin called atorvastatin significantly enhanced antitumor

efficacy by promoting T cell activation in combination with an anti-

PD-L1 antibody. Additionally, atorvastatin inhibited the MAPK

pathway, leading to decreased PD-L1 expression (76). Hydroxyurea

is an FDA-approved drug for treating both sickle cell disease and

cancer, and it can be used alone or in combination with

conventional chemotherapy or radiation therapy (77). Combining

a checkpoint kinase 1 inhibitor with low-dose hydroxyurea reduced

the tumor size of melanomas that are resistant to BRAF and

immune checkpoint inhibitors in vivo (78). Mito-HU, a modified

form of hydroxyurea designed to target mitochondria, disturbed

differentiation of MDSCs while promoting T cell activation in vitro

(77). IR-780 boosts cancer immunity by targeting mitochondria

to induce immunogenic cell death, which exposes tumor-associated

antigens, leading to enhanced dendritic cell maturation, effective T

cell priming, and improved immune responses against tumors (79).

NK cells effectively drive cancer cells toward mitochondrial

apoptosis, and when combined with the BCL-2 inhibitor

venetoclax, they synergistically enhance the killing of cancer cells

both in vitro and in vivo while pre-activated NK cells have been

shown to become resistant to venetoclax (80). Furthermore, in

combination with immune checkpoint blockade, venetoclax boosts

infiltrating effector T cells and strengthens antitumor efficacy (81).

Lactate produced by cancer cells promotes the IL-23/IL-17

inflammatory pathway and increases arginase I (ARG1)

expression in macrophages, leading to the inhibition of T cell

proliferation and activation (82). Dichloroacetate (DCA) reduces

the IL-23/IL-17 inflammatory pathway and ARG1 expression in

macrophages, while increasing the number of IFN-g-producing
CD8+ T cells and NK cells in vivo (82). Bezafibrate, a PGC-1a/
PPAR agonist, promotes mitochondrial biogenesis and fatty acid

oxidation (FAO) in T cells and increases the accumulation and

activation of CD8+ T cells within tumors (83). In a lung carcinoma

xenograft model, bezafibrate also enhanced the antitumor effects of

PD-1 blockade (83). EnPGC-1, a DNA-based epigenetic activator

that induces targeted expression of PGC-1a/b, enhances the

mitochondrial activation, energy metabolism, and proliferation of

CD8+ T cells in vitro. In a mouse model, EnPGC-1 synergizes with

PD-1 blockade, leading to enhanced tumor inhibition (84). In

summary, research into mitochondria-targeting drugs suggests

that these agents can provide synergistic effects when combined

with immunotherapy, making them promising candidates for

clinical use. However, further investigation is needed to fully

understand the underlying mechanisms and optimize their

efficacy in clinical settings.
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6 Conclusion

Despite the emergence of immunotherapy as a new strategy to

treat cancer, some cancers are non-responsive to this treatment.

Immune checkpoint inhibitors help the immune system recognize

and attack cancer cells, but their effectiveness may be limited when

used alone due to cancer’s immune evasion mechanisms (85, 86).

Even cancer cells that respond to immune checkpoint inhibitors

have been reported to develop resistance to immune checkpoint

inhibitors over time (87, 88). Mitochondrial-targeted drugs can be

used in combination with the treatment to regulate cellular energy

metabolism and inhibit the survival and proliferation of cancer

cells, thereby reducing the number of cancer cells and creating an

environment in which immune cells can function more effectively

(65). In addition, changes in the tumor microenvironment can

promote the infiltration and activation of immune cells (89).

This is expected to further increase the effectiveness of immune

checkpoint inhibitors.

Numerous studies already have demonstrated that mitochondrial

regulation plays a crucial role in cancer immunity and that

mitochondria-targeting drugs enhance the efficiency of

immunotherapy. Therefore, targeting mitochondria has the potential

to restore and boost immune cell function within the TME and

synergistically increase the effectiveness of immunotherapy.

However, although many mitochondria-targeting drugs are

currently in clinical trial, the primary focus is not directly connected

to immunotherapy. In addition, the molecular mechanisms by which

mitochondria-targeting drugs enhance the effectiveness of

immunotherapy are not yet well understood. Therefore, further

research is required to elucidate these mechanisms and their

potential as immunotherapy adjuvants.
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