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Poultry immunoglobulin genes undergo diversification through homologous

recombination (HR) and somatic hypermutation (SHM). Most animals share a

similar system in immunoglobulin diversification, with the rare exception that

human and murine immunoglobulin genes diversify through V(D)J

recombination. Poultry possesses only one functional variable gene for each

immunoglobulin heavy (HC) and light chains (LC), with clusters of non-

productive pseudogenes upstream. During the B cell development, the

functional variable gene is overwritten by sequences from the pseudo-variable

genes via a process known as gene conversion (GC), a kind of HR. Point

mutations caused in the functional variable gene also contribute to

immunoglobulin diversification. This review discusses the latest findings on the

molecular mechanisms of antibody gene diversification in poultry, using chickens

as a model. Additionally, it will outline how these basic research findings have

recently been applied especially in the medical field.
KEYWORDS

gene conversion, somatic hypermutation, homologous recombination, DNA damage
tolerance, monoclonal antibody, therapeutic antibody
1 Introduction

The diversificationmechanism of chicken immunoglobulin genes by GC was first identified

in the 1980s through analysis of B cells derived from chicken bursa, which is an organ where

hematopoiesis occurs. In human and murine immune system, it is well-known that

immunoglobulin genes are diversified by V(D)J recombination, a site-specific recombination

catalyzed by RAG 1/2 complex, which recognizes the signal sequence of V(D)J recombination

(1). However, chicken immunoglobulin genes are predominantly diversified through HR (2–4).

The structure of chicken immunoglobulin locus is described in Figure 1A. For the l LC

(chicken has only l chain), there is only one functional variable (IgVl) and one junctional

(IgJl) gene, with 25 pseudogenes (yVls) located upstream (2). Although these pseudogenes
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show homology to the functional IgVl, none of them are

productive. For example, they lack promoter and complete signal

sequences for VJ recombination, and some pseudogenes have

truncated 5’ or 3’ ends (2). During B cell development, VJ

recombination occurs only once, contributing little to the

diversification of LC genes since there are single functional IgVl

and IgJl gene each. However, GC occurs between the functional
Frontiers in Immunology 02
IgVl and yVls. In this process, partial sequences of pseudogenes are

‘copied’ and ‘pasted’ onto the functional IgVl by HR. Interestingly,

GC is a unidirectional event where IgVl sequences are altered, but

pseudogene sequences remain unchanged. Regarding the HC locus,

it also contains only one functional V gene (IgVH) and J gene (IgJH),

but there are multiple (reported to be 16) diversity (IgDH) genes

most of which are highly homologous with each other (3, 5). Similar
FIGURE 1

Chicken immunoglobulin locus and the mechanism of GC and SHM. (A) Genomic structure of chicken immunoglobulin LC and HC loci. (B-F)
Schematically represented IgVl diversification mechanism in DT40 cell line. (B) Deamination of cytidine followed by the action by UNG generates
abasic site (AP) and replicative DNA polymerase stalls at AP site. (C, D) Template is switched to one of the yVls, resulting HR mediated GC (C) or
TLS-mediated SHM (D) events. (E) DNA replication assigns A to U generating dC/dG to dT/dA mutation. (F) TLS assigns G to abasic site, generating
dC/dG to dG/dC mutation.
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to the LC, there is a cluster of pseudo V genes (yVHs) upstream of

functional IgVH, showing homology to the functional IgVH genes.

The exact number of yVHs is still not clear, with currently more

than 80 HC pseudogene sequences from Red Junglefowl uploaded

to the IMGT database (https://www.imgt.org). After VDJ

recombination, GC also occurs between functional IgVH and

pseudogenes, similar to LC. During B cell development, multiple

rounds of GC generate primary diversity of immunoglobulin HC

and LC loci. Diversification of immunoglobulin genes by GC is not

limited to avian immune system; rabbits, cattle, swine, and horses

also use GC to generate their immunoglobulin repertoire (6).

Numerous significant studies have been conducted to clarify the

mechanisms of avian immunoglobulin diversification described

above. Additionally, the elucidation of the molecular mechanisms

of avian immunoglobulin diversification has not only deepened our

understanding of immune system evolution but also holds promise

for the biotechnological sector. These mechanisms can be harnessed

in technologies for molecular evolution to acquire proteins with

enhanced activities. For example, platform technologies have been

developed for the in vitro generation and optimization of antigen-

specific clones. Beyond their use as reagents, antibodies are also

utilized as diagnostic and therapeutic tools. This underscores the

significance of basic studies on avian immunoglobulin diversification.
2 Mechanism of IgV diversification

2.1 DT40 cell line

DT40 is a B cell line derived from the bursa of a chicken infected

with avian leukosis virus (7). Interestingly, it was discovered that

GC occurs continuously in the functional IgVl of DT40 cells, albeit

at a frequency much lower than in vivo. Further studies have also

revealed that the frequency of targeted integration in this cell line is

extremely high (8). The targeted integration rate is generally more

than 50%, but varies depending on the targeting constructs or

chromatin structure of the recipient locus. Leveraging these

features, DT40 has been utilized as a tool for reverse genetics in

various fields, including DNA repair, immunology, and

chromosome structure. Notably, it has been instrumental in

elucidat ing the mechanisms of GC and SHM at the

immunoglobulin locus. Another distinctive feature of DT40 cells

is their ability to express both membrane-bound and secreted types

of IgM through alternative splicing. Moreover, DT40 cells exhibit

exceptionally rapid growth as cultured cells, with a doubling time of

about 8 hours, which facilitates various experiments.
2.2 Molecular mechanism of
IgV diversification

The mechanism of IgVl diversification has been extensively

analyzed in chicken DT40 cells for understanding molecular

mechanisms of DNA damage tolerance (DDT) system comprised of

HR and translesion synthesis (TLS) (9). The IgVl diversification is

initiated by DNA replication fork arrest at the DNA damage on the
Frontiers in Immunology 03
template strand induced by activation-induced deaminase (AID) (10).

AID induces the deamination of cytosine, thereby changing this base to

uracil, which is removed by uracil-DNA glycosylase (UNG), an enzyme

acting in the base excision repair (BER) pathway and becomes an

abasic site (DNA damage without base) (11) (Figure 1B). In DNA

replication, replicative polymerases d and e possessing extraordinarily
high accuracy are believed not to be able to replicate across such abasic

sites (12), and this DNA replication stalling triggers replication bypass

either by HR-mediated template switching (leading to GC) or

mutagenic TLS (leading to SHM) (Figures 1B−D). These IgVl

diversification events are most likely the consequence of the

replication bypass across abasic sites, rather than the replication

through dU as evidenced by the fact that most mutations are dC/dG

to dG/dC transversions and loss of UNG instead leads to replication

over the dU, resulting in dC/dG to dT/dA transitions (13) (Figures 1E,

F). GC occurs between the IgVl locus and 25 copies of upstream-yVl

segments carrying ~10% mismatch and thereby diversifies the IgVl

gene (10, 14, 15) (Figure 1C). Meanwhile, mutagenic TLS induces

hypermutations at C/G nucleotides to diversify the IgV gene (14, 16)

(Figure 1D). Using DT40 cell line, many studies have assessed the

contribution of factors to HR-mediated template switch and TLS via

analyzing IgVl diversification mechanisms. This chapter aims to

discuss the latest findings on the DDT mechanisms involved in the

IgVl diversification in DT40 cells.

In the IgV gene diversification, GC is mediated through HR, as

evidenced by the fact that deletion of all upstream yVl segments

(homologous template for GC) completely abolishes GC and

augments SHM (17). This observation also demonstrates that

both GC and SHM are initiated from a common DNA lesion

mediated by AID. This view is further supported by the observation

that GC is also critically reduced but SHM is stimulated by the loss

of Rad51 paralogs such as XRCC2/3, BRCA1, or BRCA2, all of

which play critical roles in the recruitment of the Rad51 on DNA

strands to activate HR (18–20). By sharped contrast, the loss of

Rad54 or FANCD2, factors related to strand exchange in HR (21,

22), reduces GC without affecting the rate of SHM, suggesting that

these factors contribute to GC after the strand exchange step in HR

when the commitment towards GC has been made (23, 24). The

polymerases involved in TLS might be used in the replication

process of GC, since the concurrent loss of polymerase h, n, and
q completely abolishes GC with a slight reduction of SHM (10).

Conversely, several mutant cell lines show augmented GC. The loss

of ASCIZ, a factor involved in the DNA base damage response (25),

results in a marked increase in the rate of GC. These results suggest

that this factor represses GC but induces BER of the abasic site (25).

The loss of PolD4, the fourth subunit of polymerase d, also increases
the rate of GC. Because the concurrent loss of both PolD4 and

ASCIZ has additive effects on GC and results in the drastic

augmentation (~10 times increase) of GC rate, these two factors

might play roles independently in the suppression of GC (26). The

mechanism of how these factors repress GC has not been clarified.

The bypass replication by error-prone TLS polymerases causes

non-templated SHM at the abacic site induced by the sequential

action of AID and UNG (14, 16) (Figure 1B). Studies in budding

yeast revealed that ubiquitination of PCNA at lysine 164 induces

recruitment of TLS polymerases such as Polh to the sites of
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perturbed replication on the damaged template (27). The role of

PCNA ubiquitination in IgV diversification was examined in yVl
-

DT40 cells in which all the upstream yVl genes are removed and

GC events are diminished (17). The PCNA-K164R/yVl
- cells

showed impaired PCNA ubiquitination and exhibited

hypersensitivity to a wide variety of DNA-damaging agents.

Moreover, SHM at IgVl gene was critically reduced in this cell

line. These results indicate a critical role of PCNA ubiquitination on

the cellular tolerance to DNA damaging agents as well as IgVl gene

SHM probably through inducing TLS. Rad18, an E3-ligase involved

in the PCNA ubiquitination identified in yeast is conserved in

eukaryotic cells (28, 29), and the deletion of the homologous gene

for Rad18 in DT40 results in the augmented cellular sensitivity to

DNA damaging agents and reduced IgV gene SHM (30). More

importantly, RAD18-/-/PCNA-K164R double mutant cells

essentially show the same phenotype to PCNA-K164R mutant

cells (30), indicating an epistatic relationship between PCNA-

K164 and RAD18-/-. These results indicate that Rad18-mediated

PCNA ubiquitination is required for TLS-mediated SHM events

and other E3-ligase(s) serve as a backup for Rad18. RAD18-/-/

PCNA-K164R cells showed a reduction of dG:dC to dC:dG

transversion, and a similar shift of mutation spectrum was also

observed in REV1-/- cells (30). Moreover, the deoxytransferase

activity of REV1 is required for IgVl gene SHM but is

dispensable for the cellular tolerance to DNA damaging agents

(31). Taken together, these results suggest that the transferase

activity of REV1 incorporates dC opposite to the abasic site under

the regulation of PCNA ubiquitination by Rad18. POLh-/-/POLz-/-

cells also exhibited reduced dG:dC to dC:dG mutation and

augmented dG:dC to dA:dT mutation and totally this cell line

showed a similar SHM rate compared with wild-type cells (16),

suggesting that the absence of both Polh and Polz is compensated

by the action of other polymerase(s) possessing activity to

incorporate dA opposite to abasic site such as Pold (32). This

view was supported by the observations that the loss of PolD3 (the

third subunit of Pold) reduces SHM but increases GC, and the loss

of PolD3 in POLh-/-/POLz-/- has a lethal effect (14, 33). Moreover,

both the SHM deficiency of POLD3-/- cells and lethality of

POLD3-/-/POLh-/-/POLz-/- cells were rescued by the inactivation

of proofreading exonuclease activity of Pold (33). These results

indicate that Pold can contribute to SHM in parallel to Polh −Polz
axis, where PolD3 suppresses exonuclease-mediated excision of

incorporated nucleotide opposite to the abasic site, thereby

promoting SHM. The hypothesis that ‘Pold can contribute to

TLS-mediated SHM’ is totally unexpected, since the conventional

dogma is that Pold cannot bypass the damaged template and arrests.

Other TLS polymerases, such as Poln and Polq might also

contribute to the promotion of SHM, since the inactivation of

Poln and Polq in POLh-/- cells significantly reduces SHM (10).
2.3 Regulation of GC by
chromosome structure

It has also become evident that chromosomal structure plays a

regulatory role on GC in immunoglobulin loci. Relaxed chromatin
Frontiers in Immunology 04
is known to be associated with high levels of histone acetylation and

increased transcriptional activity (34). Similarly, processes such as

chromatin remodeling and histone hyperacetylation occur prior to

the initiation of meiotic recombination, which is a form of HR (35–

37). It is suggested that GC at chicken immunoglobulin loci is

regulated in a comparable manner. In fact, treating DT40 cells with

trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor,

significantly enhances GC frequency, accompanied by increased

histone acetylation status in the functional IgVs (15). Moreover,

knocking out the HDAC2 gene in DT40 cells also increases GC

frequency (38, 39). These results suggest that treatments with TSA

or HDAC2 knockout relax the chromosomal structure of the

immunoglobulin locus, likely enhancing the accessibility of DNA

to various related factors mentioned above. Additionally, modifying

DT40 cells to enable the binding of heterochromatin factor HP1—a

factor necessary for heterochromatin formation—to their

pseudogene region resulted in decreased histone acetylation levels

nearby, which reduced GC frequency and increased SHM

frequency. This reduction is probably attributable to the

suppression of the pseudogene region by HP1, which in turn

makes this region less efficiently utilized as a template for GC

(40). This suggests that the chromosomal structure of not only the

functional IgVl but also the pseudogene region, which serves as a

donor, is crucial for effective GC. DNA methylation is also one of

the key mechanisms of epigenetic regulation (41). DT40 cells

knocked out of TET3 (a member of Ten-eleven translocation

family deoxygenase), which facilitates DNA demethylation show a

marked reduction in GC activity at Ig locus (42). Depletion of TET3

in DT40 cells leads to hypermethylation in some pseudogenes,

suggesting that TET3 is involved in the maintaining of their

hypomethylation, thereby enabling these pseudogenes to serve as

templates for GC.
3 Industrial application of GC and
SHM using avian cells

3.1 Application of GC in avian cells

As outlined above, significant progress has beenmade over the past

30 years in elucidating themolecularmechanisms of GC. Concurrently,

there is an increasing trend in applying these basic research findings

industrially, particularly concerning immunoglobulin gene

rearrangement mechanisms in poultry. Antibody generation is a

prime field where studies on GC have been effectively applied.

Various in vitro antibody-generation methods, including phage and

yeast display, have been developed to address the challenge of

generating antibodies against evolutionarily conserved antigens,

which often exhibit low immunogenicity (43, 44). As a novel in vitro

method based on DT40 cells, a technology was developed that utilizes

the enhancement of GC by TSA treatment for the antigen-specific

antibody generation. Chicken IgM-presenting cell-based libraries are

constructed by treating DT40 cells with TSA, then antigen-specific

antibody-producing cells can be isolated using methods such as

antigen-conjugated magnetic beads (Figures 2A, B). The rapid
frontiersin.org
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proliferation of DT40 cells and their capability to secrete IgM enable

this autonomously diversifying library (ADLib) selection system to

examine the antigen-specificities using culture supernatants or IgMs

presented on the cell surface within approximately 10 days after

selection (15, 45–47). To date, multiple antibodies with biologically

functional activities obtained through the ADLib system have been

reported (48–50), and several ADLib-derived antibodies have been
Frontiers in Immunology 05
approved as diagnostic drugs (LUMIPULSE G25-OH Vitamin D,

LUMIPULSE Presto Aldosterone, and LUMIPULSE Presto iTACT

Tacrolimus, from Fujirebio Inc.) (51). Besides the ADLib system,

several laboratories have reported methods for the de novo

generation of antigen-specific chicken IgM using DT40 cells (52–54).

The use of antibodies in the pharmaceutical field is expanding.

Especially as therapeutics, the first antibody drug, an anti-CD3
FIGURE 2

Application of GC and SHM using DT40 cells. (A) Principle of the ADLib system. DT40 cells are cultured with TSA to generate diversified cell-based
mAb libraries. Antigen-specific clones can be isolated by, for example, antigen-coated magnetic beads. The isolated cells are expanded, and the
antigen-specific monoclonal antibodies are recovered in culture supernatants. (B) Flowchart of the process for ADLib selection. The selection can be
conducted using various methods, including antigen-conjugated magnetic beads and fluorescent cell sorting (FACS), among others. Validation of
the antibodies can be performed using a range of methods including enzyme-linked immunosorbent assay (ELISA), FACS and other suitable
methods. (C) Replacement and insertion of chicken immunoglobulin LC (upper) components (open rectangles) into human counterparts (green
rectangles). The endogenous chicken pseudogenes are replaced with designed pseudogenes. Replacement of the chicken immunoglobulin HC
(lower) components (open rectangles) with their human counterparts (blue rectangles). Designed pseudogenes are inserted downstream of the
chicken pseudogene cluster. (D) Molecular evolution of GFP using DT40 cells. The GFP gene is introduced into immunoglobulin LC locus of DT40
cells and SHM accumulates (left panel). The diversified cells are analyzed by FACS assessing forward scatter (FSC) and GFP fluorescence. Cells with
mutant GFP showing enhanced fluorescence are isolated. (E) Introduction of scFv gene to chicken immunoglobulin LC locus. Since scFv does not
show homology to chicken yVls, SHM occurred at introduced scFv gene.
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antibody, was approved by the FDA in 1986 (55), and since then,

therapeutic antibodies have been developed for various diseases,

including cancer, autoimmune disorders and infectious diseases (56,

57). When monoclonal antibodies derived from non-human animals

are administered to humans, they can induce immunogenicity, thus

necessitating a process known as humanization (58). Humanization

involves altering the amino acid sequences of non-human animal

derived antibodies to increase their similarity to human antibodies

(58), a laborious process that can sometimes alter the affinities or

specificities of the antibodies. Since the antibodies produced by DT40

cells are chicken IgMs, antibodies obtained using the original ADLib

system require humanization. To address this challenge, DT40 cells

have been engineered where chicken immunoglobulin gene exons are

replaced with human counterparts, and designed human variable gene

sequences are inserted upstream as pseudogenes, constructing a cell-

based library to isolate human IgG1 antibodies (human ADLib

system) (Figure 2C) (59). The human ADLib system retains the

simplicity and rapidity of the original ADLib system while enabling

the production of human antibodies. In terms of human antibody

generation, a method utilizing transgenic chickens has also been

developed (60). Before this technology, transgenic animals including

mice, rats, and rabbits were used to generate human monoclonal

antibodies. However, as these animals are mammals which are

phylogenetically related to humans, the range of candidate epitopes

against human proteins is limited due to immunological tolerance.

The advantage of chicken-based methods is the evolutionary distance

between humans and chickens, which potentially offers a broader

range of epitope candidates. In these transgenic chickens, the

functional IgVs of both HC and LC are replaced with human

counterparts, and designed human pseudogenes are inserted

upstream of these functional IgVs. While the endogenous chicken

LC constant region is replaced with that of humans, the HC constant

region remains unaltered, allowing for immune responses against

antigens in chicken. This transgenic chicken (OmniChicken) has

successfully been used to generate human antibodies against human

antigens, facilitated by robust immune responses. However, it should

be noted that in both of the ADLib system and OmniChicken, SHM

also occurs in addition to GC in the IgVs. Since GC and SHM share

their mechanisms, they can occur simultaneously.
3.2 Application of SHM in avian cells

In addition to GC, technologies were developed for inducing

SHM in DT40 cells to facilitate rapid molecular evolution. By

utilizing the results that the DT40 cells knocked-out of XRCC2

accumulate SHM in immunoglobulin loci, a technology was

developed that generates antigen-specific antibodies and

maturates the affinity of them (61). They accumulated SHM in

functional IgVs of the clones with no specificity to the antigens, and

then sorted the clones with increased affinities to antigens. The

iterative culturing and sorting process generated clones that show

high affinity to the antigens. Other lab also reported the affinity

maturation using DT40 cells hemizygously knocked-out of XRCC3
Frontiers in Immunology 06
(62). Also, there have been successful instances where the GFP gene

was introduced into the immunoglobulin LC locus of DT40 cells,

and proteins with enhanced fluorescence intensity were obtained

after iterative diversification followed by sorting process

(Figure 2D) (63). In these experiments, the inserted GFP genes

are diversified by SHM due to their lack of homology to chicken

yVl. Among the cells harboring mutated GFP genes, some

exhibited higher fluorescence intensity. Sorting these cells resulted

in the acquisition of novel fluorescence proteins with fluorescence

intensities up to as much as threefold higher than that of the

parental GFP. This result, along with the finding from other lab

(64), shows that non-antibody proteins can be evolved using the

diversification mechanism of avian cells.

Besides, the method was developed for the affinity maturation of

the antibodies in single chain fragment variable (scFv) format, in

which V genes of HC and LC are linked as a single chain peptide

(65). The scFv format is frequently used in technologies such as

phage and yeast display, where the use of microorganisms, which

are not well-suited for expressing full length antibodies, necessitates

an alternative approach for full length antibody expression (43, 44).

The scFv genes were knocked-in into the immunoglobulin LC locus

of DT40 (Figure 2E). Since the introduced scFv antibodies are

human or murine antibodies, their nucleotide sequences are less

homologous to those of chicken pseudogenes, inducing SHM in

scFv genes. The clones with improved affinities are sorted by

staining with fluorescence labelled antigens followed by cell

sorting. Additionally, a method has been developed for the fast-

track affinity maturation of full-length antibodies, which involves

introducing exogenous antibody’s V genes such as those from

mouse hybridomas, into the IgVl and IgVH of DT40 cells and

inducing SHM (the ADLib KI-AMP system) (66). In the case of

recombinant antibodies in the format such as scFv or Fab etc,

further genetic engineering is required to reformat the isolated

affinity-matured clones to IgG molecules. However, since the

ADLib KI-AMP method facilitates the expression of complete LC

and HC proteins, it directly yields the affinity-matured full-length

IgGs. Consequently, the obtained antibodies can be easily used for

immunoassays. If the human or humanized V genes are used for the

ADLib KI-AMP, it can be the candidate of a therapeutic antibody.
4 Discussion

The studies on the unique mechanisms of GC and SHM in

poultry immunoglobulin genes have significantly advanced our

understanding of immunoglobulin diversification and its complex

molecular basis. Utilizing DT40 chicken cell line, researchers have

uncovered critical insights into these processes, illuminating

broader genomic metabolism including DNA recombination and

repair. Moreover, the basic studies on immunoglobulin gene

diversification in poultry have now reached a stage where it is

being applied in industrial and medical contexts. Future research is

expected to delve deeper into the molecular intricacies of GC and
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SHM, potentially uncovering new ways to leverage these processes

for broader biomedical applications.
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