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tumor angiogenesis
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Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University,
Zhengzhou, Henan, China
Previous studies have demonstrated that genetic alterations governing

epigenetic processes frequently drive tumor development and that

modifications in RNA may contribute to these alterations. In the 1970s,

researchers discovered that N6-methyladenosine (m6A) is the most prevalent

form of RNA modification in advanced eukaryotic messenger RNA (mRNA) and

noncoding RNA (ncRNA). This modification is involved in nearly all stages of the

RNA life cycle. M6A modification is regulated by enzymes known as m6A

methyltransferases (writers) and demethylases (erasers). Numerous studies

have indicated that m6A modification can impact cancer progression by

regulating cancer-related biological functions. Tumor angiogenesis, an

important and unregulated process, plays a pivotal role in tumor initiation,

growth, and metastasis. The interaction between m6A and ncRNAs is widely

recognized as a significant factor in proliferation and angiogenesis. Therefore,

this article provides a comprehensive review of the regulatory mechanisms

underlying m6A RNA modifications and ncRNAs in tumor angiogenesis, as well

as the latest advancements in molecular targeted therapy. The aim of this study is

to offer novel insights for clinical tumor therapy.
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1 Introduction

Tumor angiogenesis is an uncontrolled and persistent process that plays a crucial role in

tumor growth and metastasis (1). Unlike normal angiogenesis, which is regulated through

complex biological processes, tumor angiogenesis has abnormal characteristics, such as irregular

morphological structures, disorganized arrangements of endothelial cells, and unstable vascular

walls. These abnormalities result in a hypoxic state and the accumulation of metabolic waste

within the tumor while also providing nutrients and pathways for tumor cell proliferation and

metastasis (2). The regulation of tumor angiogenesis involves multiple signaling pathways and

molecular mechanisms (3). Recent studies have highlighted the significant regulatory roles of

m6A modifications and noncoding RNAs (ncRNAs) in this process.
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In recent years, an increasing number of studies have shown

that methylations play crucial roles in the regulation of tumor

angiogenesis (4, 5). Methylation is a process that involves the

addition of methyl groups to DNA or RNA molecules. This

modification can affect gene expression by altering chromatin

structure and binding sites for transcription regulatory factors. In

tumors, the patterns of methylations on DNA and RNA often

undergo changes, which are closely associated with tumor

progression, invasiveness, and patient prognosis (6–8).

M6A is a prevalent chemical modification observed in RNA

molecules (9). M6A modification involves the addition of a methyl

group to the adenine base of RNA molecules. This modification is

widely distributed among eukaryotes, including humans, mice, and

fruit flies. M6A modification is a dynamic process in which methyl

groups are added to RNA molecules by methyltransferases and

removed by demethylases (10). This modification can impact various

cellular processes, such as RNA stability (11–13), posttranscriptional

regulation (14, 15), translation (12, 16), and splicing (17–19) (Figure 1).

Importantly, m6A modification can directly or indirectly influence the

expression and function of factors related to tumor angiogenesis by

regulating the transcription levels, RNA stability, and translation

efficiency of key genes. For example, researchers have discovered that

m6A modification can enhance or inhibit the regulatory effects of

specific ncRNAs on crucial biological processes such as endothelial cell

proliferation, migration, and lumen formation. Currently, m6A is

increasingly recognized as a promising biomarker for cancer

detection and prevention because of its potential clinical value in

cancer research.
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NcRNAs encompass a group of RNA molecules that do not

possess protein-coding capabilities but instead serve as crucial

regulators within cells (20). Emerging research has highlighted the

significant role of ncRNAs in the regulation of tumor angiogenesis.

Specifically, certain ncRNAs interact with the mRNAs of genes

associated with angiogenesis, thereby modulating their stability and

posttranscriptional modification levels. These interactions ultimately

impact the process of tumor angiogenesis.

While studies have examined the regulatory roles of m6A

modifications and ncRNAs in tumor angiogenesis, our current

knowledge in this area remains limited. Therefore, further

investigations into the mechanisms underlying the interaction

between m6A modification and ncRNAs in the regulation of

tumor angiogenesis are crucial. Therefore, in this review, we

assess the regulatory effect of m6A on tumor angiogenesis and

provide a theoretical basis for the development of novel targeted

therapeutic strategies.
2 M6A, NcRNA and
tumor angiogenesis

2.1 M6A

M6A is composed of a ribose with a purine base and a methyl

group attached to the sixth nitrogen atom. It was not until 2012 that

the genome-wide distribution of m6A was elucidated, and m6A is one

of the most abundantmodifications in eukaryotic mRNAs (11, 21, 22).
FIGURE 1

Regulatory mechanism of m6A RNA methylation. M6A RNA methylation is a dynamic process that is governed primarily by three groups of proteins:
“writers,” “erasers,” and “readers.” “Writers” and “erasers” are located predominantly in the nucleus, whereas some “readers,” such as HNRNPs and
YTHDC1, also function in the nucleus. Other “readers,” including YTHDC2 and IGF2BP1/2/3, are found in both the cytoplasm and the nucleus,
whereas “readers”, such as YTHDF1/2/3, are exclusively present in the cytoplasm. These three groups of proteins collaboratively regulate the output,
stability, translation, and degradation of RNA.
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M6A is considered the most common, frequent, and conserved

internal modification, with an average of 1–2 m6A residues per 1000

nucleotides (23). M6A primarily occurs within the conserved motif

RRACH (R = G or A and H = A, C, or U), which tends to be found in

stop codons and 3′ untranslated regions (3′ UTRs) (24–27). The basic
process of m6Amodification involves the installation of methyl groups

by “writer” methyltransferases, removal by demethylases known as

“erasers,” and recognition by m6A-binding proteins called “readers,”

thereby regulating RNA metabolism (28–31). This is a dynamic

process (Figure 1). The m6A methyltransferase complex (MTC)

consists of methyltransferase-like 3 (METTL3) (32, 33), METTL14

(34), the METTL3 adaptor protein wilms tumor 1-associated protein

(WTAP) (35), and other associated proteins, including METTL7A/B

(36), METTL5 (37, 38), the METTL5-tRNA MTase subunit 11–2

(TRMT112) complex (39, 40), Vir-like m6A methyltransferase

associated protein (VIRMA/KIAA1429) (41, 42), RNA-binding

motif protein 15 (RBM15) (43, 44), METTL16 (45), zinc finger

CCCH domain-containing protein13 (ZC3H13) (46–48), CBLL1

(Cbl proto-oncogene like 1) (49), and zinc finger CCHC domain-

containing protein 4 (ZCCHC4) (50). METTL3 is a key protein in

this complex and was first identified as an S-adenosylmethionine-

binding protein with methyltransferase activity (33). As a

pseudomethyltransferase, METTL14 plays a crucial role in

facilitating complex formation and RNA binding. In vitro and in

vivo experiments have demonstrated that METTL3 and METTL14

form a heterodimer, and together, they catalyze m6A methylation,

while their individual components exhibit lower activity (51). WTAP

does not possess catalytic activity but can interact with METTL3 and

METTL14, thereby regulating m6A levels during RNA transcription

(34). Recently, METTL16 was shown to regulate splicing by targeting

pre-mRNAs and various ncRNAs (52). VIRMA is capable of binding

m6A with 3’UTRs, whereas ZC3H13 functions to induce the

translocation of the writer complex into the nucleus. Recent reports

have identified VIRMA and ZC3H13 as new components of the m6A

methyltransferase complex that regulate the selectivity of m6A site

modifications on mRNAs. These findings provide new insights into

the regulatory mechanisms of m6A occurrence (53, 54). Fat mass and

obesity-associated protein (FTO) was the first discovered m6A RNA

demethylase (55), capable of interacting with various RNA molecules,

including mRNA, snRNA, and tRNA. In vitro studies have shown that

FTO effectively oxidizes and demethylates m6A and N6,2’-O-

dimethyladenosine (m6Am) on RNA (56–58). However, despite its

significant demethylation activity on m6A in vitro, its regulatory role

on m6A under physiological conditions appears to be relatively

limited. Increasing evidence suggests that FTO primarily regulates

RNA function through the demethylation of m6Am (59). M6Am is

typically situated near the 5’ cap structure of mRNA (60), and its

demethylation is more prominent in the cytoplasm than in the

nucleus, likely due to the differential subcellular localization of FTO.

M6Am plays a critical role in regulating mRNA stability and

translation efficiency (61–64). Studies indicate that FTO

predominantly acts on m6Am within snRNA in the nucleus (65),

while in the cytoplasm, it preferentially demethylates m6A at the 5’ end

and within internal regions of mRNA (66). Notably, there is ongoing

debate regarding whether FTO’s role in m6A demethylation involves

reversible and dynamic regulation, underscoring the need for further
Frontiers in Immunology 03
in-depth research (59, 67). However, alkB homolog 5 (ALKBH5)

exhibits comparable demethylation activity to m6A and shows a

preference for consensus sequences (RRACH) that are consistent

with m6A (43). Silencing or overexpression of these factors leads to

an increase or decrease in m6A on mRNA, respectively. Knockout of

FTO or ALKBH5 results in an overall increase in m6A levels in human

cells. M6A readers interpret information on RNA methylations and

participate in downstream processes such as translation and

degradation of RNA. Different readers have distinct physiological

functions. The identified readers can be classified into three

categories: the first category includes readers with YTH domains

(68, 69); the second category consists of HNRNPs (70), which

possess the same RNA-binding domains (RBDs); and the third

category of readers includes those with KH domains, RNA

recognition motifs (RRMs), and arginine/glycine-rich (RGG)

domains (71–73). These readers can all bind to m6A-modified

mRNAs, including FMR1 and IGF2BP1-3. Interestingly, YTHDF1,

YTHDF2, and YTHDF3 are the principal members of the YTHDF

protein family (74, 75). Initial studies suggested that these proteins

specifically bind to m6A sites, with YTHDF1 enhancing translation,

YTHDF2 promoting mRNA degradation, and YTHDF3 both

enhancing translation and facilitating mRNA degradation (76, 77).

Additionally, YTHDF3 may have a potential role in regulating RNA

transport, particularly in neurons or related systems (78). However,

recent research has revealed that YTHDF1, YTHDF2, and YTHDF3

exhibit functional redundancy in regulating mRNA degradation (79).

The YTHDF protein family collaboratively binds to m6A-modified

sites to mediate this process, with all three proteins primarily

promoting the degradation of m6A-modified mRNAs rather than

directly enhancing translation (80). This finding prompts a

reassessment of the roles of YTHDF proteins in RNA metabolism

and may challenge our current understanding of m6A regulation (79,

81). The combined actions of writers, erasers, and readers form the

m6A modification system that regulates the biological functions and

metabolism of RNA (30, 63–65).
2.2 NcRNA

NcRNAs are pivotal regulators of gene expression that function

independently of protein translation. These RNAs include small

nuclear RNAs (snRNAs), small interfering RNAs (siRNAs),

microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and

circular RNAs (circRNAs) (82, 83). These ncRNAs exert their

regulatory effects through diverse mechanisms, such as

posttranscriptional regulation, transcriptional repression, and

chromatin remodeling (84). MiRNAs, which are typically 20–24

nucleotides in length, bind to the 3’ untranslated regions of target

mRNAs, leading to mRNA degradation or translational inhibition,

and are implicated in the pathogenesis of diseases, including cancer

and cardiovascular disorders (85, 86). LncRNAs, which are typically

longer than 200 nucleotides, regulate gene expression through

multiple mechanisms. At the genomic level, lncRNAs modulate

gene expression via classical pathways such as transcription,

posttranscriptional mRNA processing, turnover, and translation.

At the epigenomic level, lncRNAs further fine-tune genomic control
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1453774
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


YuYan and Yuan 10.3389/fimmu.2024.1453774
by altering chromatin architecture and modifying the chemical

properties of DNA and RNA. Additionally, lncRNAs transcend

genomic and epigenomic regulation, adding an extra dimension of

control by influencing both transcriptional and posttranscriptional

processes (87). As a result, lncRNAs play pivotal roles in cellular

development, tissue-specific gene expression, and the progression of

various diseases (87, 88). CircRNAs, distinguished by their

covalently closed loop structures, exhibit high stability and act as

miRNA sponges, thereby modulating the activity of miRNAs and

potentially regulating transcription factors (89, 90). Dysregulation

of these ncRNAs is associated with a range of biological processes

and diseases, highlighting their critical roles in gene regulatory

networks and their potential as targets for therapeutic intervention.
2.3 Tumor angiogenesis

In the 1970s, Folkman proposed a hypothesis that was different

from traditional theories, the tumor angiogenesis theory (91), which

suggests that tumor growth depends on the formation of new blood

vessels (92–94). He also first described the potential prospects of

antiangiogenic cancer therapy. Tumor angiogenesis refers to the

process of forming a new network of blood vessels during tumor

growth. Under normal circumstances, angiogenesis is a highly

regulated process that maintains the normal physiological

function of tissues. However, in tumors, abnormal angiogenesis is

a key process involved in tumor growth and metastasis. Tumor cells

require a sufficient blood supply to obtain oxygen and nutrients,

which are essential for their rapid proliferation and growth.

Therefore, as the tumor volume increases, the existing blood

vessels in the surrounding tissue are unable to meet its demands

(95). To address this issue, tumor cells release a series of

proangiogenic factors, such as vascular endothelial growth factor

(VEGF) (96) and basic fibroblast growth factor (bFGF) (97), which

stimulate the activation of endothelial cells in the surrounding

tissue. Activated endothelial cells degrade the surrounding matrix

by releasing enzyme substances such as metalloproteinases and

proteases and migrating toward the tumor area. This process

involves the regulation of multiple growth factors and signaling

pathways, such as VEGF/vascular endothelial growth factor

receptor (VEGFR) (98, 99), fibroblast growth factor (FGF)/

fibroblast growth factor receptor (FGFR), Notch, and

phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB; also

known as AKT) (100). The newly formed vascular structure needs

to be stabilized through interactions with the extracellular matrix

and other supportive cells in the surrounding tissue. This includes

the recruitment of vascular smooth muscle cells and deposition of

the extracellular matrix. Tumor cells can also recruit other types of

cells, such as endothelial progenitor cells, stromal cells, and immune

cells, by releasing chemokines. These cells can participate in the

process of angiogenesis and provide support and regulation. During

tumor angiogenesis, newly formed blood vessels often exhibit

abnormal permeability, leading to the leakage of fluid and

proteins into the surrounding tissue. This provides the tumor

with increased nutrients and oxygen and creates a pathway for

tumor metastasis.
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In conclusion, the dynamic regulation of m6A modifications is

significantly correlated with gene expression, and disruptions in the

balance maintained by writers, erasers, and readers often lead to

pathological conditions, ultimately resulting in tumorigenesis (17,

101). M6A is a widely occurring modification of both mRNAs and

ncRNAs that participates in RNA splicing, translation, and stability

regulation and influences the function of specific ncRNAs through

epigenetic mechanisms (102). Research has demonstrated that the

regulation of ncRNAs by m6A plays a crucial role in tumor initiation,

metastasis, and angiogenesis (103–105). A substantial body of

evidence indicates that ncRNAs mediate interactions between

RNAs and between RNAs and proteins, regulating specific

biological functions and thereby affecting cellular processes and

contributing to tumor development and progression. Moreover,

m6A and ncRNAs may exhibit synergistic effects in cancer therapy,

with their regulatory mechanisms offering significant potential for

clinical applications (106–108). In recent years, m6A has emerged as a

promising biomarker for cancer detection and prevention, with its

clinical potential in oncology becoming increasingly apparent.

However, further in-depth research is necessary to elucidate the

specific mechanisms and applications of m6A modifications in

tumors (109–111). This research is expected to provide novel

targeted strategies for cancer treatment and a theoretical

foundation for the development of new anticancer therapeutics.
3 Direct and indirect effects of m6A on
tumor angiogenesis

3.1 Direct regulation of m6A in
tumor angiogenesis

3.1.1 Writers act on tumor angiogenesis
RNA methylation is closely associated with tumor angiogenesis.

As one of the core components of m6A modification, METTL3 plays

a crucial role in m6A modification and has been identified as an

oncogenic target in some hematological malignancies and solid

tumors (112, 113). Currently, studies have elucidated the role of

METTL3 in promoting cell proliferation and angiogenesis, and its

role in promoting tumor cell proliferation and angiogenesis has been

confirmed through a series of experiments. METTL3 plays a dual role

in normal and leukemic myeloid cells by driving the translation of

key genes to maintain acute myeloid leukemia (AML) cell

proliferation and undifferentiation. Inhibition of METTL3 induces

differentiation and apoptosis, presenting a viable therapeutic strategy

(114). Experimental data indicate that in gastric cancer (GC),

METTL3 promotes tumor angiogenesis and carcinogenesis by

reducing the expression of ADAMTS9 (115). In myeloid leukemia

and lung cancer (LC), inhibiting METTL3 has been shown to be a

promising therapeutic strategy in the future (114, 116). Recent studies

have also demonstrated that METTL3-mediated m6A modification

can activate the PI3K/AKT/mammalian target of rapamycin (mTOR)

pathway in ovarian cancer (OC) (117) and retinoblastoma (Rb) (118).

These pathways play important roles in regulating protein synthesis,

cell growth, and protein synthesis related to angiogenesis. They play

crucial regulatory roles in tumor angiogenesis. Research has
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confirmed that in bladder cancer (BCa), METTL3 also regulates the

PI3K/AKT pathway, which is involved in tumor angiogenesis (119).

Moreover, METTL3-mediated m6A modification is essential for the

activation of tie-2 receptor tyrosine kinase (TEK)/vascular endothelial

growth Factor A (VEGFA)-mediated BCa progression and

angiogenesis. In colorectal cancer (CRC), METTL3 upregulates

plasminogen activator urokinase (PLAU) mRNA in a m6A-

dependent manner and participates in the mitogen-activated

protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)

pathway to promote tumor angiogenesis and metastasis (120). In

head and neck squamous cell carcinoma and other types of tumor

cells, interleukin-8 (IL-8) and VEGF are coexpressed and promote

tumor growth, invasion, and angiogenesis (121). The MAPK/ERK

pathway can regulate tumor angiogenesis by upregulating or

downregulating the synthesis of IL-8 and VEGF. Research on

glioblastoma (GBM) has revealed that METTL3 enhances the

stability of BUD13 mRNA through m6A methylation (122).

BUD13 overexpression enhances the stability of CDK12 mRNA

and increases its expression. Subsequently, CDK12 phosphorylates

MBNL1, ultimately promoting the proliferation, migration, invasion,

and vasculogenic mimicry (VM) of GBM. The METTL3-induced

transcription factor interferon regulatory Factor 5 (IRF5) promotes

proliferation, migration, invasion, and angiogenesis in cervical cancer

(CC) cells by upregulating the protein phosphatase 6 catalytic subunit

(PPP6C) (123). In addition, as another important component of the

m6A MTC, METTL14 also plays a role in malignant tumors (124–

127). Studies have shown that m6A modification of TRAF1, which is

dependent onMETTL14, promotes sorafenib resistance by regulating

apoptosis and angiogenesis pathways (128). Interestingly, in tongue

squamous cell carcinoma (TSCC), METTL14 reduces the stability of

basic leucine zipper ATF-like transcription Factor 2 (BATF2)

through m6A modification, thereby promoting TSCC proliferation,

migration, invasion, and angiogenesis (129).

In summary, the m6A writers METTL3 and METTL14 play

important roles in the occurrence and development of tumors by

regulating specific targets or pathways that affect tumor

angiogenesis. These studies may provide new possibilities for the

clinical treatment of tumors (Table 1).

3.1.2 Readers act on tumor angiogenesis
Currently, an increasing number of studies have focused on the

regulatory roles of m6A readers, such as insulin-like growth Factor 2

mRNA-binding protein 2 (IGF2BP2), IGF2BP3, YTH N6-

methyladenosine RNA-binding protein 1 (YTHDF1), YTHDF2,

and YTHDF3, in tumor occurrence, development, and

angiogenesis. Research has shown that m6A readers play important

roles in tumors such as CRC, GC, and BC brain metastasis. In CRC,

METTL3 can promote CRC metastasis and progression via m6A-

modified IGF2BP2 (134). Another study has shown that in CC, the

m6A reader IGF2BP3 recognizes and binds to the m6A modification

site on VEGF mRNA, promoting its stability and expression (135).

VEGF is a vascular growth factor secreted by tumor cells or

lymphocytes and has been shown to be a major factor in tumor

angiogenesis. In studies of lung adenocarcinoma (LUAD), IGF2BP2
Frontiers in Immunology 05
is transferred from LUAD cells to endothelial cells via exosomes. This

transfer enhances the stability of FLT4 RNA, leading to the activation

of the PI3K−Akt signaling pathway, which subsequently promotes

angiogenesis and metastasis in cancer cells (136). IGF2BP2 is

markedly overexpressed in AML and modulates crucial genes such

as MYC, GPT2, and SLC1A5 through a m6A-dependent mechanism,

thereby playing a pivotal role in glutamine metabolism and

contributing to the pathogenesis and progression of AML (137).

Therefore, IGF2BP3 can promote angiogenesis in CC cells by

regulating VEGF. Experimental data have shown that the m6A

reader IGF2BP3 binds to the m6A site on hepatoma-derived

growth factor (HDGF) mRNA, maintaining its stability and

promoting the secretion of HDGF (138), thereby promoting

angiogenesis in GC tumors. IGF2BP3 also interacts with hypoxia-

inducible factor-1a (HIF1a) and regulates the migration and

angiogenesis of GC cells. YTHDF2 is one of the most efficient m6A

readers and recognizes and distributes mRNAs containing m6A to

processing bodies, thereby destabilizing the mRNA. Studies have

shown that the overexpression of YTHDF2 in hepatocellular

carcinoma (HCC) can inhibit tumor cell growth, whereas the

knockout of the YTHDF2 gene promotes angiogenic sprouting in

human umbilical vein endothelial cells (HUVECs). Silencing

YTHDF2 can also promote tumor growth and metastasis in mouse

models, and the key targets of YTHDF2 in HCC inflammation have

been identified as IL11 and SERPINE2 (139). YTHDF3 expression is

increased in BC brain metastases and is directly associated with

reduced survival rates in BC patients without brain metastasis (140).

It promotes the interaction between BC cells and brain endothelial

cells and astrocytes, facilitating extravasation across the blood−brain

barrier, angiogenesis, and growth.

In conclusion, the specific mechanisms of action of m6A readers

in tumors are receiving increasing attention. Research has shown

that m6A readers such as IGF2BP2, IGF2BP3, YTHDF2, and

YTHDF3 are involved in tumor angiogenesis, further influencing

the occurrence and development of tumors and potentially affecting

the prognosis of patients with tumors to some extent (Table 1).

3.1.3 Erasers act on tumor angiogenesis
To date, the demethylases discovered for m6A include mainly

FTO and ALKBH5 (141, 142). The dynamic reversibility of RNA

methylation is closely related to this process. However, relatively few

studies have investigated the regulatory mechanisms of FTO and

ALKBH5 in tumor development and angiogenesis. In pancreatic

cancer (PC), ALKBH5 can regulate the tumor microenvironment,

and its loss reduces the infiltration of CD8+ T cells in PC.

Additionally, ALKBH5 can inhibit the motility of PCs by

demethylating the lncRNA KCNK15-AS1 (143). In CRC, circ3823

is involved in the regulation of tumor cell growth, metastasis, and

angiogenesis through the miR-30c-5p/TCF7 axis. The degradation

rate of circ3823 may be regulated by the m6A recognition protein

YTHDF3 and the demethylase ALKBH5. Therefore, ALKBH5 can

indirectly regulate the expression of circ3823 to control the growth,

metastasis, and angiogenesis of CRC (144). Research has shown that

METTL14/ALKBH5 affects tumor growth and progression by
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1453774
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


YuYan and Yuan 10.3389/fimmu.2024.1453774
TABLE 1 The regulatory role of key m6A members in tumor angiogenesis.

M6A
Regulator

Cancer type Role Functional classification Mechanism References

Writer

METTL3 GC Oncogene Promoting tumor growth in vivo Regulating its target, ADAMTS9 (98)

GC Oncogene
Enhancing glycolysis and promoting
angiogenesis contribute to the occurrence
and metastasis of GC

Promotes the progression of GC
through the METTL3/HDGF/GLUT4/
ENO2 axis

(130)

OC Oncogene
Regulation of protein synthesis related to
angiogenesis and cell growth

Activating the PI3K/AKT/mTOR
pathway and phosphorylates related
genes such as S6K1 and 4E-BP1

(101)

Rb Oncogene
Enhancing the proliferation, migration, and
invasion of Rb cells while reducing
cell apoptosis

Activating the PI3K/AKT/
mTOR pathway

(102)

BCa Oncogene
Promoting the angiogenesis of BCa
peripheral blood vessels is associated with
cancer progression

Activating the PI3K/AKT pathway
and TEK/VEGF-A

(103)

CRC Oncogene
Promoting tumor angiogenesis
and metastasis

Upregulating PLAU mRNA promotes
CRC cell angiogenesis through the
PLAU/MAPK/ERK pathway

(104)

HNSCC Oncogene
Promoting the proliferation, migration,
invasion, and angiogenesis of HNSCC cells

Regulating CDC25B mRNA (105)

GBM Oncogene
Promoting the proliferation, migration,
invasion, and vasculogenic mimicry of
GBM cells

High expression of BUD13 enhances
the expression of CDK12, and CDK12
phosphorylates MBNL1

(106)

CC Oncogene
Promotes tumor cell migration, invasion,
and angiogenesis

Stabilizes IRF5 RNA, thereby
upregulating PPP6C expression

(107)

METTL14 RCC Oncogene
Promoting angiogenesis and metastasis
of RCC

Upregulating the expression
of TRAF1

(112)

TSCC Oncogene
Promotes cell proliferation, migration,
invasion, and angiogenesis in TSCC

Inhibits BATF2 expression (113)

WTAP CRC Oncogene
Promotes CRC progression
and angiogenesis

Mediated by YTHDC1, activates the
MAPK signaling pathway, increasing
VEGFA expression

(131)

Eraser

FTO AML Oncogene
Inhibiting ATRA-induced differentiation of
AML cells

Regulating the expression of targets
such as ASB2, RARA

(125)

ICC
Tumor

suppressor

Inhibiting non-adherent growth and
migration of ICC cells and reducing FTO
expression endogenously in vitro can
decrease apoptosis of ICC cells

Regulating the RNA stability of target
genes to control their expression, such
as TEAD2

(126)

CRC Oncogene
Promotes colorectal cancer cell growth,
metastasis, and angiogenesis

Stabilizes ZNF687 expression,
activating the Wnt/b-catenin
signaling pathway

(132)

Reader

YTHDF2

HCC

Tumor
suppressor

Inhibiting the proliferation, apoptosis, and
angiogenesis of HCC cells

Inhibiting the overexpression of IL-11
and SERPINE2 promotes
inflammation and vascular
remodeling in HCC

(119)

Oncogene
Promotes HCC cell immune evasion
and angiogenesis

Recruits eIF3b to promote ETV5
translation, increasing PD-L1 and
VEGFA expression

(133)

(Continued)
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regulating key cell cycle- and angiogenesis-related transcripts. In

addition, the RNA-binding proteins HuR, METTL14/ALKBH5,

and their target genes form a feedback loop, regulating each other’s

expression in cancer cells and participating in the regulation of tumor

occurrence and metabolism. Research has shown that METTL14/

ALKBH5 affects tumor growth and progression by regulating key cell

cycle- and angiogenesis-related transcripts. In addition, the RNA-

binding proteins HuR and METTL14/ALKBH5 and their target

genes form a feedback loop, regulating each other’s expression in

cancer cells and participating in the regulation of tumor occurrence

and metabolism (29). The FTO protein, which is associated with

adiposity and obesity, can decrease the concentration of m6A in

mRNA transcripts, thereby regulating the expression of target genes

such as ASB2 and RARA. It inhibits ATRA-induced differentiation of

AML cells and promotes the development of leukemia. Additionally,

the FTO/m6A/myelocytomatosis oncogene (MYC)/(CCAAT/

enhancer binding protein a) (CEBPA) signaling pathway plays a

crucial role in leukemia (145). In patients with intrahepatic

cholangiocarcinoma (ICC), the expression level of FTO is lower

(146). Patients with low FTO expression are more likely to be CD34

positive (indicating microvessel density), suggesting that

the expression of FTO may regulate tumor angiogenesis.

However, further research is needed to elucidate the specific

mechanism involved.

In summary, m6A demethylases interact with m6A writers and

readers, influencing the process of m6A methylation and

participating in the regulation of tumor angiogenesis. Therefore,

m6A demethylases have the potential to become precise regulatory

targets for tumor angiogenesis, playing a role in promoting or

inhibiting tumor growth (Table 1).
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3.2 Indirect effects of m6A on tumor
angiogenesis: interactions with ncRNAs

3.2.1 MiRNAs and m6A in tumor angiogenesis
MiRNAs are a class of evolutionarily conserved noncoding small

RNAmolecules with lengths of approximately 20–24 nucleotides that

play a role in regulating gene expression. Many studies have shown

that miRNAs exert their biological functions by regulating the

translation process of downstream genes (147). In tumors such as

LC, endometrial cancer (EC), and BC, miRNAs regulate the

expression of genes related to angiogenesis to influence tumor

growth and metastasis. For example, in LC, miR-320b suppresses

angiogenesis and tumor growth by downregulating the expression of

IGF2BP2 and thymidine kinase 1 (TK1) (148). In LC, METTL3

promotes the maturation of miR-143-3p through methylation and

targets vasohibin-1 (VASH1) to inhibit its expression, thereby

affecting angiogenesis (149). In breast cancer (BC) brain metastasis,

YTHDF3 enriches transcripts associated with metastasis and

promotes the interaction between tumor cells and other cells in the

tumor microenvironment, facilitating angiogenesis and metastasis

(140). In CRC, overexpression of METTL3 leads to the methylation

of pri-miR-1246 and promotes its maturation, which is positively

correlated with tumor metastasis (150). These findings indicate that

miRNAs play crucial roles in tumor angiogenesis and metastasis,

further elucidating the regulatory mechanisms of miRNAs in tumor

initiation and progression (Figure 2).

In conclusion, with in-depth research on m6A modification and

miRNA regulatory mechanisms, we expect to discover more

important mechanisms of mutual regulation between m6A

modification and miRNAs in cancer initiation and progression.
TABLE 1 Continued

M6A
Regulator

Cancer type Role Functional classification Mechanism References

Reader

YTHDF3 BC Oncogene

Promoting the interaction between cancer
cells and brain endothelial cells and
astrocytes, permeation across the blood-
brain barrier, angiogenesis, and growth

Acting on specific targets, such as
ST6GALNAC5, GJA1, EGFR,
and VEGFA

(120)

IGF2BP2 CRC Oncogene
Promoting the metastatic progression
of CRC

Regulating the progression of CRC
through interaction with METTL3

(105)

LUAD Oncogene
Promotes angiogenesis and metastasis
in LUAD

Enhances FLT4 mRNA stability,
activating the PI3K-Akt
signaling pathway

(116)

IGF2BP3 Colon caner Oncogene Promoting angiogenesis in CRC cells
Recognizing and binding to VEGF
mRNA, stabilizing and promoting
its expression

(117)

GC Oncogene Promoting angiogenesis in GC
Binding to the m6A site on HDGF
mRNA, stabilizing its expression, and
promoting HDGF secretion

(118)

GC Oncogene
Inhibiting hypoxia-induced migration and
angiogenesis of GC cells

Directly binding to the specific m6A
site in the coding region of HIF1a
mRNA in GC cells, positively
regulating the expression of HIF1a

(108)
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These findings will contribute to a better understanding of the

biological characteristics of tumors and provide new targets and

insights for the development of novel anticancer treatment

strategies (Table 2).
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3.2.2 LncRNAs and m6A in tumor angiogenesis
LncRNAs are ncRNA molecules that are longer than 200

nucleotides (152). Research has shown that lncRNAs play crucial

regulatory roles in various biological processes, including cell
FIGURE 2

Regulatory roles of m6A in tumor angiogenesis and development—direct and indirect mechanisms. The direct regulation of m6A involves METTLs,
ALKBHs, YTHDFs, IGF2BPs, YTHDCs and FTO, which influence specific targets and cellular signaling pathways, thereby modulating tumor
angiogenesis and cancer progression. Indirect regulation of m6A occurs through interactions between the three main components of its “life cycle”
and ncRNAs (including miRNAs, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs)), collectively mediating tumor cell proliferation,
migration, angiogenesis, and immune evasion. These mechanisms play crucial roles in various tumors, profoundly impacting tumor biology. In the
figure, red indicates inhibitory effects, whereas black indicates promoting effects. (Created with MedPeer (www.medpeer.cn)).
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proliferation (153, 154), differentiation, apoptosis (155), migration,

and invasion (156). LncRNAs can form complementary double-

stranded structures with the transcripts of protein-coding genes,

interfere with mRNA splicing, regulate protein activity, and serve as

precursor molecules for small RNAs such as miRNAs and piRNAs

(157). Therefore, lncRNAs play important roles in regulating gene

expression (151, 158). In tumors such as BC, CC, and CRC, different

lncRNAs are involved in tumor initiation and progression through

various mechanisms. For example, in BC, the lncRNA TDRG1

promotes the proliferation, invasion, and metastasis of BC cells

through the miR-214-5p/recombinant chloride intracellular

channel protein 4 (CLIC4) axis (159). LNC942 regulates

METTL14-mediated m6A methylation to promote BC cell

proliferation and progression (160). LINC00958, which is

controlled by METTL3, promotes the occurrence of BC through

the regulation of the miR-378a-3p/YY1 axis (161). Research has

confirmed that the lncRNA GAS5-AS1 can initiate ALKBH5-
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dependent m6A demethylation in CC, thereby inhibiting the

proliferation, migration, and invasion of CC cells (162). The

evidence indicates that the lncRNA DGUOK-AS1 is markedly

overexpressed in non-small cell lung cancer (NSCLC) tissues and

cells. It facilitates NSCLC cell proliferation, migration, invasion, and

angiogenesis by increasing the stability of transient receptor

potential melastatin 7 (TRPM7) mRNA through METTL3-

mediated and IGF2BP2-mediated modifications (163). In

addition, the m6A reader YTHDF3 promotes the progression of

CRC by facilitating the degradation of the m6A-modified lncRNA

GAS5-AS1. Notably, the lncRNA HNF1A-AS1 facilitates the

progression of the CRC cell cycle by upregulating CyclinD1

(CCND1) and inhibiting programmed cell death 4 (PDCD4).

HNF1A-AS1 stabilizes CCND1 mRNA through its interaction

with IGF2BP2, a process further enhanced by METTL3-mediated

m6A modification. Additionally, HNF1A-AS1 competes with miR-

93-5p, leading to increased CCND1 expression. This upregulation
TABLE 2 NcRNAs and m6A modifications are involved in the regulatory mechanisms of tumor angiogenesis.

M6A
regulator

NcRNA Cancer Biological function and mechanism References

Writer

METTL3 MiR-143-3p LC
The miR-143-3p/VASH1 axis may be mediated by METTL3 in an m6A-dependent
manner by activating the ability of VEGFA to express and facilitate tube formation

(129)

Pri-miR-1246 CRC
Overexpression of m6A writer METTL3 methylated pri-miR-1246, further promoted
the maturation of pri-miR-1246, and was positively correlated with tumor metastasis

(134)

LINC00958 BC
LINC00958 is controlled by METTL3 and promotes the occurrence of BC by
regulating the miR-378a-3p/YY1 axis

(145)

LncRNA
DGUOK-AS1

NSCLC
Enhancement of TRPM7 mRNA stability through METTL3 and IGF2BP2
modifications promotes cell proliferation, migration, invasion, and angiogenesis

(147)

METTL14 LNC942 BC
LNC942 promotes BC cell proliferation and progression by regulating METTL4-
mediated m6A methylation

(144)

Eraser

ALKBH5
LncRNA

KCNK15-AS1
PC

ALKBH5 reduces infiltration of CD8+ T cells in PC, and ALKBH5 can inhibit PC
movement by demethylating lncRNA KCNK15-AS1

(123)

LncRNA
GAS5-AS1

CC
LncRNA GAS5-AS1 initiates ALKBH5-dependent m6A demethylation in CC, thereby
inhibiting the proliferation, migration and invasion of CC cells

(146)

Circ3823 CRC
Circ3823 promotes CRC growth, metastasis and angiogenesis through the circ3823/
miR-30c-5p/TCF7 axis; the degradation rate of circ3823 is regulated by the m6A
recognition protein YTHDF3 and the demethylase ALKBH5

(124)

Reader

IGF2BPs CircNFIX OC
Inhibiting miR-647 increases IL-6R expression, activates the JAK1/STAT3 signaling
pathway, upregulates PD-L1 expression, and promotes immune evasion and
angiogenesis in ovarian cancer cells

(149)

IGF2BP2 MiR-320b LC
Suppresses angiogenesis and tumor growth by downregulating IGF2BP2 and
TK1 expression

(129)

LncRNA
HNF1A-AS1

CRC
IGF2BP2 and METTL3 competitively bind miR-93-5p to promote CCND1 expression,
enhancing cancer cell proliferation, migration, and angiogenesis, while also inhibiting
PDCD4 to facilitate cell cycle progression

(148)

YTHDF2 CircPOLR2A cRCC
The m6A interpreter YTHDF2 can regulate the expression of circPOLR2A, which in
turn regulates tumor angiogenesis

(151)

YTHDC2
LncRNA

ZNRD1-AS1
LC

Inhibition of LC cell proliferation, migration, and angiogenesis via regulation of the
miR-942/TNS1 axis

(149)
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1453774
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


YuYan and Yuan 10.3389/fimmu.2024.1453774
promotes CRC cell proliferation, migration, and angiogenesis,

thereby driving tumor progression (164). Xiangrui Meng et al.

reported that m6A-mediated overexpression of LINC00857

promotes the progression and occurrence of PC through the

regulation of the mir-150-5p/E2F3 axis, which is closely

associated with PC growth and angiogenesis (143). The m6A

modification mediated by YTHDC2 enhances the stability of

ZNRD1-AS1. In turn, ZNRD1-AS1 suppresses the proliferation,

migration, and angiogenesis of LC cells by modulating the miR-942/

tensin 1 (TNS1) axis (165) (Figure 2).

In conclusion, these findings demonstrate the significant role of

lncRNAs in tumor initiation and progression, which are closely

associated with tumor growth, invasion, and angiogenesis. In recent

years, many m6A-modified lncRNAs have been discovered, and

they regulate gene expression and function through a complex

series of mechanisms. We believe that in the future, more m6A-

modified lncRNAs regulated by other mechanisms will be

discovered (Table 2).

3.2.3 CircRNAs and m6A in tumor angiogenesis
CircRNAs are a type of ncRNA that exist in organisms. They are

characterized by the absence of a 5’ cap and a 3’ poly(A) tail, instead

of forming a covalently closed loop structure (166). Most circRNAs

are generated through back-splicing of exons, whereas a small portion

is derived from introns. Due to their closed circular structure (167),

circRNAs are more stable than linear RNAs and are resistant to

degradation by exonucleases. Additionally, circRNAs exhibit species-

specific, tissue-specific, and time-specific expression patterns (168,

169). It also shares some sequence conservation (170) and can exert

regulatory functions at the transcriptional or posttranscriptional level

(171). Research has shown that the majority of circRNAs are

noncoding, but few can be translated into peptides. Currently,

circRNAs have been found to have functions such as acting as

miRNA sponges (172, 173), regulating protein binding and gene

transcription, and encoding peptides. Many studies have

demonstrated that circRNAs play important roles in the growth,

development, stress response, and disease progression of organisms.

In recent years, interest in the impact of m6A modification on

circRNAs in tumor initiation, invasion, and angiogenesis has

increased. For example, studies in clear cell kidney cancer (cRCC)

have shown that circPOLR2A can downregulate the protein level of

recombinant phosphatidylethanolamine binding protein 1 (PEBP1),

thereby activating the ERK signaling pathway. Activation of the ERK

pathway plays a crucial role in cancer angiogenesis. Therefore,

circPOLR2A, an oncogene in cRCC, accelerates the proliferation,

migration, invasion, and angiogenesis of cRCC while inhibiting

apoptosis (174). In addition, in CRC, circ3823 plays a significant

role in tumor growth, metastasis, and angiogenesis (144). Circ3823

can inhibit miR-30c-5p and promote the expression of downstream

targets MYC and CCND1, which further promotes CRC growth,

metastasis, and angiogenesis through the circ3823/miR-30c-5p/TCF7

axis. We also detected m6A modifications on circ3823. The

degradation rate of circ3823 is regulated by the m6A recognition

protein YTHDF3 and the demethylase ALKBH5. Therefore, precise

regulation of circ3823 by m6A modification is involved in tumor
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angiogenesis and contributes to tumor initiation and progression. In

OC, circNFIX, which is activated by IGF2BPs (IGF2BP1/2/3),

inhibits miR-647, resulting in the upregulation of IL-6R expression.

This upregulation subsequently triggers the activation of the JAK1/

STAT3 signaling pathway, leading to increased PD-L1 expression.

These molecular changes facilitate immune evasion and angiogenesis

in OC cells (165) (Figure 2).

In summary, precise regulation of circRNAs by m6A

modification plays a crucial role in cancer progression and may

provide new insights into tumor initiation, development, and

precision therapy. However, relatively few examples of the

regulation of circRNAs by m6A modification are currently

available, and further in-depth research on these modifications is

needed. We believe that in the future, more studies on the mutual

regulatory mechanisms between circRNAs and m6A modifications

will emerge (Table 2).
4 Clinical translational potential of
m6A modifications in oncology

4.1 Characterized m6A inhibitors

Given the important role of m6A regulatory proteins in various

diseases, small-molecule inhibitors or agonists that target

dysregulated m6A regulators may be promising candidates for

disease treatment, especially cancer therapy. METTL3, the most

extensively studied m6A methyltransferase to date, has attracted

considerable attention from researchers. In tumor cells, aberrant

expression and activity of METTL3 can lead to changes in m6A

modification levels, thereby influencing tumor initiation,

progression, and metastasis. Studies have shown that METTL3

inhibitors exhibit significant anticancer effects in various tumor

models. For example, STM2457 selectively inhibits METTL3

methyltransferase activity, reducing m6A levels in acute AML

cells, inhibiting their proliferation, and inducing apoptosis (175).

RSM3 interferes with METTL3’s catalytic activity, reducing m6A

modifications and showing antitumor potential in AML cell lines

(176). UZH1a, a specific inhibitor, significantly affects viral

replication and cell survival in EBV-positive Akata cells by

inhibiting METTL3 methyltransferase activity (177). This

discovery highlights METTL3 as a potential therapeutic target in

EBV-associated diseases such as nasopharyngeal carcinoma (NPC),

Hodgkin’s lymphoma, and GC, indicating the clinical application

prospects of UZH1a. Quercetin, a natural compound, inhibits

METTL3 activity, reduces m6A modifications, and, thus, inhibits

tumor cell proliferation and migration, providing new insights into

the development of natural product-based anticancer drugs (178).

YTHDF1 recognizes and binds to m6A-modified RNA,

regulating the translation of various cancer-related genes and

playing crucial roles in tumor initiation, progression, and

therapeutic resistance. Studies have shown that RUVBL1/2

interferes with the RNA binding activity of YTHDF1, reducing

the translation of cancer-related genes and inhibiting tumor cell

proliferation and invasion, demonstrating significant antitumor
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effects in CRC (179). IGF2BP2, another m6A reader protein, binds

to m6A-modified RNA, regulating its stability and translation. In

AML, IGF2BP2 regulates key targets in the glutamine metabolic

pathway (e.g., MYC, GPT1, and SLC5A6) in a m6A-dependent

manner, promoting the development and self-renewal of leukemia

stem/initiation cells. The small-molecule compound CWI1-2

inhibits IGF1BP2, showing promising antileukemic effects both in

vitro and in vivo (137). In T-cell acute lymphoblastic leukemia (T-

ALL), IGF2BP2 is highly expressed. Studies have confirmed that

JX5 can inhibit the binding of IGF2BP2 to NOTCH1, thereby

inactivating NOTCH1 signaling in T-ALL. However, the off-target

effects and toxicity of JX5 require further investigation (180).

ALKBH5 demethylates m6A modifications, maintaining the

stability of specific RNAs and regulating specific gene splicing

processes, thereby affecting cancer cell proliferation and

migration. Studies have shown that the imidazobenzoxazin-5-

thione MV1035 inhibits the catalytic activity of ALKBH5 by

competitively binding with 2-oxoglutarate (2OG), significantly

reducing the migration and invasiveness of the U87 GBM cell

line. ALKBH5, as a potential target for cancer therapy, holds

significant research value (181). IOX3, a small molecule inhibitor,

significantly inhibits the demethylation activity of ALKBH5 in vitro

(130). As an ALKBH5 inhibitor, the mechanisms of IOX3, which is

related to tumor angiogenesis, need further investigation to provide

new drug directions for cancer treatment. ALK-04, an effective

ALKBH5-specific inhibitor, has demonstrated good antitumor

potential in a B16 melanoma mouse model. Future research

should explore the application of ALK-04 in different cancer

types and investigate its combined effects with other therapies to

increase overall cancer treatment efficacy (182).

Since FTO is one of the most extensively studied regulatory

proteins involved in m6A modification, an in-depth understanding

of its dysregulation has facilitated the development of small-

molecule compounds that target it. Rhein, the first reported FTO

inhibitor, competitively blocks the recognition of m6A substrates by

FTO, but it lacks selectivity (183, 184). In a mouse GBM model,

MA2 binds to the active surface of FTO, inducing m6A methylation,

reducing GBM stem cell proliferation in vitro, and exerting good

antitumor effects (131, 185). FTO-04 and FTO-43 are effective

inhibitors of FTO. FTO-04 has been reported to impair the self-

renewal ability of GBM stem cells, thereby inhibiting tumor

progression (132). However, FTO-43 is a novel FTO inhibitor

with nanomolar potency and high selectivity. Compared with the

homologous m6A RNA demethylase ALKBH5, FTO-43 exhibits

remarkable selectivity and effectively inhibits the Wnt/PI3K-Akt

signaling pathway. Experimental results demonstrate that FTO-43

has potent antiproliferative effects in models of GBM, acute myeloid

leukemia, and GC, with efficacy comparable to that of the clinically

used chemotherapeutic agent 5-fluorouracil (5-FU) (186). As a

novel immunosuppressant, FTO-43 has significant potential to

greatly improve therapeutic outcomes in clinical applications. In

vitro experiments indicate that the FTO inhibitor CS1 significantly

inhibits cell proliferation and induces apoptosis in CRC-related cell

lines and that it can downregulate the Akt/mTOR signaling

pathway (187). The research team developed two FTO inhibitors,

FB23 and FB23-2, and used CRISPR-Cas9 gene editing to create
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stable FTO knockout (KO) AML cell lines to assess the efficacy of

these inhibitors. The results revealed that the antiproliferative effect

of FB23-2 was significantly reduced in FTO-KO cells compared

with wild-type cells, indicating that the mechanism of FB23-2

activity relies primarily on FTO inhibition. FB23-2 suppresses

AML cell proliferation and induces differentiation and apoptosis

by increasing m6A levels, demonstrating its potential as a

therapeutic strategy for AML. The CRISPR-Cas9-generated FTO-

KO model further validated FTO as a viable therapeutic target and

provided new insights into its role in AML pathogenesis (188).

Dac51 inhibits FTO-mediated tumor cell glycolytic activity,

enhancing CD8+ T-cell function and inhibiting solid tumor

growth (133). R-2-Hydroxyglutarate (R-2HG) attenuates aerobic

glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB axis,

thereby modulating disease progression. These findings underscore

the potential of potent FTO inhibitors as epigenetic modulators and

metabolic targets for therapeutic intervention in cancer treatment

(189). Recently, a successfully synthesized GSH bioimprinted

nanocomposite loaded with an FTO inhibitor (GNPIPP12MA)

was proven to inhibit leukemogenesis by targeting the FTO/m6A

pathway and synergizing with GSH depletion (190). Notably, in

addition to antitumor therapy, FTO inhibitors have also attracted

attention for other diseases. For example, entacapone has been

reported as a potential FTO inhibitor for the clinical treatment of

metabolic syndromes such as obesity and diabetes (191).

The biological study of m6Amodifications is at a critical stage of

translational application, urgently requiring the discovery and

development of chemical probes and active lead compounds. The

development of highly selective chemical inhibitors targeting m6A

writers, readers, and erasers has greatly advanced the understanding

of the biological functions of m6A and demonstrated its feasibility

as a therapeutic target. These findings lay the foundation for new

models in basic research and cancer therapy in the field of

RNA epigenetics.
4.2 Prospective m6A inhibitory targets:
emerging directions in clinical oncology

4.2.1 Digestive system cancers
4.2.1.1 Gastric cancer

GC is the fifth most common gastrointestinal malignancy and

the third leading cause of cancer-related death worldwide (192,

193). Due to the late diagnosis of most GC patients at an advanced

stage of malignant spread and metastasis, the prognosis for these

patients is generally poor. The dissemination and metastasis of

cancer involve various biological processes, such as cell growth,

migration, invasion, and angiogenesis. Therefore, there is an urgent

need to identify biomarkers for GC diagnosis and prognostic

evaluation, as well as therapeutic targets. A study involving in

vitro formation and CAM experiments revealed that METTL3

may inhibit the m6A modification of its target gene ADAMTS9

through the ADAMTS9-mediated PI3K/AKT pathway and prevent

its transcription in a YTHDF2-dependent manner. These findings

suggest that ADAMTS9 could be a novel potential therapeutic

target for the treatment of GC carcinogenesis and angiogenesis
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involving METTL3 (115). This study reveals the pathological role

and molecular mechanism of METTL3, further supporting its

potential as a prognostic biomarker and therapeutic target for

GC. Recently, Jiang et al. reported that knockout of the m6A

reader IGF2BP3 can inhibit hypoxia-induced GC cell migration

and angiogenesis by regulating HIF1a. Experimental results indicate

that HIF1a is a target of IGF2BP3 and that IGF2BP3 positively

regulates the expression of HIF1a in GC cells by directly binding to

specific m6A sites in the HIF1a mRNA coding sequence (CDS)

(138). Under hypoxic conditions, IGF2BP3 promotes angiogenesis

in GC cells by upregulating HIF1a. These findings may provide new

therapeutic targets for the clinical treatment and prognosis of GC.

Wang et al. reported that METTL3-mediated m6A modification

maintains the expression of HDGF through IGF2BP3-dependent

mRNA stability. Increased secretion of HDGF promotes tumor

angiogenesis and glycolysis, thereby accelerating the malignant

progression of GC and indicating a poor prognosis. These

findings reveal that the METTL3/HDGF/GLUT4/ENO2 axis

promotes the occurrence and metastasis of GC by enhancing

glycolysis and angiogenesis (194).

In conclusion, the development and progression of GC, as well

as angiogenesis, are intricately linked to m6A RNA methylation,

which is precisely regulated by m6A-associated proteins.

Nonetheless, a deeper investigation into inhibitors targeting m6A-

related proteins involved in the mechanistic pathways of GC is

warranted. These results will provide significant support for clinical

drug development.

4.2.1.2 Colorectal cancer

CRC is one of the most common malignant tumors in the

gastrointestinal tract (195). It often lacks obvious early symptoms

and is typically diagnosed in the middle to late stages of tumor

development. As a result, nearly one million people are diagnosed

with CRC each year, with a mortality rate of 33%, ranking it as the

second leading cause of cancer-related deaths. Clinical data show

that early detection, diagnosis, and treatment can lead to a 5-year

survival rate of 90% for CRC patients (196). However, for patients

with advanced metastasis, the 5-year survival rate decreases to only

8%. Therefore, it is crucial to study the targets involved in the

occurrence, treatment prognosis, and inhibition of angiogenesis in

CRC (197). Recent studies have revealed that METTL3 upregulates

PLAU mRNA in a manner dependent on m6A modification and is

involved in the MAPK/ERK pathway, promoting angiogenesis and

metastasis in CRC. Elevated expression of METTL3 in CRC tissues

has been associated with lower survival rates during cancer

metastasis (134). Furthermore, in describing the epigenetic

characteristics of CRC metastasis to the liver and lungs,

METTL14 promotes cancer cell proliferation and metastasis by

facilitating processes such as epithelial−mesenchymal transition

(EMT) and protein phosphorylation through downstream targets

such as the lncRNA RP11 and microRNAs (198). This significantly

enhances the ability of CRC to metastasize to distant organs, leading

to poor patient prognosis. WTAP modifies VEGFA mRNA through

m6A, which is mediated by YTHDC1 and activates the MAPK

signaling pathway. This process leads to increased VEGFA
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expression, promoting the progression and angiogenesis of CRC.

These findings suggest that m6A inhibitors could be used in clinical

treatments (199). In addition, it has been reported that the m6A

reader IGF2BP3 can regulate the cell cycle and angiogenesis in CRC

cells. Further research data suggest that IGF2BP3 inhibits the

expression of VEGF by reading and promoting the decay of m6A-

modified mRNAs, thereby suppressing angiogenesis in CC tumor

cells and inhibiting tumor growth (135). A research team reported

that, in CRC tissues and cell lines, FTO-mediated regulation of

ZNF687 promotes tumor growth, metastasis, and angiogenesis

through the Wnt/b-catenin pathway. The development of FTO

inhibitors offers a new perspective for potential CRC treatment

strategies (200).

As a result, in CRC, METTL3, METTL14, WTAP, IGF2BP3,

YTHDC1, and FTO orchestrate tumor angiogenesis through

diverse pathways and mechanisms, thereby affecting the

initiation, progression, and prognosis of CRC. Notably, the

writers, erasers, and readers of m6A collaboratively regulate CRC.

Hence, the future application of m6A inhibitors in CRC and the

equilibrium required for their use merit comprehensive

investigation and deeper exploration.

4.2.1.3 Hepatocellular carcinoma

HCC is a highly lethal primary liver cancer and one of the most

common malignant tumors worldwide (201). Angiogenesis plays a

crucial role in the growth and metastasis of HCC, making the

inhibition of angiogenesis an important therapeutic target for HCC

(202). Recent studies have shown that the m6A methyltransferase

METTL3 is significantly associated with the formation of VM and

the expression of VM-related markers and is closely related to poor

prognosis in HCC. Additionally, the YAP1 protein promotes VM

and malignant progression in HCC through a m6A-dependent

mechanism in the Hippo signaling pathway. Therefore, METTL3

and YAP1 may serve as potential targets for the targeted inhibition

of VM in the treatment of HCC (203). Recent research has

demonstrated that inhibiting YTHDF2 can suppress immune

evasion and angiogenesis in HCC through the ETS variant

transcription Factor 5 (ETV5)/PD-L1/VEGFA axis. These

findings indicate that targeting YTHDF2 may serve as an effective

therapeutic strategy for HCC, providing a promising new avenue

for combination treatments (204).

In summary, METTL3 and YTHDF2 may act as “oncogenes” in

HCC, facilitating tumor angiogenesis and malignant progression.

However, further rigorous research is needed to elucidate the

precise regulatory mechanisms of m6A modification in HCC.

These identified m6A-related proteins are pivotal targets for the

development of clinical m6A inhibitors.

4.2.2 Urinary system cancers
4.2.2.1 Renal cell carcinoma

Localized renal cell carcinoma can be treated with surgery,

whereas metastatic renal cancer is usually resistant to conventional

radiotherapy and chemotherapy (192, 205). In recent years, there

has been preliminary progress in inhibiting tumor development and

metastasis by targeting the angiogenesis of RCC with drugs (206). A
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study of RCC revealed that tumor necrosis factor receptor (TNFR)-

associated Factor 1 (TRAF1) is closely related to cancer cell

angiogenesis and apoptosis. The overexpression of TRAF1

significantly enhances angiogenesis, whereas the downregulation

of TRAF1 inhibits angiogenesis. The experimental results indicate

that m6A methyltransferase METTL14-mediated m6A modification

enhances the stability of TRAF1 mRNA and increases TRAF1 levels

through an IGF2BP2-dependent mechanism. The increased

expression of TRAF1 subsequently contributes to the activation of

downstream antiapoptotic and proangiogenic pathways in

sunitinib-resistant cells, thereby promoting angiogenesis and

metastasis in RCC. In sunitinib-resistant RCC cells, the

expression of TRAF1 can be effectively suppressed by regulating

METTL14, thereby inhibiting the angiogenesis signaling pathway

and activating the apoptosis signaling pathway (128). This approach

can effectively control the drug resistance and metastasis of cancer

cells in the clinical treatment of RCC (207).

In summary, current research has demonstrated that m6A

modification plays a pivotal role in the clinical treatment and

drug resistance of renal cell carcinoma (RCC), providing new

hope for patients. We anticipate that future discoveries of relevant

regulatory mechanisms and m6A-specific inhibitors will

significantly increase the effectiveness of targeted therapies in

overcoming drug resistance in RCC.

4.2.2.2 Bladder cancer

Currently, METTL3-catalyzed m6A RNA methylation is widely

recognized as a key epigenetic regulatory process for tumorigenic

characteristics in various cancer cell lines, including BCa. Kyoto

Encyclopedia of Genes and Genomes (KEGG) transcriptome

sequencing results revealed a close association between METTL3

and tumor angiogenesis. M6A modification mediated by METTL3

is essential for the activation of tumor progression and angiogenesis

mediated by TEK/VEGFA. In BCa, METTL3 regulates the PI3K/

AKT pathway associated with tumor angiogenesis and promotes

tumor angiogenesis by modulating TEK and VEGFA. METTL3

plays a crucial role in driving the progression of BCa by promoting

angiogenesis around tumor cells. It affects bladder malignancies

through the METTL3-TEK-VEGFA-CD31/CD34 pathway (119).

Overall, in the clinical treatment of BCa, targetingMETTL3 could

present novel therapeutic strategies to overcome chemotherapy and

immunotherapy resistance driven by tumor angiogenesis, thereby

improving the clinical outcomes of patients. The future development

of more precise and highly specific METTL3 inhibitors promises to

bring new hope to this patient population.

4.2.3 Epidermal cancers
4.2.3.1 Head and neck squamous cell carcinoma

Head and neck squamous cell carcinomas (HNSCCs) are a

group of malignant tumors that occur in the head and neck region

and account for approximately 90% of all head and neck tumors.

They include tumors in the neck, oral and maxillofacial region, and

otolaryngology (208, 209). Women are more susceptible to this

disease. HNSCCs rank eighth in terms of the global incidence of

malignant tumors and twelfth in terms of mortality. The 5-year
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survival rate is approximately 50%, and there has been no

significant improvement in the past 20 years. This may be

attributed to the late-stage detection of cancer and a lack of

effective therapeutic targets. A recent study revealed that

overexpression of METTL3 in HNSCC can promote cell

proliferation, migration, invasion, and angiogenesis. METTL3 can

mediate m6A modification of CDC25B mRNA, thereby promoting

the malignant progression of HNSCC (121).

In conclusion, METTL3 is a promising prognostic biomarker and

therapeutic target for HNSCC. This finding has the potential to address

the high mortality rate and the current paucity of effective therapeutic

targets in HNSCC. Consequently, comprehensive research into the

regulatory mechanisms of m6A modification in HNSCC and the

development of highly specific clinical inhibitors are crucial.
4.2.4 Female reproductive system cancers
4.2.4.1 Breast cancer

According to the latest data from the International Agency for

Research on Cancer (IARC) in 2018, BC has the highest incidence rate

among female cancers globally, accounting for 24.2% of all female

cancer cases. Among these cases, 52.9% occur in developing countries

(210). Although the expression and regulatory patterns of target genes

associated with BC have been widely reported, the posttranscriptional

regulatory mechanisms of gene expression during BC metastasis

remain unclear. This lack of understanding can have implications for

tumor treatment and prognosis. Recent studies have shown that the

reader protein YTHDF3, which is involved in the epigenetic regulation

process, plays a crucial role in BC and its brain metastasis. YTHDF3

enhances the translation of m6A-enriched transcripts such as

ST6GALNAC5, gap junction 1 (GJA1), and EGFR, promoting the

interaction between BC cells and brain endothelial cells and astrocytes.

This interaction leads to extravasation across the blood−brain barrier,

angiogenesis, and growth. YTHDF3-mediated m6A modification plays

a crucial role in the development of brain metastasis in BC, which relies

on the enhanced m6A methylation status and translation efficiency of

target transcripts (140).

Consequently, YTHDF3 plays a crucial role in angiogenesis

during the brain metastasis of BC. We believe that comprehensive

research on m6A modification may provide new evidence and novel

strategies for the clinical treatment and drug development of BC

metastasis in the future.

Taken together, the m6A methyltransferase METTL3 plays a

critical role in regulating tumor angiogenesis in various cancers,

including GC, CRC, liver cancer, BCa, and head and neck squamous

cell carcinoma. This regulation significantly impacts tumor initiation,

progression, invasion, and prognosis. Targeting METTL3 as a novel

therapeutic and prognostic marker and developing highly specific

inhibitors hold great promise for improving patient prevention,

treatment, and survival rates in future clinical applications for these

cancers. Notably, in renal cell carcinoma, METTL14 and IGF2BP2

collaboratively regulate tumor angiogenesis and metastasis while also

managing drug resistance in cancer cells during clinical treatment.

Consequently, we hypothesize that the development of METTL14-

targeted inhibitors could have a substantial impact on the clinical

management of renal cell carcinoma, paving the way for new
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therapeutic approaches. IGF2BP3 influences tumor angiogenesis by

modulating different targets in various digestive system cancers. For

example, in GC, IGF2BP3 enhances tumor angiogenesis and cell

migration by promoting HIF1A expression. In contrast, in CRC,

IGF2BP3 inhibits VEGF expression, thereby reducing tumor

angiogenesis. Thus, IGF2BP3 can be targeted in gastric cancer and

CRC cells to control tumor growth by inhibiting angiogenesis,

achieving clinical treatment objectives. Notably, YTHDF3 promotes

tumor angiogenesis in BC by facilitating the translation of m6A-

enriched transcripts such as ST6GALNAC5, GJA1, and EGFR.

Therefore, YTHDF3 has emerged as a potential therapeutic target

for controlling the development and metastasis of BC (Figure 3).
5 Conclusions and Prospective

M6A modification is pivotal in regulating gene expression and

extensively influences various cellular functions and disease

processes. By modulating posttranscriptional modifications and

RNA metabolism, m6A ultimately governs physiological and

pathological processes within the body. Additionally, m6A

interacts with histone methylation and acetylation, collaboratively
Frontiers in Immunology 14
regulating gene transcriptional activity and contributing to

heterochromatin formation, thereby affecting chromatin structure

and function to regulate gene expression. During tumorigenesis,

m6A modification facilitates angiogenesis by regulating the

expression of genes associated with tumor vascularization, thus

supplying essential nutrients and oxygen to the tumor and

accelerating its growth and metastasis. Recent studies suggest that

ncRNAs interact with m6A to jointly influence processes such as

tumor cell proliferation, migration, invasion, and angiogenesis.

Targeting these genes and pathways presents an opportunity for

developing m6A inhibitors for various cancers, potentially enabling

personalized therapies and enhancing clinical outcomes. This

discovery broadens the potential for targeting m6A as a novel

therapeutic target in cancer and provides substantial evidence for

the development of clinical anticancer drugs.

Despite the rapid progress in m6A research, several challenges

persist. Researchers are working to determine the overall abundance

of m6A in specific diseases, which will aid in disease diagnosis and

prognosis evaluation and reveal the underlying pathological

mechanisms involved. This information is vital for developing

novel therapeutic strategies and advancing personalized medicine.

Current studies have quantified the total m6A abundance in diseases
FIGURE 3

Effective targets of m6A inhibitors in clinical oncology therapy. METTL3 can serve as a clinical inhibitory target for a range of cancers, including
HNSCC, AML, GC, BC, CC, HCC, GBM, LC, CRC, and BCa. METTL14 can serve as a clinical inhibitory target for brain metastases of BC and CRC.
ALKBH5 can serve as a clinical inhibitory target for CC in females and for GBM, PC, CRC, and brain metastases of BC. FTO can serve as a clinical
inhibitory target for AML, GBM, CRC, and ICC. YTHDF2 can serve as a clinical inhibitory target for HCC and GC. YTHDF3 can serve as a clinical
inhibitory target for brain metastases of BC and CRC. IGF2BP2 can serve as a clinical inhibitory target for LC, AML, and CRC. IGF2BP3 can serve as a
clinical inhibitory target for CRC and GC. YTHDC2 can serve as a clinical inhibitory target for LC. (By Figdraw.).
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such as abdominal aortic aneurysm (211), diabetic cataracts (212),

NSCLC (213), HNSCC (214), and age-related cataracts (215), with

the aim of precisely understanding the role of m6A in these

conditions. However, there are currently no reports on the

quantification of m6A abundance, which is specifically related to

angiogenesis in particular tumors. Future research should focus on

investigating whether dynamic changes in m6A abundance occur

during tumor progression, whether the abundance and

modification patterns of m6A vary at different growth stages and

treatment phases, and whether these dynamic changes influence

tumor angiogenesis and treatment responses.

Numerous studies have demonstrated that m6Amethyltransferases

and demethylases play critical regulatory roles in the progression of

certain tumors. For instance, in AML, the m6A methyltransferase

METTL3 is crucial for the myeloid differentiation of both normal and

leukemic cells. Compared to healthy hematopoietic stem/progenitor

cells, METTL3 expression is significantly elevated in AML cells.

Inhibiting METTL3 in AML cells not only induces differentiation

but also increases apoptosis and slows the progression of leukemia.

This indicates that METTL3 is essential for maintaining the

undifferentiated state of leukemic cells (114). Additionally, research

by Zejuan Li et al. has shown that the m6A demethylase FTO plays a

key oncogenic role in AML. FTO is highly expressed in AML subtypes

carrying t(11q23)/MLL rearrangements, t (15, 17)/PML-RARA, FLT3-

ITD, and/or NPM1 mutations. FTO enhances leukemogenesis and

leukemia oncogene-mediated cell transformation by reducing m6A

levels on mRNA transcripts of targets such as ASB2 and RARA,

thereby regulating their expression and inhibiting all-trans retinoic acid

(ATRA)-induced differentiation of AML cells. Notably, this study also

found that FTO expression can be upregulated by certain oncogenic

proteins, such as MLL fusion proteins, PML-RARA, FLT3-ITD, and

NPM1 mutants, leading to abnormally high levels of FTO in these

AML subtypes. This abnormal upregulation typically does not directly

rely on m6A regulatory mechanisms (145). Taken together, a

noteworthy phenomenon worth deeper exploration is that in the

same tumor, m6A methyltransferases and demethylases may jointly

regulate tumor development and progression, potentially exerting

similar effects (either promoting or inhibiting). This phenomenon

could be attributed to multiple factors. On the one hand, tumor

development, cancer cell proliferation and migration, and

angiogenesis often involve a vast and complex regulatory network,

with multiple signaling pathways intertwined. Various components of

the m6A machinery may participate in the modification of multiple

genes and proteins, and while they may sometimes exhibit consistent

functions, their specific target genes and regulatory pathways may

differ, leading to this observed phenomenon. On the other hand, during

this process, m6A writers and erasers are not solely governed by the

m6A regulatory system. The human body is a complex organism with

multi-level regulatory mechanisms, where the abnormal expression of

certain oncogenes and proteins in the tumor microenvironment can

influence the expression of writers and erasers, subsequently

participating in regulation in an m6A-dependent manner. Therefore,

the precise mechanisms by which m6A influences tumor progression

and angiogenesis require more detailed and in-depth research to enable

its application in clinical settings, ultimately becoming an effective

therapeutic target to improve cancer patient survival rates.
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In the future, developing targeted inhibitor treatment strategies

for m6A in tumor angiogenesis will be crucial. In combination

therapy strategies, m6A modification can affect tumor sensitivity to

conventional therapies such as chemotherapy, radiotherapy, or

immunotherapy, potentially enhancing therapeutic efficacy and

reducing side effects. The levels of m6A modification and the

expression of related factors could serve as biomarkers for tumor

angiogenesis, aiding in the assessment of angiogenesis status,

predicting disease progression, and guiding the formulation of

individualized treatment plans. Further exploration of the specific

mechanisms of m6A modification in different tumor types,

particularly its impact on angiogenesis and the tumor

microenvironment, as well as clinical trials of m6A-targeted

drugs, is crucial. These trials should evaluate the efficacy, safety,

and potential side effects of these therapies in cancer treatment.

Personalized treatment strategies based on m6A modification hold

promise for improving the precision and effectiveness of therapies,

thereby enhancing the clinical outcomes of patients.
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Glossary
F

m6A
rontiers in Immunolog
N6-methyladenosine
mRNA
 messenger RNA
NcRNA
 Non-coding RNA
MTC
 m6A methyltransferase complex
FTO
 Fat Mass and Obesity-associated
siRNA
 Small interfering RNA
METTL3 /5 / 7A /7B /
14/16
Methyltransferase-like 3/5/7A/7B/14/16
TRMT112
 tRNA MTase subunit 11–2
WTAP
 the METTL3 adaptor protein wilms tumor 1-
associated protein
RBM15
 RNA-binding motif protein15
ZC3H13
 Zinc finger CCCH domain-containing protein13
CBLL1
 Cbl proto-oncogene like 1
ZCCHC4
 zinc finger CCHC domain-containing protein 4
YTHDC1/2
 YTH domain-containing 1/2
YTHDF1-3
 YTH N6-methyladenosine RNA-binding protein 1-3
ALKBH5
 AlkB homolog 5
VIRMA/KIAA1429
 Vir-like m6A methyltransferase associated protein
IGF2BP2/3
 Insulin-like growth factor 2 mRNA-binding protein 2/3
miRNA
 microRNA
piRNA
 PIWI-interacting RNA
circRNA
 Circular RNA
LncRNA
 long non-coding RNA
m6Am
 2’-O-dimethyladenosine
VEGF
 Vascular endothelial growth factor
bFGF
 basic fibroblast growth factor
VEGFR
 vascular endothelial growth factor receptor
FGF
 fibroblast growth factor
FGFR
 fibroblast growth factor receptor
PI3K
 phosphatidylinositol 3-kinase
PKB
 protein kinase B
IRF5
 interferon regulatory factor 5
PPP6C
 protein phosphatase 6 catalytic subunit
TSCC
 tongue squamous cell carcinoma
BATF2
 basic leucine zipper ATF-like transcription factor 2
LUAD
 lung adenocarcinoma
AML
 acute myeloid leukemia
GC
 gastric cancer
MTOR
 mammalian target of rapamycin
BCa
 bladder cancer
TEK
 tie-2 receptor tyrosine kinase
VEGFA
 vascular endothelial growth factor A
y 21
CRC
 colorectal cancer
CCND1
 CyclinD1
PDCD4
 programmed cell death 4
MAPK
 mitogen-activated protein kinases
GBM
 glioblastoma
ERK
 extracellular signal-regulated kinase
IL-8
 Interleukin-8
HDGF
 hepatoma-derived growth factor
HIF1a
 hypoxia-inducible factor-1a
HCC
 hepatocellular carcinoma
HUVECs
 human umbilical vein endothelial cells
PC
 pancreatic cancer
RARA
 retinoic acid receptor alpha
MYC
 myelocytomatosis oncogene
CEBPA
 enhancer binding protein a
ICC
 intrahepatic cholangiocarcinoma
OC
 ovarian cancer
CC
 cervical cancer
LC
 lung cancer
TNS1
 tensin 1
EC
 endometrial cancer
TK1
 thymidine kinase 1
VASH1
 Vasohibin-1
BC
 breast cancer
5-FU
 5-fluorouracil
KO
 knockout
R-2HG
 R-2-Hydroxyglutarate
CLIC4
 recombinant chloride intracellular channel protein 4
NSCLC
 non-small cell lung cancer
TRPM7
 transient receptor potential melastatin 7
RCC
 renal cell carcinoma
cRCC
 clear cell kidney cancer
PEBP1
 recombinant phosphatidylethanolamine binding
protein 1
PLAU
 plasminogen activator urokinase
EMT
 epithelial-mesenchymal transition
VM
 vasculogenic mimicry
ETV5
 ETS variant transcription factor 5
TRAF1
 Tumor Necrosis Factor Receptor (TNFR)-associated
factor 1
GJA1
 gap junction 1
IARC
 the International Agency for Research on Cancer
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