Skip to main content

ORIGINAL RESEARCH article

Front. Immunol.
Sec. Parasite Immunology
Volume 15 - 2024 | doi: 10.3389/fimmu.2024.1453742
This article is part of the Research Topic Helminthosis: Immuno-pathology and Anthelmintic Vaccines View all 4 articles

Moderate regular physical exercise can help in alleviating the systemic impact of schistosomiasis infection on brain cognitive function

Provisionally accepted
  • International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa

The final, formatted version of the article will be published soon.

    One of the major consequences of schistosomiasis is its impact on brain function, and despite its severity, the underlying mechanism(s) remain inadequately understood, highlighting a knowledge gap in the disease. The symptoms can vary from headaches to profound cognitive impairment. Besides, the potential influence of physical exercise in mitigating cognitive deficits has received little attention. In our study, we utilised a murine model of Schistosoma mansoni infection to investigate the cognitive impact of schistosomiasis. Our aims were multifaceted: to pinpoint the specific cognitive domains affected during the infection in adult mice, to unravel the complex interplay between glial and immune cells within the central nervous system (CNS), and crucially, to explore the potential therapeutic role of regular physical exercise in counteracting the deleterious effects of schistosomiasis on the CNS. Our findings unveiled that while acute infection did not disrupt simple and complex learning or spatial reference memory, it did induce significant deficits in recall memory-a critical aspect of cognitive function. Furthermore, our investigation unearthed profound alterations in the immune and glial cell populations within the CNS. Notably, we observed marked changes in CD4 + T cells and eosinophils in the meninges, as well as alterations in glial cell dynamics within the hippocampus and other brain regions. These alterations were characterized by heightened microglial activation, diminished astrocyte reactivity and a shift towards a proinflammatory milieu within the CNS. We also provided insights into the transformative potential of regular moderate physical exercise in partially alleviating cognitive and neuroinflammatory consequences of schistosomiasis. Remarkably, exercise decreased glial cell production of TNFα, suggesting a shift towards a less pro-inflammatory environment.Collectively, our study provided compelling evidence of the intricate interplay between schistosomiasis infection and cognitive function, underscoring the critical need for further exploration in this area. Furthermore, our findings demonstrated the positive effects of physical activities on mitigating the cognitive burden of schistosomiasis, offering new hope for patients afflicted by this debilitating disease.

    Keywords: Shistosomiasis, Morris water maze, Neuroinfection, Physical activities, Schistosom mansoni

    Received: 23 Jun 2024; Accepted: 02 Dec 2024.

    Copyright: © 2024 Berkiks, Abdel Aziz, Moses, Brombacher and Brombacher. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Inssaf Berkiks, International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.