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Identification and preliminary
validation of biomarkers
associated with mitochondrial
and programmed cell death
in pre-eclampsia
Rong Lin1,2†, XiaoYing Weng1,2†, Liang Lin1,2, XuYang Hu1,2,
ZhiYan Liu1,2, Jing Zheng1,2, FenFang Shen1,2* and Rui Li1,2*

1Medical Centre of Maternity and Child Health, Shengli Clinical Medical College of Fujian Medical
University, Fuzhou, Fujian, China, 2Fuzhou University Affiliated Provincial Hospital, Fuzhou,
Fujian, China
Background: The involvement of mitochondrial and programmed cell death

(mtPCD)–related genes in the pathogenesis of pre-eclampsia (PE) remains

inadequately characterized.

Methods: This study explores the role ofmtPCD genes in PE through bioinformatics

and experimental approaches. Differentially expressedmtPCD genes were identified

as potential biomarkers from the GSE10588 and GSE98224 datasets and

subsequently validated. Hub genes were determined using support vector

machine, least absolute shrinkage and selection operator, and Boruta based on

consistent expression profiles. Their performance was assessed through nomogram

and artificial neural network models. Biomarkers were subjected to localization,

functional annotation, regulatory network analysis, and drug prediction. Clinical

validation was conducted via real-time quantitative polymerase chain reaction

(RT-qPCR), immunofluorescence, and Western blot.

Results: Four genes [solute carrier family 25 member 5 (SLC25A5), acyl-CoA

synthetase family member 2 (ACSF2), mitochondrial fission factor (MFF), and

phorbol-12-myristate-13-acetate–induced protein 1 (PMAIP1)] were identified as

biomarkers distinguishing PE from normal controls. Functional analysis indicated

their involvement in various biological pathways. Immune analysis revealed

associations between biomarkers and immune cell activity. A regulatory network

was informed by biomarker expression and database predictions, in which

KCNQ1OT1 modulates ACSF2 expression via hsa-miR-200b-3p. Drug predictions,

including clodronic acid, were also proposed. Immunofluorescence, RT-qPCR, and

Western blot confirmed reduced expression of SLC25A5, MFF, and PMAIP1 in PE,

whereas ACSF2 was significantly upregulated.

Conclusion: These four mtPCD-related biomarkers may play a pivotal role in PE

pathogenesis, offering new perspectives on the disease’s diagnostic and

mechanistic pathways.
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1 Introduction

Pre-eclampsia (PE) is a distinct, progressive multisystem

disorder that typically arises after 20 weeks of gestation,

characterized by hypertension and proteinuria (1). It can lead to

complications such as fetal growth restriction, fetal distress, and

preterm birth, with severe cases resulting in stillbirth and neonatal

death (2). The global incidence of PE is approximately 5% to 8%

(3, 4), causing an estimated 75,000 maternal deaths and 500,000

neonatal deaths annually, making it the second leading cause of

maternal mortality. New-onset hypertension is a key diagnostic

criterion for PE (5). The condition is classified into early-onset PE,

which occurs before 34 weeks of gestation, and late-onset PE, which

occurs at or after 34 weeks (6). Although extensive studies have

linked PE pathogenesis to placental hypoxia and ischemia, oxidative

stress, inflammatory responses, angiogenesis, functional imbalance,

and immune dysregulation (7), the exact mechanisms remain

incompletely understood. Current management focuses on

controlling hypertension and monitoring maternal and fetal

health, with the only effective treatment being the termination of

pregnancy (8). However, premature termination increases the risks

associated with preterm birth, jeopardizing both maternal and fetal

health (9). Although soluble fms-like tyrosine kinase 1 (sFlt-1) and

placental growth factor (PlGF) have been explored as screening

markers for PE (10, 11), their predictive value remains suboptimal.

The sFlt-1/PlGF ratio rises significantly both prior to and during the

clinical onset of PE. While its negative predictive value is as high as

99%, its positive predictive value is limited to just 36.7%, indicating

its insufficient efficacy in predicting PE onset (12, 13). Furthermore,

variability in testing methods across laboratories compromises the

reliability and accuracy of the sFlt-1/PlGF ratio (14). Differences in

detection protocols can introduce measurement biases, affecting the

interpretation of the ratio. Moreover, by the time an elevated sFlt-1/

PlGF ratio is detected, most patients have already developed clinical

symptoms of PE, limiting its utility for early prediction and

intervention. Given these challenges, there is an urgent need to

identify novel biomarkers with high specificity and sensitivity that

could not only predict PE but also serve as potential therapeutic

targets for early intervention.

Two main forms of cell death—accidental cell death and

programmed cell death (PCD)—are recognized. PCD is the

primary mode of cell death, a vital physiological process that is

tightly regulated by multiple mechanisms and plays a pivotal role in

eliminating damaged or unnecessary cells to maintain tissue
Abbreviations: AKI, acute kidney injury; ACSF2, acyl-CoA synthetase family

member 2; ANN, artificial neural network; BP, Biological Process; BH3, BCL-2

homeodomain 3; CC, Cell Component; DE, differential genes; DEGs,

differentially expressed genes; DGI, drug–gene interaction; DRP 1, dynein-

related protein 1; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes

and Genomes; LASSO, least absolute shrinkage and selection operator; MFF,

mitochondrial fission; MRGs, mitochondrial-related genes; mtPCD,

mitochondrial and programmed cell death; PCD, programmed cell death;

PCDs, programmed cell death–related genes; PE, pathogenesis of pre-

eclampsia; PlGF, placental growth factor; PPI, protein–protein interaction; sFlt-

1, soluble fms-like tyrosine kinase 1; SVM, support vector machine.
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homeostasis (15). The term “programmed cell death” was coined

by Richard Lockshin and Carroll M. Williams in the 1960s (16) and

primarily refers to apoptosis, necroptosis, and pyroptosis. Other

forms include ferroptosis, cuproptosis, autophagy, endocytosis,

disulfidptosis, lysosomal cell death, and cytotoxicity (17). PCD is

implicated in numerous diseases, including cancer, cardiovascular

disorders, inflammation, and neurodegenerative diseases (18–20).

Recent research on the pathogenesis of PE has increasingly focused

on trophoblast programmed death. Trophoblast cell necrosis has

been shown to reduce cell viability; increase mortality; impair

migration, invasion, and tube formation; and promote cell fusion.

These alterations disrupt spiral artery remodeling, leading to

placental dysfunction and the progression of PE (21). Several

studies suggest that trophoblast PCD contributes to placental

insufficiency, which, in turn, causes PE (22–25). With advancing

research on PCD mechanisms, various drugs targeting these

pathways have been clinically developed, demonstrating

significant potential in cancer treatment. For instance, Venetoclax

(a BCL-2–specific inhibitor) and Navitoclax (inhibitors of BCL-2,

BCL-xL, and BCL-W) have shown promise in the treatment of

leukemia and lymphoma (26, 27). However, current research on PE

prediction and treatment has largely overlooked the detailed

exploration of trophoblast PCD. Despite significant progress in

understanding related mechanisms in cancer therapy, there remains

considerable opportunity for investigation in the context of PE.

Thus, a deeper study of PCDmay offer new insights and therapeutic

strategies for the prediction and treatment of PE.

Since the first description of PCD 60 years ago, numerous

studies have confirmed the involvement of mitochondria in PCD,

identifying them as key regulators in triggering this process.

Mitochondria are ubiquitous, double-membrane-bound organelles

that regulate cellular energy production, support cell activities,

modulate cellular metabolic pathways, which even mediate cell

fate decisions. They can participate directly or indirectly in PCD

through various mechanisms and pathways, influencing the onset

and progression of numerous human diseases. Mitochondria-

related PCD is extensively involved in the pathological

progression of diseases across different organ systems (28). An

observational study first reported in 1989 found a high prevalence

of PE in families with mitochondrial dysfunction (29). Since then,

mitochondrial dysfunction in the placenta has been demonstrated

in both pregnant women with PE and animal models of the

condition (30). Over the past 30 years, compelling evidence has

shown that abnormal mitochondrial function is a major contributor

to placental dysfunction, and it is well established that PE arises

from placental dysfunction, although the exact cause of PE remains

unclear. Mitochondrial dysregulation caused by placental hypoxia is

typically characterized by increased mitochondrial reactive oxygen

species (ROS), mitochondrial fission, mitophagy, and apoptosis,

along with reduced release of bioactive factors from the placenta.

These alterations lead to placental and vascular endothelial

dysfunction, ultimately driving the development of PE (31).

Furthermore, oxidative stress is a critical factor in this process. As

key organelles are responsible for intracellular energy supply,

mitochondria are highly vulnerable to functional damage, which

can disrupt energy metabolism (32). In PE, mitochondrial oxidative
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phosphorylation may be impaired, leading to reduced ATP

production (33). Additionally, maintaining metabolic turnover

balance is essential for immune cell function, and mitochondrial

dysfunction can disturb this balance, compromising immune cell

activity (34). Mitochondrial dysregulation and dysfunction induced

by placental hypoxia and oxidative stress play a pivotal role in the

pathogenesis of PE, from impairing placental and vascular

endothelial cell function to disrupting immune cell metabolism.

These changes highlight the critical need for in-depth research into

mitochondria-related mechanisms to fully understand the

pathogenesis of PE. Further exploration of the role of

mitochondria and PCD in PE is essential to better understand

their interaction in disease development, providing vital insights for

the development of new therapeutic strategies and diagnostic tools.

In conclusion, PCD and mitochondrial dysfunction play central

roles in the pathogenesis of PE. To further investigate the

intersection of these two factors, this study explored potential

molecular mechanisms associated with PE biomarkers using the

Gene Expression Omnibus (GEO) database (GSE10588 and

GSE98224). The study assessed the predictive efficacy of these

biomarkers for PE and proposed drug predictions, offering new

targets and strategies for the diagnosis and treatment of PE.

Additionally, real-time quantitative polymerase chain reaction

(RT-qPCR) validation was conducted to confirm the findings,

reinforcing the significance of the identified biomarkers and their

potential roles in PE.
2 Materials and methods

2.1 Data extraction

In this study, the GSE10588 dataset (35) and GSE98224 dataset

(36) were retrieved from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/). The GSE10588 dataset included 17

placental tissue samples from patients with PE and 26 placental

tissue samples from normal individuals, serving as the training set.

For validation, the GSE98224 dataset consisted of 30 placental tissue

samples from patients with PE and 18 placental tissue samples from

normal individuals, acting as the validation set. A total of 1,136

mitochondrial-related genes (MRGs) were obtained from the

MitoCarta 3.0 database, and 1,548 programmed cell death–related

genes (PCDs) were collected from the literature.
2.2 Identification of DE-mtPCDs

Differentially expressed genes (DEGs) in the GSE10588 dataset

were identified using the limma package (37) (v 3.56.2). The criteria

for defining DEGs were an adjusted p-value <0.05 and |log2 fold

change (log2FC)| >0.5. The DEGs were then intersected with MRGs

to obtain differentially expressed MRGs (DE-MRGs). Following

this, the DEGs were intersected with PCDs to identify differentially

expressed PCDs (DE-PCDs). Finally, the intersection of DE-MRGs
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and DE-PCDs was used to identify differentially expressed

mitochondrial PCD–related genes (DE-mtPCD).
2.3 Functional enrichment analysis of
DE-mtPCDs

To explore the potential roles of the DE-mtPCD, functional

enrichment analysis was conducted using the ClusterProfiler

package (38) (v 4.8.3), which included Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses. The DE-mtPCDs were subjected to both

GO and KEGG analyses, with a filtering criterion of p.adjust <0.05.
2.4 Protein–protein interaction analysis
and visualization of DE-mtPCDs

Protein–protein interaction (PPI) analysis was performed on

the DE-mtPCD by inputting the genes into the STRING database

(https://string-db.org/), using an interaction score threshold of 0.4

to exclude low-confidence interactions. The resulting network was

visualized using Cytoscape software (39) (v 3.9.1).
2.5 Identification of hub genes among
DE-mtPCDs

To further identify potential hub genes within the DE-mtPCD,

three machine learning algorithms were employed: support vector

machine (SVM), least absolute shrinkage and selection operator

(LASSO), and Boruta. Feature genes were screened using the

mlbench package, glmnet package (40) (v 4.1-2), and Boruta

package (v 8.0.0), respectively. The intersection of the feature genes

identified by all three algorithms was defined as the hub genes.
2.6 Validation and selection of
biomarker genes

To validate the ability of the identified hub genes to distinguish

between PE and normal samples and to identify suitable biomarkers,

a Wilcoxon test was performed to confirm their differential

expression in both the GSE10588 and GSE98224 datasets. Genes

that exhibited significant and consistent expression patterns in both

datasets were considered potential biomarkers.
2.7 Nomogram model construction and
performance evaluation

To elucidate the relationship between each biomarker and PE

onset, the rms package (v 6.2-0) (41) was used to construct a
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Nomogram model based on multivariable logistic regression.

Additionally, the diagnostic potential of sFlt-1 and PlGF

biomarkers, previously confirmed in the literature, was explored

by constructing nomogram models for the PlGF (PGF) and sFlt-1

(FLT1) genes in the GSE10588 and GSE98224 datasets. Calibration

curves were generated to assess the reliability and accuracy of the

model predictions. To further verify the model performance,

receiver operating characteristic (ROC) curves were plotted using

the pROC package (v 1.18.4) (42) for both datasets.
2.8 ANN diagnostic model construction
and performance evaluation

To assess whether the biomarkers can distinguish between PE

and normal samples in the GSE10588 dataset, an artificial neural

network (ANN) diagnostic model based on logistic regression was

developed using the neuralnet package (v 1.44.2) (43). ROC curves

were subsequently generated on the basis of the predicted results

from the GSE10588 dataset to assess diagnostic performance.

Additionally, biomarker expression levels from the GSE98224

dataset were input into the trained ANN model, and ROC curves

were plotted to evaluate the model’s accuracy.
2.9 Biomarker genomic
localization analysis

Gene chromosomal localization is essential for understanding

gene function, studying genetic diseases, and advancing gene

therapy and genomics. The OmicCircos package was used to

analyze and visualize the genomic localization of biomarkers

on chromosomes.
2.10 Biomarker subcellular localization
prediction and analysis

To further investigate the subcellular localization of biomarkers

and their relevance to PE pathogenesis, the mRNALocater online

tool (http://bio-bigdata.cn/mRNALocater/) was employed to

predict the subcellular localization of biomarkers in the

GSE10588 dataset. Subcellular localization scores were also

calculated for the biomarkers.
2.11 GSVA

To explore the impact of differential biomarker expression on

KEGG pathways, the GSE10588 dataset was divided into high- and

low-expression groups on the basis of the median expression levels of

biomarkers. Gene set variation analysis (GSVA) scores for KEGG

pathways were then calculated between the two expression groups

using the c2.cp.kegg.v2023.1.Hs.symbols.gmt as a background gene

set. Differential signaling pathways were identified on the basis of the

criteria |t| > 2 and p < 0.05 using the limma package (v 3.56.2) (37).
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2.12 Immune microenvironment analysis

To analyze the immune microenvironment of PE and normal

samples, the Single Sample Gene Set Enrichment Analysis (ssGSEA)

algorithm from the GSVA package (v 1.42.0) (44) was used to

calculate scores for 28 immune cell compositions based on gene

expression profiles from the GSE10588 dataset. Differential analysis

using theWilcoxon test was then performed to identify immune cell

types with differential expression. Additionally, Spearman

correlation analysis was conducted to explore the relationship

between biomarkers and the identified immune cell types.
2.13 Construction of regulatory network

To explore the regulatory mechanisms of the aforementioned

biomarkers, miRDB (http://mirdb.org/) and miRTarBase (https://

awi.cuhk.edu.cn/~miRTarBase/miRTarBase_2025/php/index.php)

databases were employed to predict miRNAs that regulate these

biomarkers. In miRDB, miRNAs with a Target score ≥80 were

selected, whereas, for miRTarBase, only miRNAs with reported

experimental evidence were considered. The overlap between these

two sets of miRNAs was determined to identify shared regulatory

miRNAs. Subsequently, StarBase (http://starbase.sysu.edu.cn/) and

miRNet (https://www.mirnet.ca/) databases were utilized to predict

the long non-coding RNAs (lncRNAs) interacting with the shared

miRNAs. The intersection of predicted lncRNAs from both

databases was used to obtain common lncRNAs. A regulatory

network consisting of lncRNAs, miRNAs, and mRNAs was then

constructed. Cytoscape software (v 3.9.1) (39) was employed to

visualize and analyze the resulting complex biological network.
2.14 Drug prediction

For the identification of potential drugs targeting biomarkers for

PE treatment, drug prediction was carried out by integrating results

from DrugBank (https://www.drugbank.ca/) and the Drug-Gene

Interaction (DGI) database (http://www.dgidb.org/), resulting in a

comprehensive list of candidate drugs. The relationships between

drugs and biomarkers were represented in a drug-biomarker

network, which was also visualized using Cytoscape (v 3.9.1) (39).
2.15 Validation of the biological indicators
of the screening

2.15.1 Sample collection
2.15.1.1 Study objects

This research was conducted at the Obstetrics and Gynecology

Department of Fujian Provincial Hospital (Jinshan Branch). Ten

pregnant women scheduled for delivery were enrolled and classified

into two groups: the experimental group, comprising five individuals

diagnosed with PE, and the control group, consisting of five women

who underwent cesarean deliveries for reasons unrelated to medical

complications, such as social considerations or non-vertex fetal

presentations (e.g., transverse or breech positions).
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2.15.1.2 Specimen collection

Approximately 40 g of placental tissue were collected, with large

vessels and connective tissue removed. The tissue was thoroughly

washed with 0.9% saline until the wash solution became nearly

colorless, then finely minced into 1- to 3-mm pieces, preserved in a

sterile isotonic solution, and subsequently frozen at −80°C.

The study adhered to the Declaration of Helsinki and received

approval from the Ethics Committee of Fujian Provincial Hospital

(protocol code K2023 - 02 - 016, approval date: 22 February 2023).

Informed consent was obtained from all participants.

2.15.2 Real-time quantitative polymerase
chain reaction

Total RNA was extracted from the placental tissue samples of

five control and five patients with PE using TRIzol solution

(Ambion, Austin, USA), following the manufacturer ’s

instructions. The RNA concentration was determined using

NanoDrop, and complementary DNA (cDNA) was synthesized

with the SweScript First Strand cDNA Synthesis Kit (Servicebio,

Wuhan, China). The reverse transcription conditions were as

follows: primer-template binding at 25°C for 5 min, cDNA

synthesis at 50°C for 15 min, and denaturation of the first strand

from mRNA at 58°C, followed by storage at 4°C. Primers for RT-

qPCR were designed and synthesized (Table 1). Quantitative

analysis was performed using the CFX96 real-time quantitative

fluorescence PCR machine (BIO-RAD, California, USA). The

reaction conditions included an initial denaturation at 95°C for 1

min, followed by 40 cycles of denaturation at 95°C for 20 s,

annealing at 55°C for 20 s, and extension at 72°C for 30 s.

Amplification and melting curves were generated, and the Cycle

threshold (Ct) values were recorded. Glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) was used as an internal control, and gene

expression levels were calculated using the 2−DDCt method.

2.15.3 Immunofluorescence assay
Tissue samples were fixed in 4% paraformaldehyde and

embedded in paraffin. Deparaffinized and rehydrated tissue

sections were permeabilized with 0.1% Triton X-100 in Phosphate
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Buffer Saline (PBS) for 5 min and blocked with 10% goat serum for

1 hour. Antigen retrieval was performed by heating the sections in

Ethylenediaminetetraacetic Acid (EDTA)-Tris buffer [50 mM Tris

and 1 mM EDTA (pH 9.0)]. After washing, the sections were

incubated with primary antibodies overnight at 4°C, followed by

incubation with fluorescent secondary antibodies. The slides were

mounted with a 4',6-diamidino-2-phenylindole (DAPI)-containing

medium and observed under a laser confocal microscope (Olympus

Corporation, Japan).

2.15.4 Western blot assay
Proteins were extracted from tissues of each experimental

group. These proteins were then separated using 10% sodium

dodecyl sulfate–polyacrylamide gel electrophoresis and

subsequently transferred onto a membrane. The membrane was

blocked to prevent non-specific binding, followed by incubation

with the corresponding primary antibodies against solute carrier

family 25 member 5 (SLC25A5), acyl-CoA synthetase family

member 2 (ACSF2), mitochondrial fission factor (MFF), and

phorbol-12-myristate-13-acetate–induced protein 1 (PMAIP1)

overnight. After incubation with the primary antibodies, the

membrane was incubated with the appropriate secondary

antibodies and then exposed to detect the protein bands.
2.16 Statistical analysis

Data were processed and analyzed using R software and

GraphPad Prism version 9.0. Differences between groups were

assessed using t-tests, the Wilcoxon rank-sum test, and one-way

ANOVA, with p-values <0.05 considered statistically significant.
3 Results

3.1 Identification of DEGs and DE-mtPCDs
in PE

A total of 1,438 DEGs were identified in the GSE10588 dataset

between the PE and normal groups, with 817 genes upregulated and

621 genes downregulated in the PE group (Figures 1A, B). A total of

95 DE-MRGs were identified by intersecting the DEGs with MRGs,

of which 42 were upregulated and 53 were downregulated in the PE

group. Additionally, 132 DE-PCDs were obtained by intersecting

the DEGs with PCDs, with 84 upregulated and 48 downregulated in

the PE group. By further intersecting the DE-MRGs with the DE-

PCDs, 14 DE-mtPCDs were identified, comprising five upregulated

and nine downregulated genes in the PE group (Figures 1C–F).
3.2 Functional and pathway enrichment of
DE-mtPCDs in PE

To explore the biological functions and pathways associated with

the identified DE-mtPCDs, an enrichment analysis was performed.

The analysis revealed 225 enriched GO terms, including 160
TABLE 1 Related primer sequences.

Primer Sequences

SLC25A5 F AGACTGCGTGGTCCGTATTC

SLC25A5 R TGCCAGATTCCCTGCAAAGT

ACSF2 F CTGTGAACCCAGCCTACCAG

ACSF2 R GCTGGGCATTCTCCACTTCT

MFF F AACCCCTGGCACTGAAAACA

MFF R TGCCAACTGCTCGGATTTCT

PMAIP1 F CCAAGCCGGATTTGCGATTG

PMAIP1 R CTCCTAGAGACAGCCGCCTA

GAPDH F CGAAGGTGGAGTCAACGGATTT

GAPDH R ATGGGTGGAATCATATTGGAAC
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Biological Process (BP), 24 Cellular Component (CC), and 41

Molecular Function (MF) terms. The BP enrichment analysis

indicated that the DE-mtPCDs were significantly enriched in

mitochondrial functions and apoptosis-related processes, such as

regulation of mitochondrial membrane permeability and apoptotic

mitochondrial changes (Figure 2A). The CC analysis showed that the

DE-mtPCDs were primarily localized in membrane structures of

organelles, including peroxisomes and the mitochondrial inner

membrane (Figure 2B). The MF analysis revealed that the DE-

mtPCDs predominantly affected oxidative-reduction processes

involved in electron transfer activity (Figure 2C). KEGG pathway
Frontiers in Immunology 06
analysis further indicated enrichment in 23 metabolic pathways,

including several apoptosis-related pathways such as the p53

signaling pathway and apoptosis pathway, as well as disease-

associated pathways like Huntington’s disease and prion diseases

(Figure 2D). A PPI network constructed with the 14 DE-mtPCDs,

consisting of 11 nodes and 12 edges, revealed multiple interactions

among these proteins, including cytochrome c (CYCS) with MFF,

PMAIP1, SLC25A5, Nicotinamide Adenine Dinucleotide (Reduced)

Hydrogen (NADH) dehydrogenase (ubiquinone) Fe-S protein 3

(NDUFS3), and apoptosis-inducing factor mitochondria-associated

2 (AIFM2) (Figure 2E).
FIGURE 1

Identification of DE-mtPCDs in the GSE10588 dataset. (A) Volcano plot of the DEGs, with downregulated genes in blue, upregulated genes in red,
and genes with insignificant differences in gray. (B) Heatmap of the DEGs, with the upper section displaying the expression density heatmap of
differentially expressed genes across samples, showing lines for the five quantiles and mean values, and the lower section indicating high expression
in red and low expression in blue. (C) Venn diagram of DE-MRGs. (D) Venn diagram of DE-PCDs. (E) Venn diagram of DE-mtPCDs. (F) Heatmap of
DE-mtPCDs, with red indicating high expression and blue indicating low expression. DEGs, differentially expressed genes; DE-MRGs, differentially
expressed mitochondrial–related genes; DE-PCDs, differentially expressed programmed cell death genes; DE-mtPCDs, differentially expressed
mitochondrial and programmed cell death genes.
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3.3 Identification of Hub genes in PE

Based on the 14 DE-mtPCDs, the SVM algorithm was used to

screen 14 feature genes (Figure 3A). After 10-fold cross-validation,

10 feature genes were identified in the LASSO regression model,

with dihydrolipoamide S-succinyltransferase (DLST), CYCS,

SLC25A5, NDUFS3, ACSF2, MPV17 mitochondrial inner

membrane protein like (MPV17L), glutaminase 2 (GLS2), MFF,

PMAIP1, and phospholipid scramblase 3 (PLSCR3) selected,

achieving the lowest error rate at the optimal lambda.best

parameter value of 0.01397921 (Figures 3B, C). Additionally, the

Boruta algorithm identified 14 feature genes, which scored

significantly higher than the maximum Z-score among shadow

attributes (median, 2.077892) (Figure 3D). To establish a consensus

set of feature genes, the intersection of the feature genes obtained

from the three algorithms was taken, resulting in a final set of 10

hub genes. These hub genes included DLST, CYCS, SLC25A5,

NDUFS3, ACSF2, MPV17L, GLS2, MFF, PMAIP1, and PLSCR3

(Figure 3E; Supplementary Table S1).
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3.4 Biomarker discovery and localization
in PE

To validate the discriminatory ability of the candidate

biomarkers in distinguishing PE samples from normal samples

and to select suitable genes as biomarkers, the expression of the 10

hub genes was analyzed across two datasets. The final results

revealed that 5 of the 10 hub genes showed differential expression

between PE and control samples in both datasets. However, the

expression trend of GLS2 was inconsistent across the datasets,

leading to its exclusion. Therefore, four genes—SLC25A5, ACSF2,

MFF, and PMAIP1—were selected for further investigation due to

their significant differential expression and consistent trends in both

the GSE10588 and GSE98224 datasets. Among these, SLC25A5,

MFF, and PMAIP1 exhibited low expression in the PE group,

whereas ACSF2 displayed an opposite trend in the two datasets.

Thus, these four genes were identified as final biomarkers for PE

(Figures 4A, B). To investigate the chromosomal locations of the

four biomarkers, the chromosomal positions for each biomarker
FIGURE 2

Functional enrichment analysis of DE-mtPCDs. (A) Enriched GO terms for DE-mtPCDs in Biological Process. (B) Cell Component. (C) Molecular
Function. (D) KEGG enrichment results for DE-mtPCDs. (E) Protein–protein interaction network of DE-mtPCDs, with gene labels represented by
nodes; red indicates upregulated genes, and green indicates downregulated genes; each line represents an interaction between genes. DE-mtPCDs,
differentially expressed mitochondrial and programmed cell death genes; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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were analyzed. In summary, the analysis revealed that the

chromosomal locations of the four biomarkers were also

analyzed. The results showed that SLC25A5 is located on

chromosome X, ACSF2 on chromosome 17, MFF on

chromosome 2, and PMAIP1 on chromosome 18 (Figure 4C).

Additionally, subcellular localization analysis provided insights

into the potential roles of these biomarkers in PE pathogenesis.

ACSF2 and SLC25A5 were localized to cellular membrane

structures, suggesting their involvement in membrane-related

processes associated with PE. In contrast, MFF and PMAIP1 were

localized to the cell nucleus, indicating their potential involvement

in nuclear processes linked to the disease (Figure 4D).
3.5 Identification and characterization of
PE biomarkers

To further explore the relationship between each biomarker and

the occurrence of PE, a nomogram was constructed on the basis of

multiple logistic regression using the rms package in R. The nomogram

assigned scores to each biomarker according to its expression level, and

the total score was used to predict the probability of a PE diagnosis

(Figure 5A). Calibration curve analysis indicated good model

calibration, with an average error of 0.039 (Figure 5D). The area
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under the ROC curve (AUC) for the GSE10588 dataset was greater

than 0.7, demonstrating the model’s strong discriminatory power

(Figures 5G, H). The model robustness was further validated in the

GSE98224 dataset, where the ROC curve also showed an AUC greater

than 0.7 (Figure 5I). Nomograms were constructed separately for the

two datasets (Figures 5B, C), and the calibration curves revealed mean

errors of 0.058 and 0.0611, respectively (Figures 5E, F). In the

GSE10588 dataset, the AUC value was 0.905 (0.783–1.000)

(Figure 5I), and, in the GSE98224 dataset, the AUC value was 0.841

(0.720–0.961) (Figure 5J), indicating the accuracy of the nomogram

models. The diagnostic potential of the biomarkers screened in this

study was found to be superior to the results of FLT1 and PGF in the

training set (AUC = 0.985 vs. AUC = 0.905).

Furthermore, an ANN diagnostic model was constructed on the

basis of the biomarker data from the GSE10588 dataset. The weights

of the four biomarkers in the ANN model ranged from −1.26 to

0.99, with SLC25A5 having a weight of −1.26088, ACSF2 having a

weight of 0.98769, MFF having a weight of −0.64141, and PMAIP1

having a weight of −0.85598 (Figure 5K). The ROC curve for the

ANN model in the GSE10588 dataset yielded an AUC value of

0.989, indicating the model’s accuracy in distinguishing PE from

normal samples (Figure 5L). In the GSE98224 dataset, the AUC

value was 0.83, further confirming the robustness of the model in

predicting PE (Figure 5M).
FIGURE 3

Machine learning screening results. (A) SVM classification results. (B, C) LASSO regression results. (D) Boruta algorithm results. (E) Venn diagram
showing the crossover genes between LASSO, SVM, and Boruta. LASSO, least absolute shrinkage and selection operator; SVM, support
vector machine.
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3.6 Impact of differential expression of PE
biomarkers on pathways

To further explore the impact of differential expression of

biomarkers on KEGG pathways, the four biomarkers (SLC25A5,

ACSF2, MFF, and PMAIP1) were categorized into high- and low-

expression groups based on their median expression levels in

the GSE10588 dataset. GSVA was conducted using the

c2.cp.kegg.v2023.1.Hs.symbols.gmt gene set (containing 186 gene

sets in total). The GSVA score for each KEGG pathway was

calculated, and differential signaling pathways were screened

using a threshold of |t| > 2 and p < 0.05 via the limma package.

The analysis revealed five pathways with differential activation in

both high- and low-expression groups of the biomarkers: mismatch

repair, RNA degradation, Notch signaling pathway, proteasome,
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and glycosphingolipid biosynthesis globo series (Figures 6A–E;

Supplementary Figures S1-S5).
3.7 Differential immune cells in PE samples
and controls and their correlations

To analyze immune differences between the PE and normal

samples in the GSE10588 dataset, the composition scores of each

immune cell type were computed and displayed in a heatmap

(Figure 7A). Among the 28 immune cell types analyzed, 11

showed significant differences between the PE and normal groups.

Activated dendritic cells, CD56dim natural killer cells, plasmacytoid

dendritic cells, and T follicular helper cells had higher scores in the

PE group, whereas the other differential immune cells showed the
FIGURE 4

Biomarker discovery and localization. (A) Expression distribution of 10 candidate biomarkers in the GSE10588 dataset, with differences in expression
verified using a rank sum test. (B) Expression distribution of 10 candidate biomarkers in the GSE98224 dataset. (C) Chromosomal localization of the
biomarkers. (D) Subcellular structural localization of the biomarkers. NS, non-significant, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1453633
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1453633
FIGURE 5

Evaluation and validation of the nomogram and artificial neural network diagnostic PE model. (A) Nomogram model of biomarkers. (B) Calibration
curve of the model. (C, D) ROC curve of the model in the GSE10588 set and GSE98224 set. (E) Nomogram model of FLT1 and PGF in the GSE10588
dataset. (F) Calibration curves of FLT1 and PGF diagnostic models in the GSE10588 dataset. (G) ROC curves of FLT1 and PGF diagnostic models in
the GSE10588 dataset. (H) Nomogram model of FLT1 and PGF in the GSE98224 dataset. (I) Calibration curves of FLT1 and PGF diagnostic models in
the GSE98224 dataset. (J) ROC curves of FLT1 and PGF diagnostic models in the GSE98224 dataset. (K) Structural diagram of the artificial neural
network composed of the five biomarkers. (L, M) ROC curve for artificial neural network evaluation in the GSE10588 set and GSE98224 set. PE, pre-
eclampsia; ROC, receiver operating characteristic. *p < 0.05, **p < 0.01.
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opposite trend (Figure 7B). Correlation analysis of the differential

immune cells revealed that regulatory T cells and effector memory

CD8 T cells had the strongest positive correlation (cor = 0.693),

whereas activated dendritic cells showed the strongest negative

correlation with type 2 T helper cells (cor = −0.322) (Figure 7C).

To explore the relationship between biomarkers and differential

immune cells, the correlation between the four biomarkers and the

11 differential immune cells was analyzed. Type 2 T helper cells

showed significant correlations with all four biomarkers (|cor| > 0.3,

p < 0.05), suggesting that these biomarkers may serve as potential

targets for immunotherapy (Figure 7D).
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3.8 Regulatory mechanisms and potential
drugs for PE

To understand the regulatory mechanisms of the biomarkers,

databases were utilized to predict corresponding regulatory factors.

The miRDB and miRTarBase databases were used to predict

miRNAs targeting the four biomarkers, resulting in 89 and 187

miRNAs, respectively. The intersection of these predictions yielded

25 miRNAs that could potentially regulate the biomarkers

(Figure 8A). Using the StarBase and miRNet databases, 122 and

159 lncRNAs were predicted, respectively, based on the 25 miRNAs.
FIGURE 6

GSVA. (A–D) KEGG pathways with significant differences between high– and low–biomarker expression groups. Blue represents pathways activated
in the high expression group, and green represents pathways activated in the low expression group. (E) Venn diagram of KEGG pathways shared by
four groups. GSVA, gene set variation analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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The intersection of these lncRNAs resulted in a final set of 44

lncRNAs (Figure 8B). A lncRNA–miRNA–mRNA regulatory

network was then constructed, with KCNQ1 Opposite Strand/

Antisense Transcript 1 (KCNQ1OT1) being identified as a

regulator of ACSF2 expression via modulation of hsa-miR-200b-

3p (Figure 8C). Finally, drug predictions based on the biomarkers

were conducted using relevant databases. Potential drug candidates

for the treatment of PE included clodronic acid, etidronic acid,

glutamic acid, L-glutamine, ammonia, bortezomib, trichostatin A,

and butyric acid (Figure 8D).
3.9 Validation of the biological indicators
of the screening

3.9.1 Real-time quantitative polymerase chain
reaction to verify the expression of biomarkers
in PE

Gene expression patterns of SLC25A5, MFF, PMAIP1, and

ACSF2 in relation to PE were assessed using clinical RT-qPCR

analysis. The results indicated that SLC25A5, MFF, and PMAIP1
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were downregulated in the PE group, whereas ACSF2 was

upregulated, reflecting distinct expression profiles for these genes

in the context of PE (Figures 9A–D). These results aligned with the

data obtained from the dataset.
3.9.2 Immunofluorescence assay to verify the
expression of biomarkers in the placenta of
normal pregnancy and PE

Immunofluorescence assays were conducted to examine the

expression of SLC25A5, MFF, PMAIP1, and ACSF2 in placentas

from both PE and normal pregnancies. SLC25A5 and MFF were

localized to the cytoplasm and cell membrane of trophoblast cells,

whereas ACSF2 and PMAIP1 were exclusively present in the

cytoplasm. In the PE group, the expression intensity of SLC25A5,

MFF, and PMAIP1 was notably lower than in the control group,

with significantly reduced average optical density values.

Conversely, ACSF2 exhibited enhanced expression and a

significantly higher average optical density in the PE group,

indicating distinct expression patterns for these genes in the

context of PE (Figures 10A, B).
FIGURE 7

Immune infiltration analysis. (A) Heatmap of the immune cell composition score for each sample, with red indicating higher scores and blue
indicating lower scores. (B) Differences in immune cell content between the PE and control groups. (C) Correlation heatmap of differential immune
cells, with the correlation coefficient in the lower left corner, and X representing p > 0.05. (D) Correlation heatmap between biomarkers and
differential immune cells. NS, non-significant, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. PE, pre-eclampsia.
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3.9.3 Western blot to verify the expression of
biomarkers in the placenta of normal pregnancy
and PE

Western blot analysis confirmed these observations, revealing

decreased expression levels of SLC25A5, MFF, and PMAIP1 and an

increased expression of ACSF2 in the PE group compared to that in

the control group (Figures 11A, B).
4 Discussion

PE, a pregnancy-specific complication, is a major cause of

maternal and fetal morbidity and mortality, contributing to 4.6% of

pregnancy-related complications (4). The pathogenesis of PE involves

a range of factors, including placental hypoxia and ischemia, oxidative

stress, inflammatory response, angiogenesis dysfunction, immune

dysregulation, and their complex interactions (7). Among these,

impaired trophoblast cell proliferation and abnormal invasion

contribute to insufficient spiral artery remodeling, resulting in

placental ischemia and hypoxia, which is considered a key

pathogenic mechanism (45). Numerous studies have emphasized

that PCD plays a critical role in trophoblast damage (46).
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Mitochondria, as central organelles in PCD, are involved in

releasing or recruiting specific cell death promoters (47).

Mitochondrial dysfunction, which disrupts intracellular energy

metabolism, may trigger inflammation and vascular abnormalities,

leading to trophoblast cell death (46). These insights open new

avenues for exploring the pathogenesis of PE.

In this study, 1,438 DEGs were identified using bioinformatics,

integrating public database data with clinical samples. After

intersecting these genes with 1,136 MRGs and 1,548 PCD-related

genes, 14 DE-mtPCD genes were obtained. GO and KEGG

enrichment analyses of these DE-mtPCD genes revealed

functional enrichment related to transmembrane transport,

mitochondria, membrane permeability, peroxisome structures,

apoptotic complexes, electron transfer, and redox processes.

KEGG pathways associated with apoptosis, such as the p53 and

apoptosis signaling pathways, were also identified. Previous

research has indicated that p53-mediated trophoblast apoptosis is

linked to the etiology of PE (48). The apoptosis pathway, which

regulates PCD, is a terminal pathway for nearly all cell types.

To identify biomarkers involved in the onset of PE, this study

applied three machine learning methods to select 10 key genes.

Expression differences of these candidate biomarkers were verified
FIGURE 8

The ceRNA regulatory network and drug prediction. (A, B) Venn diagrams of shared miRNAs (A) and common lncRNAs (B) predicted by biomarkers.
(C) The lncRNA–miRNA–mRNA regulatory network. (D) Drug–mRNA network, with red circles indicating biomarkers and orange hexagons indicating
drugs. CeRNA, competing endogenous RNAs; miRNA, microRNA; lncRNA, long non-coding RNA.
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in both the training and validation sets, ultimately identifying four

genes—SLC25A5, ACSF2, MFF, and PMAIP1—as potential

diagnostic biomarkers for PE. Specifically, SLC25A5, MFF, and

PMAIP1 were downregulated in the PE group, whereas ACSF2

was upregulated across both datasets. SLC25A5, known as adenine

nucleotide translocator 2, is critical for ATP/ADP exchange and

plays a significant role in various diseases. High expression of

SLC25A5 is associated with poor prognosis in MRG studies (48).

Furthermore, exposure to perfluorooctane sulfonate has been

shown to impair trophoblast migration, invasion, and vascular

formation, reducing SLC25A5 expression in both the placenta and

JEG-3 cells. Animal and in vitro experiments confirmed that

mitochondrial dysfunction mediated by SLC25A5 in trophoblast

cells induces these pathophysiological effects, ultimately leading to

PE (49). These observations suggest that SLC25A5 may contribute

to placental dysfunction by affecting mitochondrial function,

warranting further investigation.

ACSF2, a member of the acyl-CoA synthetase (ACS) family,

catalyzes the sulfur esterification of acyl thioesters to form

coenzyme A, which plays a central role in cellular lipid

metabolism (50). Mitophagy, the selective degradation of

damaged mitochondria, is essential for maintaining mitochondrial

homeostasis and generating ATP to support various cellular

functions (51). Inhibition of ACSF2 in Human renal cortex
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proximal convoluted tubule epithelial cells-2 (HK-2) cells has

been shown to reduce cellular lipid peroxidation, enhance

mitophagy, restore mitochondrial function, and protect against

ischemia-reperfusion–induced acute kidney injury (52). In

another study, overexpression of DRAM1 in mice enhanced

mitophagy, improved placental mitochondrial function in PE

mice, and significantly reduced blood lipid and urinary protein

levels (53). These observations suggest that ACSF2may alleviate PE

symptoms by enhancing mitophagy and improving mitochondrial

function, positioning it as a potential therapeutic target for PE.

Additionally, ACSF2 is significantly associated with immune-

related pathways such as Toll-like receptor signaling, Nuclear

Factor k-Light-Chain Enhancer of Activated B Cells (NF-kB)
signaling, and Nucleotide binding oligomerization domain

(NOD)-like receptor signaling (54–56), all of which are

implicated in the pathogenesis of PE, further supporting the

potential involvement of ACSF2 in PE onset (57–59). Future

experiments are needed to clarify the specific role of ACSF2 in

PE pathogenesis.

MFF, located on the outer mitochondrial membrane, is crucial

for activating mitochondrial fission and mediating mitochondrial

death. Studies have shown that genetic deletion of MFF suppresses

pro-inflammatory responses, renal tubular oxidative stress, and

renal cell death, significantly mitigating renal failure caused by
FIGURE 9

The mRNA expression levels of SLC25A5 (A), MFF (B), PMAIP1 (C), ACSF2 (D). in control and PE samples by RT-qPCR. RT-qPCR, real-time
quantitative polymerase chain reaction. *p < 0.05, **p < 0.01.
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ischemic acute kidney injury (AKI) (60). MFF mediates

mitochondrial fission by facilitating the translocation of dynein-

related protein 1 (Drp1) from the cytosol to mitochondria and

negatively regulates calcium (Ca2+) transport from the ER to

mitochondria. MFF deficiency leads to mitochondrial Ca2+
Frontiers in Immunology 15
overload, which triggers excessive ROS production, impedes

mitochondrial biogenesis, and results in encephalopathy (61).

PMAIP1, a member of the pro-apoptotic BCL-2 family

(specifically the BH3 subfamily), regulates apoptosis and

proliferation in various tumor cells (62–64). PMAIP1 contains a
FIGURE 10

(A) Blue indicates the nucleus, green indicates the expressed target protein, and red arrows highlight the target protein expression sites in the cell.
(B) Optical density analysis of immunofluorescence images for the four biomarkers. The AOD of SLC25A5, MFF, PMAIP1, and ACSF2 was significantly
lower than in the control group, whereas ACSF2 showed significantly higher expression than in the control group. ****p < 0.0001; AOD, average
optical density.
FIGURE 11

Protein expression levels of SLC25A5, MFF, PMAIP1, and ACSF2 in control and PE samples by Western blot. (A) Western Blot (WB) results; (B)
Quantitative analysis of WB results. WB, Western blot. ****p < 0.0001.
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binding site for p53, which directly interacts with this site to

promote PMAIP1 transcription and protein expression, mediating

apoptosis (65). Although PMAIP1 is primarily recognized as a

mediator of p53-induced apoptosis, it has been found that

hypoxia-inducible factor 1a can bind to the hypoxia response

element upstream of the PMAIP1 promoter, thereby activating

PMAIP1 transcription and confirming its role in apoptosis through

a p53-independent pathway (66).

Although SLC25A5, ACSF2, MFF, and PMAIP1 have not been

previously linked to PE, they are known to significantly influence

mitochondrial function and tumor cell death. Given the similarities

between trophoblast cell invasion and proliferation and tumor cell

behavior, it is plausible that these biomarkers may play a role in

mediating trophoblast cell death during PE pathogenesis.

Building on the previous results, the gene expression of

SLC25A5, MFF, PMAIP1, and ACSF2 was further assessed in

placental tissues from both PE and normal pregnancies using RT-

qPCR. The findings revealed a reduction in the expression levels of

SLC25A5, MFF, and PMAIP1, whereas ACSF2 expression was

elevated in the PE group. These clinical validation results were

consistent with the dataset analysis, suggesting that SLC25A5, MFF,

PMAIP1, and ACSF2 could serve as novel potential targets for the

prevention and treatment of PE.

Further analyses using a nomogram and ANN demonstrated

the strong discriminatory ability of these biomarkers in

distinguishing between PE and normal groups, underscoring their

potential for effective PE diagnosis. In medical diagnostics, the AUC

is a critical metric for evaluating test accuracy, with AUC values

approaching 1 indicating greater diagnostic reliability (67). In this

study, the AUC for the biomarkers SLC25A5, MFF, PMAIP1, and

ACSF2 was 0.986, highlighting their exceptional accuracy in

predicting PE. While traditional biomarkers have proven useful in

PE diagnosis, the present findings suggest that these novel

biomarkers may offer superior diagnostic performance. Clinically,

a higher AUC provides substantial benefits by more accurately

distinguishing true patients with PE. This approach reduces the

misclassification of healthy individuals as patients with PE (false

positives) and minimizes missed diagnoses (false negatives),

offering a more reliable foundation for early diagnosis, timely

intervention, and improved patient outcomes.

Further GSVA identified five pathways that exhibited

significant differences between high- and low-expression groups

of the four biomarkers, including mismatch repair, RNA

degradation, Notch signaling pathway, proteasome, and

glycosphingolipid biosynthesis (Globo and Isoglobo Series).

Mismatch repair, a critical DNA repair pathway, is involved in

mitosis, meiosis, cell apoptosis, immunoglobulin gene

rearrangement, and somatic hypermutation. Disruption of this

pathway may be central to the PCD observed in PE cells (68). In

RNA regulation, RNA degradation, particularly of polyadenylated

RNA, occurs rapidly during early apoptosis, potentially serving as a

marker of cell death and being associated with mitochondrial

release proteins (69). The Notch signaling pathway plays a pivotal

role in determining cell fate and regulating cell differentiation,
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proliferation, and apoptosis through interactions between Notch

ligands and receptors (70). This pathway is essential for normal

placental and trophoblast development, promoting successful

pregnancy (71). Notch1, in particular, is critical for the

proliferation and survival of extravillous trophoblast precursors,

and defects in trophoblast differentiation are linked to severe

pregnancy complications, including PE (72). The proteasome

pathway, involved in protein modification and degradation, is

also implicated in regulating apoptosis through various signaling

pathways, such as the ubiquitin-proteasome and autophagy

pathways (73). These pathways are interconnected with apoptosis

and have been linked to PE pathogenesis. Therefore, these four

biomarkers may contribute to mediating trophoblast apoptosis and

the development of PE, although further exploration of the

underlying mechanisms is warranted.

Gene regulatory networks are essential for the regulation of gene

expression and play a significant role in disease development.

lncRNAs and Circular RNAs (circRNAs) can modulate miRNA

activity, influencing downstream mRNA expression and impacting

conditions such as PE (74). In this study, a database was used to

predict corresponding regulatory factors, resulting in the

identification of 44 lncRNA–miRNA–mRNA interaction networks,

which were visualized. Although no prior studies have documented

these specific regulatory networks in PE, they represent an area of

considerable potential for further investigation into the regulatory

mechanisms underlying PE. Additionally, drug prediction based on

these four biomarkers identified potential therapeutic candidates for

PE treatment, including glutamic acid and clodronate. These findings

offer promising targets for the development of therapeutic strategies

for PE.

Extensive research has highlighted the involvement of immune

imbalance in the pathophysiology of PE (75, 76). Several

bioinformatics analyses have also indicated significant immune

infiltration differences between PE and normal controls (77). In

this study, immune variations between PE and normal samples were

analyzed using the GSE10588 dataset, revealing that 11 immune cell

types were significantly different between the two groups. The

correlation analysis between these differential immune cells and

the four biomarkers demonstrated that type 2 T helper (Th2) cells

were significantly associated with all four biomarkers. Specifically,

Th2 cells were positively correlated with SLC25A5, MFF, and

PMAIP1 and negatively with ACSF2. MFF interacts with Drp1 to

initiate mitochondrial division, which may influence the

mitochondrial function and survival of Th2 cells (78). As a pro-

apoptotic protein, PMAIP1 (also known as NOXA) regulates the

survival and function of memory CD4(+) Th1/Th2 cells by binding

to anti-apoptotic proteins such as Mcl-1 and Bcl2A1 (79). SLC25A5

plays a role in apoptosis regulation by modulating mitochondrial

membrane permeability, which could further impact Th2 cell

survival (80). Moreover, ACSF2 may influence the energy

metabolism and overall function of Th2 cells by regulating lipid

metabolism (52). These findings suggest that these four biomarkers

modulate Th2 cell survival, function, and energy metabolism via

distinct mechanisms, highlighting the potential role of Th2 cells in
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regulating the immune response in PE. After placental implantation

in normal pregnancy, the early inflammatory Th1 immune

response rapidly shifts to a Th2 anti-inflammatory response.

Dominant Th2 immunity overcomes Th1 immunity at the

placental implantation site, balancing Th1 activity to protect the

fetus and support fetal and placental development. However, an

enhanced Th2 response during pregnancy can contribute to or

exacerbate autoimmune diseases (81). Other studies (82) have

reported that, while Th2 cells increase in normal pregnancy

circulation, they decrease in pre-eclamptic pregnancies. This

dysregulation, often observed in the first month of PE, is

accompanied by a rise in circulating and placental CD4+ Th1

cells, elevated pro-inflammatory cytokine levels, increased

autoantibody production, and oxidative stress, suggesting that

Th2 cells and related pathways may serve as potential targets

for immunotherapy.

This study is the first to investigate the association between PE

and mtPCD based on public databases. Through bioinformatics

analysis, biomarkers of diagnostic value were identified, and related

pathway analyses were conducted. However, several limitations must

be acknowledged. Firstly, conclusions derived from bioinformatics

analysis may be susceptible to bias. Bioinformatics heavily depends

on existing databases and algorithms, and factors such as the

accuracy, completeness of data sources, and the applicability of

algorithms can influence the results. Thus, further clinical

validation of the findings is essential. Although verification

experiments, including PCR, immunofluorescence, and Western

blot, were performed, the experimental validation remains

incomplete. Additional experiments, such as Cell Mito stress

Seahorse assays and blood analyses, were not conducted. Moreover,

the small sample size used for experimental validation limits the

representativeness and generalizability of the results. Furthermore,

although potential drugs such as clodronic acid, etidronic acid, and

glutamic acid were predicted, their effectiveness in PE samples was

not evaluated. Finally, although the differential expression of

biomarkers has been preliminarily validated, their biological roles

in the pathogenesis of PE and their ability to predict disease severity

or complications have not been comprehensively explored. This gap

in understanding limits the potential for developing effective

biomarker-based therapeutic strategies.

To address these limitations, future work will focus on further

bioinformatics analyses and clinical validation of targeted

experiments. By increasing the sample size and including samples

from different races, regions, and lifestyle factors, this study aims to

enhance the representativeness and generalizability of the study

results. Additionally, experimental validation using blood samples

will be incorporated to provide a more comprehensive exploration of

the biomarkers’ characteristics and effects. Further, the correlation

between biomarkers and genes highly expressed in hypertension will

be analyzed to assess whether differential expression of biomarkers is

influenced by hypertension. Extending the analysis of immune cell

populations, particularly Th2 cells, could explore their role in PE.

Advanced biotechnologies such as gene editing, cell function assays,

and animal model construction could uncover the biological
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functions of these biomarkers in PE pathogenesis and the efficacy

of potential drugs. This approach will provide a comprehensive

molecular, cellular, and systemic analysis of the relationship

between biomarkers and PE pathogenesis. Moreover, more cases of

PE with varying severity and complications will be collected, further

evaluating the predictive efficacy of these biomarkers for disease

severity and complications by combining expression level data with

clinical outcomes.
5 Conclusions

This study is the first to establish a link between mtPCD-related

genes and PE. Four biomarkers—SLC25A5, ACSF2, MFF, and

PMAIP1—associated with mtPCD were identified, demonstrating

strong diagnostic potential for PE. Furthermore, the study has

conducted preliminary investigations into the functional

enrichment pathways, lncRNA–miRNA–mRNA regulatory

network, immune infiltration, and drug predictions related to

these biomarkers, revealing their substantial application potential.

These biomarkers may not only serve as novel therapeutic targets,

with the development of specific drugs or treatments potentially

transforming disease outcomes, but also offer valuable tools for

screening and assessing drug efficacy. These findings open new

avenues for advancing the diagnosis and treatment of PE.
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30. Marıń R, Chiarello DI, Abad C, Rojas D, Toledo F, Sobrevia L. Oxidative stress
and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim
Biophys Acta Mol Basis Dis. (2020) 1866:165961. doi: 10.1016/j.bbadis.2020.165961

31. Hu XQ, Zhang L. Mitochondrial dysfunction in the pathogenesis of
preeclampsia. Curr Hypertens Rep. (2022) 24:157–72. doi: 10.1007/s11906-022-
01184-7

32. Wu H, Zhao X, Hochrein SM, Eckstein M, Gubert GF, Knöpper K, et al.
Mitochondrial dysfunction promotes the transition of precursor to terminally
exhausted T cells through HIF-1a-mediated glycolytic reprogramming. Nat
Commun. (2023) 14:6858. doi: 10.1038/s41467-023-42634-3

33. Yung HW, Colleoni F, Dommett E, Cindrova-Davies T, Kingdom J, Murray AJ,
et al. Noncanonical mitochondrial unfolded protein response impairs placental
oxidative phosphorylation in early-onset preeclampsia. Proc Natl Acad Sci U S A.
(2019) 116:18109–18. doi: 10.1073/pnas.1907548116

34. Li J, Xu P, Chen S. Research progress on mitochondria regulating tumor
immunity. Zhejiang Da Xue Xue Bao Yi Xue Ban. (2024) 53:1–14. doi: 10.3724/
zdxbyxb-2023-0484

35. Sitras V, Paulssen RH, Grønaas H, Leirvik J, Hanssen TA, Vårtun A, et al.
Differential placental gene expression in severe preeclampsia. Placenta. (2009) 30:424–
33. doi: 10.1016/j.placenta.2009.01.012

36. Wilson SL, Leavey K, Cox BJ, Robinson WP. Mining DNA methylation
alterations towards a classification of placental pathologies. Hum Mol Genet. (2018)
27:135–46. doi: 10.1093/hmg/ddx391

37. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

38. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innovation (Camb). (2021) 2:100141.
doi: 10.1016/j.xinn.2021.100141

39. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape:
a software environment for integrated models of biomolecular interaction networks.
Genome Res. (2003) 13:2498–504. doi: 10.1101/gr.1239303

40. Li Y, Lu F, Yin Y. Applying logistic LASSO regression for the diagnosis of
atypical Crohn’s disease. Sci Rep. (2022) 12:11340. doi: 10.1038/s41598-022-15609-5

41. Sachs MC. plotROC: A tool for plotting ROC curves. J Stat Softw. (2017) 79:2.
doi: 10.18637/jss.v079.c02

42. Yan P, Ke B, Song J, Fang X. Identification of immune-related molecular clusters
and diagnostic markers in chronic kidney disease based on cluster analysis. Front
Genet. (2023) 14:1111976. doi: 10.3389/fgene.2023.1111976

43. Qing M, Yang D, Shang Q, Li W, Zhou Y, Xu H, et al. Humoral immune
disorders affect clinical outcomes of oral lichen planus. Oral Dis. (2023) 30(4):2337–46.
doi: 10.1111/odi.14667

44. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf. (2013) 14:7. doi: 10.1186/1471-2105-14-7

45. Staff AC, FjeldstadHE, Fosheim IK,Moe K, Turowski G, Johnsen GM, et al. Failure of
physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J
Obstet Gynecol. (2022) 226:S895–s906. doi: 10.1016/j.ajog.2020.09.026

46. Ding Y, Yang X, Han X, Shi M, Sun L, Liu M, et al. Ferroptosis-related gene
expression in the pathogenesis of preeclampsia. Front Genet. (2022) 13:927869.
doi: 10.3389/fgene.2022.927869
Frontiers in Immunology 19
47. Vaka R, Deer E, CunninghamM, McMaster KM, Wallace K, Cornelius DC, et al.
Characterization of mitochondrial bioenergetics in preeclampsia. J Clin Med. (2021) 10
(21):5063. doi: 10.3390/jcm10215063

48. Seneviratne JA, Carter DR, Mittra R, Gifford A, Kim PY, Luo JS, et al. Inhibition
of mitochondrial translocase SLC25A5 and histone deacetylation is an effective
combination therapy in neuroblastoma. Int J Cancer. (2023) 152:1399–413.
doi: 10.1002/ijc.v152.7

49. Zhao Y, Zhao H, Xu H, An P, Ma B, Lu H, et al. Perfluorooctane sulfonate
exposure induces preeclampsia-like syndromes by damaging trophoblast mitochondria
in pregnant mice. Ecotoxicol Environ Saf. (2022) 247:114256. doi: 10.1016/
j.ecoenv.2022.114256

50. Watkins PA, Maiguel D, Jia Z, Pevsner J. Evidence for 26 distinct acyl-coenzyme
A synthetase genes in the human genome. J Lipid Res. (2007) 48:2736–50. doi: 10.1194/
jlr.M700378-JLR200

51. Zhang W, Chen C, Wang J, Liu L, He Y, Chen Q. Mitophagy in cardiomyocytes
and in platelets: A major mechanism of cardioprotection against ischemia/reperfusion
injury. Physiol (Bethesda). (2018) 33:86–98. doi: 10.1152/physiol.00030.2017

52. Shi H, Qi H, Xie D, Zhuang J, Qi H, Dai Y, et al. Inhibition of ACSF2 protects
against renal ischemia/reperfusion injury via mediating mitophagy in proximal tubular
cells. Free Radic Biol Med. (2023) 198:68–82. doi: 10.1016/j.freeradbiomed.2023.02.003

53. Chen G, Lin Y, Chen L, Zeng F, Zhang L, Huang Y, et al. Role of DRAM1 in
mitophagy contributes to preeclampsia regulation in mice. Mol Med Rep. (2020)
22:1847–58. doi: 10.3892/mmr.2020.11269

54. Zhou M, XuW,Wang J, Yan J, Shi Y, Zhang C, et al. Boosting mTOR-dependent
autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-kB
pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine.
(2018) 35:345–60. doi: 10.1016/j.ebiom.2018.08.035

55. Cao H, Liu J, Shen P, Cai J, Han Y, Zhu K, et al. Protective effect of naringin on
DSS-induced ulcerative colitis in mice. J Agric Food Chem. (2018) 66:13133–40.
doi: 10.1021/acs.jafc.8b03942

56. Schmitt H, Ulmschneider J, Billmeier U, Vieth M, Scarozza P, Sonnewald S, et al.
The TLR9 agonist cobitolimod induces IL10-producing wound healing macrophages
and regulatory T cells in ulcerative colitis. J Crohns Colitis. (2020) 14:508–24.
doi: 10.1093/ecco-jcc/jjz170

57. Afkham A, Eghbal-Fard S, Heydarlou H, Azizi R, Aghebati-Maleki L, YousefiM.
Toll-like receptors signaling network in pre-eclampsia: An updated review. J Cell
Physiol. (2019) 234:2229–40. doi: 10.1002/jcp.v234.3

58. Sha H, Ma Y, Tong Y, Zhao J, Qin F. Apocynin inhibits placental TLR4/NF-kB
signaling pathway and ameliorates preeclampsia-like symptoms in rats. Pregnancy
Hypertens. (2020) 22:210–5. doi: 10.1016/j.preghy.2020.10.006

59. Liang Y, Wang P, Shi Y, Cui B, Meng J. Long noncoding RNA maternally
expressed gene 3 improves trophoblast dysfunction and inflammation in preeclampsia
through the Wnt/b-Catenin/nod-like receptor pyrin domain-containing 3 axis. Front
Mol Biosci. (2022) 9:1022450. doi: 10.3389/fmolb.2022.1022450

60. Wang J, Zhu P, Toan S, Li R, Ren J, Zhou H. Pum2-Mff axis fine-tunes
mitochondrial quality control in acute ischemic kidney injury. Cell Biol Toxicol Aug.
(2020) 36:365–78. doi: 10.1007/s10565-020-09513-9

61. Sun X, Dong S, Kato H, Kong J, Ito Y, Hirofuji Y, et al. Mitochondrial calcium-
triggered oxidative stress and developmental defects in dopaminergic neurons
differentiated from deciduous teeth-derived dental pulp stem cells with MFF
insufficiency. Antioxidants (Basel). (2022) 11(7):1361. doi: 10.3390/antiox11071361

62. Jin S, Cojocari D, Purkal JJ, Popovic R, Talaty NN, Xiao Y, et al. 5-azacitidine
induces NOXA to prime AML cells for venetoclax-mediated apoptosis. Clin Cancer Res.
(2020) 26:3371–83. doi: 10.1158/1078-0432.CCR-19-1900

63. Zheng YJ, Liang TS, Wang J, Zhao JY, Yang DK, Liu ZS. Silencing lncRNA
LOC101928963 inhibits proliferation and promotes apoptosis in spinal cord glioma
cells by binding to PMAIP1. Mol Ther Nucleic Acids. (2019) 18:485–95. doi: 10.1016/
j.omtn.2019.07.026

64. Do H, Kim D, Kang J, Son B, Seo D, Youn H, et al. TFAP2C increases cell
proliferation by downregulating GADD45B and PMAIP1 in non-small cell lung cancer
cells. Biol Res. (2019) 52:35. doi: 10.1186/s40659-019-0244-5

65. Morsi RZ, Hage-Sleiman R, Kobeissy H, Dbaibo G. Noxa: role in cancer
pathogenesis and treatment. Curr Cancer Drug Targets. (2018) 18:914–28.
doi: 10.2174/1568009618666180308105048
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