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The role of lactylation in plasma
cells and its impact on
rheumatoid arthritis
pathogenesis: insights from
single-cell RNA sequencing and
machine learning
Weicong Fu, Tianbao Wang, Yehong Lu, Tiejun Shi*

and Qining Yang*

Department of Orthopedics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua
Municipal Central Hospital, Jinhua, Zhejiang, China
Introduction: Rheumatoid arthritis (RA) is a chronic autoimmune disorder

characterized by persistent synovitis, systemic inflammation, and autoantibody

production. This study aims to explore the role of lactylation in plasma cells and

its impact on RA pathogenesis.

Methods: We utilized single-cell RNA sequencing (scRNA-seq) data and applied

bioinformatics and machine learning techniques. A total of 10,163 cells were

retained for analysis after quality control. Clustering analysis identified 13 cell

clusters, with plasma cells displaying the highest lactylation scores. We

performed pathway enrichment analysis to examine metabolic activity, such as

oxidative phosphorylation and glycolysis, in highly lactylated plasma cells.

Additionally, we employed 134 machine learning algorithms to identify seven

core lactylation-promoting genes and constructed a diagnostic model with an

average AUC of 0.918.

Results: The RA lactylation score (RAlac_score) was significantly elevated in RA

patients and positively correlated with immune cell infiltration and immune

checkpoint molecule expression. Differential expression analysis between two

plasma cell clusters revealed distinct metabolic and immunological profiles, with

cluster 2 demonstrating increased immune activity and extracellular matrix

interactions. qRT-PCR validation confirmed that NDUFB3, NGLY1, and

SLC25A4 are highly expressed in RA.

Conclusion: This study highlights the critical role of lactylation in plasma cells for

RA pathogenesis and identifies potential biomarkers and therapeutic targets,

which may offer insights for future therapeutic strategies.
KEYWORDS
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Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disorder

characterized by inflammation and progressive joint destruction (1, 2).

Affecting approximately 0.5-1% of the global population, RA poses a

significant burden due to its debilitating nature, reduced quality of life,

and increased mortality rates (3–5). Despite extensive research, the

precise mechanisms underlying the pathogenesis of RA remain

incompletely understood, necessitating ongoing investigations to

uncover novel therapeutic targets and biomarkers for early diagnosis

and treatment (6).

RA is characterized by persistent synovitis, systemic

inflammation, and autoantibody production (7). The disease

typically manifests as symmetrical polyarthritis, primarily

affecting the small joints of the hands and feet, although large

joints and other organs can also be involved (8). The hallmark of RA

pathology is the formation of pannus, a hypertrophic synovial tissue

that invades and destroys adjacent cartilage and bone (9). This

destructive process is driven by a complex interplay of genetic,

environmental, and immunological factors.

The immune system plays a central role in the development and

progression of RA. A breakdown in immune tolerance leads to the

activation of autoreactive T and B cells, which produce

autoantibodies such as rheumatoid factor (RF) and anti-

citrullinated protein antibodies (ACPAs) (10–12). These

autoantibodies form immune complexes that contribute to the

activation of complement and the recruitment of inflammatory

cells into the synovium (9, 13). T cells, particularly CD4+ T helper

cells, are pivotal in RA pathogenesis (14, 15). They interact with

antigen-presenting cells and produce a variety of cytokines, including

tumor necrosis factor-alpha (TNF-a), interleukin-1 (IL-1), and

interleukin-6 (IL-6), which propagate the inflammatory response

(16–18). B cells also contribute to RA through autoantibody

production, antigen presentation, and cytokine secretion (19, 20).

Recent studies have highlighted the role of metabolic

reprogramming in immune cells during RA. Activated immune

cells undergo metabolic shifts to meet the increased energy

demands and biosynthetic needs required for proliferation,

differentiation, and effector functions (21–23). These metabolic

alterations include increased glycolysis, oxidative phosphorylation,

and lipid metabolism (24–26). Lactylation, a post-translational

modification involving the addition of lactate-derived lactyl

groups to lysine residues, has emerged as a significant regulatory

mechanism in cellular metabolism and gene expression (27).

Lactylation can modulate protein function and influence various

biological processes, including immune responses and

inflammation (28, 29). Given the importance of metabolic

reprogramming in RA, understanding the role of lactylation in

immune cells, particularly in the context of RA, is of great interest.

Plasma cells, the terminally differentiated form of B cells, are

crucial for antibody production (30). In RA, plasma cells are

abundant in the synovium and produce autoantibodies that

contribute to disease pathogenesis (31, 32). The persistence of

plasma cells in the inflamed synovium and their role in sustaining

chronic inflammation underscore their importance in RA (33).
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Recent evidence suggests that plasma cells exhibit distinct metabolic

profiles compared to other immune cells (7). The high metabolic

activity of plasma cells, characterized by enhanced oxidative

phosphorylation and glycolysis, supports their robust antibody

production. However, the role of lactylation in plasma cells and

its impact on RA progression remain largely unexplored.

Despite advances in understanding RA pathogenesis, current

therapeutic strategies remain inadequate, often failing to achieve

sustained remission in many patients. The heterogeneity of RA,

coupled with its complex molecular and immunological

mechanisms, underscores the need for novel biomarkers and

therapeutic targets. Recent research has highlighted the

importance of lactylation in regulating immune cell function and

metabolism, suggesting its potential role in RA pathogenesis. By

integrating cutting-edge technologies such as single-cell RNA

sequencing (scRNA-seq) and machine learning, we can now

analyze large-scale datasets with greater precision. machine

learning algorithms, in particular, enable the identification of

hidden patterns in gene expression data, the prioritization of key

regulatory genes, and the construction of predictive models for

disease diagnosis and treatment response. The aim of this study is to

investigate the role of lactylation in plasma cells and its impact on

RA pathogenesis. By utilizing scRNA-seq data and integrating

bioinformatics and machine learning techniques, we seek to

identify core lactylation-promoting genes and develop a robust

diagnostic model, providing novel insights into RA’s metabolic and

immunological mechanisms while highlighting potential

biomarkers and therapeutic targets for future intervention.
Methods

Data collection

Single-cell RNA sequencing data for RA was collected from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/), specifically

dataset GSE159117, which includes one RA sample sequenced

using the 10X Genomics platform. This dataset was selected

because it provides high-resolution insights into the cellular

heterogeneity of RA, allowing for the detailed analysis of specific

cell types, such as plasma cells, that are crucial for understanding

RA pathogenesis. The single-cell data enables us to explore gene

expression at an individual cell level, which is essential for

investigating the role of lactylation in plasma cells.

In addition, four bulk RNA sequencing datasets were selected

from GEO for machine learning purposes to enhance the

robustness and generalizability of our findings. These datasets

were chosen based on their relevance to RA, their sample sizes,

and their inclusion of both RA patients and normal controls,

allowing for comprehensive model training and validation. The

dataset GSE89408, which includes 28 normal samples and 152 RA

samples, was used as the training set due to its large sample size,

providing a solid foundation for model development. GSE12021 (9

normal and 12 RA samples), GSE55235 (10 normal and 10 RA

samples), and GSE55457 (10 normal and 13 RA samples) were
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selected as validation sets to ensure that our model could be

validated across multiple independent datasets, further

strengthening the reliability of the diagnostic model developed in

this study. The selection of these datasets was also guided by their

representation of both peripheral blood and synovial tissue, offering

a broader perspective on the mechanisms of RA across different

tissue types.
qRT-PCR analysis

RNA was extracted from tissues (tumoral and non-tumoral)

using an RNA isolation kit (Bioneer, Korea, Cat.No: K-3090) per

the manufacturer’s instructions. The extracted total RNA was

treated with DNase I to digest the genomic DNA. By using gel

electrophoresis and spectrophotometry, the quality and quantity of

RNA were determined. After treating the samples with an RNase

inhibitor, RNA was converted to cDNA using the PrimeScript RT

reagent kit (Takara Bio, Ohtsu, Japan Cat.No. RR037A). Lastly,

qRT-PCR analysis was performed on a Rotor-Gene Q instrument

(QIAGEN, Germany) using SYBR Green Premix Ex Taq (TaKaRa,

Otsu, Shizuoka, Japan, Cat.No: RR420A). The qRT-PCR conditions

were 95°C for 10 min (pre‐denaturation) and forty cycles of 95°C

for 10 s (denaturation), 61°C for 20 s (annealing), and 72°C for 25 s

(extension). As an internal control, beta-actin (b-Actin)
was utilized.
Single-Cell RNA sequencing
data processing

Single-cell RNA sequencing data analysis was conducted using

Seurat version 4.2.2. The dataset was first loaded and subjected to

quality control, removing cells with fewer than 300 or more than

4000 RNA features, or with mitochondrial gene content greater

than 10%. Data normalization and scaling were performed using the

SCTransform function. Dimensionality reduction and clustering

were conducted by selecting the top 15 principal components,

followed by clustering with the RunUMAP function. Cell types

were annotated using SingleR and previously reported literature.

Marker genes for each cell type were identified using the

FindAllMarkers function.
Cell communication analysis

The “CellChat” R package (version 1.5.0) was used to reveal

potential intercellular communication mechanisms at the single-cell

level. The createCellChat function was employed to construct the

CellChat object, and the aggregateNet function was used to describe

the signaling emitted from each cell type. Intercellular

communication quantities and weights were visualized using the

netVisual_circle function, and the netAnalysis_computeCentrality

function was used to infer the input and output weights of specific

signaling pathways.
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Lactylation scoring

Lactylation-related gene sets were obtained from the GSEA

website, comprising a total of 10 pathways. After removing

duplicates, 329 lactylation-related genes (LRGs) were identified to

form the lactylation gene set. To calculate lactylation scores, we

applied the AUCell package, which quantifies the activity of a gene

set in individual cells by evaluating whether the expression of genes

from the set is enriched in the top-ranking genes of each cell.

Specifically, we used the AUCell_calcAUC function to calculate the

Area Under the Curve (AUC) for each cell, based on the ranking of

gene expression levels. This method allows us to assess the relative

expression of the lactylation gene set within each cell, resulting in a

lactylation score that reflects the activity of lactylation-related

pathways in individual cells.

To ensure robustness, the lactylation scores were calculated for

all cells, and we compared these scores across different cell

subpopulations to identify those most associated with lactylation

activity. The AUCell algorithm’s non-parametric approach makes it

ideal for single-cell RNA sequencing data, as it allows for accurate

scoring even in cases of sparse gene expression. The resulting

lactylation scores were visualized using violin plots generated by

ggplot2, providing a clear comparison of lactylation activity across

various cell types.
scMetabolism metabolic analysis

Metabolic characteristics of various cell types within the

scRNA-seq data were assessed using the R package scMetabolism.

This analysis employed the AUCell scoring principle to evaluate 85

metabolic pathways. Key pathways related to glucose metabolism

and lipid metabolism were visualized using bubble plots.
Pathway and enrichment analysis

Pathway enrichment analysis was conducted using the irGSEA

package, a robust R package equipped with multiple scoring

functions to assist in pathway scoring. This study integrated

AUCell, UCell, and GSVA algorithms, and combined the pathway

activation results using the RAA method to calculate the

upregulation and downregulation of HALLMARK gene sets.

Additionally, the “clusterProfiler” package was utilized for KEGG

and GOBP enrichment analyses of plasma cells, with the results

visualized using ggplot2.
Machine learning

To identify genes associated with RA and construct a robust

diagnostic model, we employed 12 machine learning algorithms for

screening and modeling. These algorithms—Lasso, NaiveBayes,

SVM, glmBoost, Enet, plsRglm, XGBoost, LDA, Stepglm, Ridge,

RandomForest, and GBM—were selected based on their
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1453587
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fu et al. 10.3389/fimmu.2024.1453587
complementary strengths in handling high-dimensional gene

expression data and diverse model requirements. Lasso, Ridge,

and Enet are effective for regularization and preventing

overfitting, crucial for gene selection. SVM is robust for non-

linear classification tasks, while RandomForest and GBM, as

ensemble methods, improve predictive accuracy and reduce

variance. XGBoost was chosen for its efficiency in handling large

datasets with strong predictive performance. Simpler methods like

NaiveBayes and LDA were included for their ability to capture

probabilistic relationships, while plsRglm and glmBoost provide

flexibility with regularization and boosting (34). Stepglm was

specifically used for variable selection, identifying the most

relevant lactylation-promoting genes. The use of 134 algorithmic

combinations ensured comprehensive variable selection and model

construction. Diagnostic performance was evaluated using average

AUC values from the training and validation sets, ensuring we

selected the most predictive and reliable model for RA diagnosis.
Immune-related analysis

Relative enrichment scores for 29 immune cell types and

immune processes were calculated using the GSVA and

GSEABase packages, following the ssGSEA strategy. Correlation

analyses were performed between immune cell types and the RA

lactylation score (RAlac_score). Samples were divided into high

RAlac_score and low RAlac_score groups based on the median

RAlac_score, and the activation of immune processes was

compared between these groups. The expression of immune

checkpoint molecules was analyzed for correlation with

RAlac_score, and correlation bubble plots were generated

using ggplot2.
Consensus clustering

To further explore the functions of core lactylation genes

in RA, unsupervised clustering was performed using the

“ConsensusClusterPlus” package, with K=2 selected as the optimal

parameter. PCA plots were created using the “FactoMineR” and

“factoextra” packages. Differential analysis between the two

subgroups was conducted using the Limma package, and heatmaps

were generated using the pheatmap package. Enrichment analysis

was performed with the “clusterProfiler” package, and visualization

was done using the aPEAR package.
Clinical prediction model construction

To apply the RA lactylation diagnostic model in clinical

decision-making, a clinical prediction model was constructed

using a multivariate logistics algorithm. The rms package was

used for model construction and calibration curve calculation,

and ROC curves were plotted using the ROCR package.
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Results

Integration and quality control of single-
cell data

Before analyzing the lactylation in RA, single-cell data was

integrated and quality controlled according to methodological

standards, retaining 10,163 cells for downstream analysis. Based

on the ElbowPlot results, the top 15 principal components were

selected for dimensional reduction clustering, resulting in 13

clusters labeled from 0 to 12 (Figure 1A). These clusters were

annotated into six cell types according to SingleR and previous

literature (Figure 1B). The markers for each cell type were as

follows: T cells (CD3D, CD3E), monocytes/macrophages (LYZ,

CD14, CD68), NK cells (NKG7, GZMB), B cells (CD79A,

MS4A1), plasma cells (CD38, XBP1), and granulocytes (CTSB,

IRF7) (Figure 1C).
Cellular communication and activation
in RA

Evaluation of cell-to-cell communication revealed that B cells

and plasma cells sent a large number of signals to other cells,

suggesting their activation is related to the development of RA

(Figures 1D, E). Using the AUCell algorithm, lactylation scores

were calculated for each cell type, showing the highest scores in

plasma cells (Figure 1F). This implies that plasma cells might

activate the lactylation process through extensive signaling,

altering the surrounding microenvironment and contributing to

the onset of RA. Since lactylation involves metabolic processes, the

metabolic changes in various cell types were further assessed, with

oxidative phosphorylation, glycolysis/gluconeogenesis, and

glycerolipid metabolism significantly upregulated in plasma cells,

indicating a strong correlation with metabolism (Figure 1G).
Pathway enrichment analysis

HALLMARK pathway enrichment analysis of all cells indicated

a significant activation of the unfolded protein response in plasma

cells, closely related to endoplasmic reticulum stress, while TNFa
and TGFb pathways were significantly downregulated (Figure 2A).

Consistent with previous analysis, GOBP analysis showed

significant upregulation of oxidative phosphorylation,

glycosylat ion, and endoplasmic reticulum stress , and

downregulation of immune activation and differentiation

(Figure 2B). KEGG analysis similarly revealed significant

upregulation of oxidative phosphorylation and downregulation of

immune chemotaxis (Figure 2C). These results suggest that plasma

cells do not accelerate the development of RA through immune

activation but rather by activating their metabolic pathways to

promote autoantibody production.
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Intersection of Differentially Expressed
Genes and Lactylation-Related Genes

Venn diagram analysis showed 25 intersecting genes between

highly expressed differential genes in plasma cells and lactylation-

related genes. The following analysis will focus on the elucidation of

these intersecting genes (Figure 2D).
Identification of Core Lactylation-
Promoting Genes in Plasma Cells for RA

The role of lactylation in plasma cells is significant in the

development of RA. However, the core lactylation-promoting

genes remain unidentified. To address this, 134 algorithms across

12 machine learning models were used to screen for key lactylation-

promoting genes and construct diagnostic models for RA. Results
Frontiers in Immunology 05
showed that the Stepglm[forward] model built after gene selection

by glmBoost had the highest diagnostic performance, with an

average AUC of 0.918 (Figure 3A). This diagnostic model

retained seven core lactylation genes for RA, allowing the

calculation of the RAlac_score for each sample. Both training and

validation sets showed significantly higher RAlac_scores in the RA

group compared to the normal group, indicating a higher likelihood

of developing RA with an elevated RAlac_score (Figures 3B-E).

Violin plots revealed that CALR, NDUFB3, NGLY1, and TMEM70

were highly expressed in the RA group, while NDUFAF3, SIL1, and

SLC25A4 were highly expressed in the control group (Figure 3F).

Correlation between RAlac_score and
immune overactivation

Given the association of RA with immune-inflammatory

responses, the relationship between RAlac_score and immune
FIGURE 1

Identification and annotation of cell clusters in RA single-cell data. (A) ElbowPlot showing the variance explained by each of the principal
components. The top 15 principal components were selected for clustering analysis. (B) UMAP plot displaying 13 clusters (0-12) identified from the
single-cell RNA sequencing data. Clusters were annotated into six cell types based on SingleR and literature. (C) Dot plot showing the expression of
marker genes for each annotated cell type: T cells (CD3D, CD3E), monocytes/macrophages (LYZ, CD14, CD68), NK cells (NKG7, GZMB), B cells
(CD79A, MS4A1), plasma cells (CD38, XBP1), and granulocytes (CTSB, IRF7). (D) Heatmap illustrating the cell-cell communication network, with B
cells and plasma cells sending numerous signals to other cell types. (E) Bar graph depicting the number of communication signals sent and received
by each cell type. (F) Violin plot comparing lactylation scores across different cell types, calculated using the AUCell algorithm. Plasma cells show the
highest lactylation scores. (G) Heatmap showing the expression of key metabolic pathways, including oxidative phosphorylation, glycolysis/
gluconeogenesis, and glycerolipid metabolism, across different cell types. Plasma cells exhibit significant upregulation of these pathways.
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overactivation was evaluated. The results demonstrated a significant

positive correlation between RAlac_score and various immune cells,

including Treg, Th1, Th2, B cells, NK cells, neutrophils, Tfh cells, CD8+

T cells, pDC, and macrophages, indicating that patients with higher

RAlac_scores had more intense immune infiltration and immune

responses (Figures 4A-J). Similarly, all immune processes, including

immune co-stimulation, were upregulated in patients with high

RAlac_scores (Figure 4K). Most immune checkpoint molecules were

positively correlated with RAlac_score, suggesting that RA patients are

generally in a state of high immune activation, and immune checkpoint

inhibitors (ICI) might be a potential therapeutic approach (Figure 4L).
Diagnostic efficacy of core RA
lactylation genes

The diagnostic efficacy of the seven core lactylation genes for

RA showed significant differences. Among the four RA gene sets,

NDUFB3, NGLY1, and SLC25A4 had the highest diagnostic
Frontiers in Immunology 06
efficiency, with AUCs ranging from 0.7 to 0.91 (Figures 5A-D).

The expression correlations between genes also displayed unique

characteristics, with significant positive correlations observed

between NGLY1 and CALR, NDUFB3 and CALR, and NDUFB3

and NGLY1. In contrast, NDUFB3 and SIL1, and NDUFAF3 and

NGLY1 had significant negative correlations (Figure 5E).

GENEMANIA analysis showed that the proteins expressed by

these genes primarily had co-expression relationships (Figure 5F).
Consistent clustering using core RA
lactylation genes

Using the expression matrix of the seven core lactylation genes in

RA, consistent clustering was performed. Based on the CDF results

and the clustering heatmap, k=2 was selected for stable clustering

results (Figures 6A, B). PCA analysis revealed significant characteristic

differences between the two clusters (Figure 6C). Differential analysis

between the two clusters identified 1,621 differentially expressed genes
FIGURE 2

Pathway enrichment analysis of plasma cells. (A) HALLMARK pathway enrichment analysis indicating significant activation of the unfolded protein
response and downregulation of TNFa and TGFb pathways in plasma cells. (B) GOBP analysis showing upregulation of oxidative phosphorylation,
glycosylation, and endoplasmic reticulum stress, with downregulation of immune activation and differentiation in plasma cells. (C) KEGG pathway
analysis highlighting significant upregulation of oxidative phosphorylation and downregulation of immune chemotaxis in plasma cells. (D) Venn
diagram displaying the intersection of differentially expressed genes in plasma cells and lactylation-related genes, identifying 25 overlapping genes
for further analysis.
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with logFC absolute value greater than 1 and adjusted P value less than

0.05 (Figure 6D). A heatmap displayed the top 50 upregulated and

downregulated genes (Figure 6E). Enrichment analysis highlighted the

GO and KEGG pathways activated in cluster 2, associated with

immune activity and extracellular matrix interaction (Figures 6F, G).
Differential expression and pathway
activation in clusters

The core lactylation genes showed different expression patterns

between the two subgroups, with NDUFAF3 and SIL1 highly
Frontiers in Immunology 07
expressed in cluster 1, and CALR, NDUFB3, NGLY1, and

TMEM70 highly expressed in cluster 2 (Figure 7A). Cluster 1

primarily expressed MHC-I molecules such as HLA-A and HLA-

C, whereas cluster 2 primarily expressed MHC-II molecules

(Figure 7B). Most chemokines and TNF family molecules were

highly expressed in cluster 2, indicating that cluster 2 is an

inflammatory and chemotactic subtype related to immune

activation (Figures 7C, D). The Estimate algorithm was used to

assess the activation of the microenvironment, showing that the

stromal score, immune score, and microenvironment score were all

significantly higher in cluster 2 (Figure 7E).
FIGURE 3

Identification of core lactylation-promoting genes in RA. (A) Bar graph showing the average AUC values of various machine learning models. The
Stepglm[forward] model, built after gene selection using glmBoost, demonstrates the highest performance with an average AUC of 0.918. (B-E) Box
plots comparing RAlac_scores between normal and RA groups in the training set and three validation sets. RAlac_scores are significantly higher in
the RA group across all datasets. (F) Violin plots depicting the expression levels of the seven core lactylation-promoting genes (CALR, NDUFB3,
NGLY1, TMEM70, NDUFAF3, SIL1, SLC25A4) in normal and RA samples. CALR, NDUFB3, NGLY1, and TMEM70 are highly expressed in the RA group,
while NDUFAF3, SIL1, and SLC25A4 are highly expressed in the control group. ** mean P < 0.01, *** mean P < 0.001.
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Single-cell expression and clinical
prediction model

At the single-cell expression level, all seven RA lactylation genes

were distinctly expressed in plasma cells (Figure 8A). The

aggregated expression density of these seven genes also indicated

their presence in plasma cells (Figure 8B). Based on the core RA

lactylation genes, a clinical prediction model for RA was

constructed to evaluate the probability of developing rheumatoid

arthritis (Figure 8C). This clinical prediction model demonstrated

good predictive performance and calibration, with an area under

the ROC curve exceeding 0.9 (Figures 8D, E). Finally, we found

through qRT-PCR experimental analysis that NDUFB3, NGLY1,
Frontiers in Immunology 08
and SLC25A4 are highly expressed in rheumatoid arthritis

compared with normal tissues (Figure 9).
Discussion

The findings of this study highlight the significant role of

lactylation in plasma cells in the pathogenesis of RA. By

integrating scRNA-seq data and employing advanced

bioinformatics and machine learning approaches, we identified

core lactylation-promoting genes and constructed a diagnostic

model for RA. This discussion will contextualize our findings

within the broader landscape of RA research, comparing them
FIGURE 4

Correlation between RAlac_score and immune activation. (A-J) Scatter plots showing significant positive correlations between RAlac_score and
various immune cell types, including Treg, Th1, Th2, B cells, NK cells, neutrophils, Tfh cells, CD8+ T cells, pDC, and macrophages. (K) Box plots
comparing the activation of various immune processes, including immune co-stimulation, between high RAlac_score and low RAlac_score groups.
All immune processes are upregulated in the high RAlac_score group. (L) Correlation bubble plot illustrating the positive correlation between
RAlac_score and the expression of various immune checkpoint molecules, indicating a state of high immune activation in RA patients. ***P w 0.001.
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with existing studies and elucidating their implications for diagnosis

and therapy.

Our study aligns with the growing body of literature that

emphasizes the importance of metabolic reprogramming in

immune cells during RA. Previous studies have demonstrated that

immune cells, particularly T cells and macrophages, undergo

metabolic shifts to support their effector functions during

inflammation (35). However, the role of plasma cells and their

metabolic adaptations in RA has been less explored. Our results add

to this emerging understanding by identifying lactylation as a

crucial post-translational modification in plasma cells, implicating

it in the disease’s metabolic landscape.

Previous research has shown that plasma cells are abundant in

the RA synovium and are responsible for the production of

autoantibodies such as rheumatoid factor (RF) and ACPAs,

which contribute to the disease’s pathogenesis (31, 36). However,

the specific metabolic pathways and regulatory mechanisms

governing plasma cell function in RA have remained unclear. Our
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study provides evidence that lactylation is significantly upregulated

in plasma cells, suggesting a novel regulatory axis that might

influence autoantibody production and immune activation in RA.

The identification of core lactylation-promoting genes and their

association with immune activation pathways provides novel

insights into the mechanisms underlying RA. Lactylation, as a

post-translational modification derived from lactate, has been

shown to regulate gene expression and protein function, thus

influencing various cellular processes (27). Our findings indicate

that plasma cells with high lactylation scores exhibit enhanced

metabolic activities, including oxidative phosphorylation and

glycolysis, which are essential for sustaining the high energy

demands of these cells during antibody production.

Interestingly, our study found a significant positive correlation

between the RAlac_score and immune cell infiltration, including

Treg, Th1, Th2, B cells, NK cells, and others. This suggests that

lactylation in plasma cells might be driving a pro-inflammatory

environment in RA. These findings are consistent with recent
FIGURE 5

Diagnostic efficacy and expression correlation of core RA lactylation genes. (A-D) ROC curves showing the diagnostic efficacy of NDUFB3, NGLY1,
SLC25A4, and other core RA lactylation genes, with AUC values ranging from 0.7 to 0.91. (E) Correlation heatmap showing the expression
relationships between core RA lactylation genes. NGLY1 and CALR, NDUFB3 and CALR, and NDUFB3 and NGLY1 exhibit significant positive
correlations, while NDUFB3 and SIL1, and NDUFAF3 and NGLY1 show significant negative correlations. (F) GENEMANIA network analysis
demonstrating that the proteins expressed by these genes primarily have co-expression relationships.
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studies highlighting the role of metabolic reprogramming in

supporting the inflammatory functions of immune cells (37). The

upregulation of chemokines and TNF family molecules in cluster 2,

which had higher lactylation scores, further supports this notion,

indicating that these cells are likely contributing to the

inflammatory milieu characteristic of RA.

Pathway enrichment analyses revealed that genes upregulated

in cluster 2 were associated with immune activity and extracellular
Frontiers in Immunology 10
matrix interactions, which are critical in the pathogenesis of RA.

The involvement of pathways related to oxidative phosphorylation,

glycolysis, and endoplasmic reticulum stress in cluster 2 aligns with

previous studies that have shown these metabolic processes are

crucial for the function and survival of activated immune cells.

Moreover, our study identified significant upregulation of MHC-II

molecules in cluster 2, which is known to play a role in antigen

presentation and T cell activation. This finding suggests that plasma
FIGURE 6

Consensus clustering and differential expression analysis. (A, B) CDF plot and clustering heatmap showing stable clustering results with K=2 for the
expression matrix of the seven core RA lactylation genes. (C) PCA plot demonstrating significant characteristic differences between the two clusters.
(D) Volcano plot of differential gene expression analysis between the two clusters, with 1621 differentially expressed genes identified (logFC >1 and
adjusted P <0.05). (E) Heatmap showing the top 50 upregulated and top 50 downregulated genes in the differential expression analysis between the
two clusters. (F, G) Enrichment analysis plots displaying the GO and KEGG pathways activated in cluster 2, associated with immune activity and
extracellular matrix interactions.
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cells with high lactylation scores might be enhancing antigen

presentation and subsequent T cell activation, thus perpetuating

the inflammatory response in RA. The positive correlation

between immune checkpoint molecules and RAlac_score further

indicates a state of heightened immune activation, which could be

targeted by immune checkpoint inhibitors (ICI) as a potential

therapeutic strategy.

The identification of core lactylation-promoting genes and the

development of a diagnostic model based on these genes have

significant clinical implications. Our diagnostic model, with an area

under the ROC curve exceeding 0.9, demonstrates high predictive

performance and calibration, suggesting its potential utility in

clinical settings for early diagnosis and risk stratification of RA

patients. The core lactylation-promoting genes identified in our

study, including NDUFB3, NGLY1, SLC25A4, and others, could
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serve as potential biomarkers for RA. Their expression patterns in

plasma cells and their association with metabolic reprogramming

and immune activation highlight their relevance in the disease’s

pathogenesis. Future studies should validate these findings in larger

cohorts and explore their potential as therapeutic targets. Targeting

lactylation pathways in plasma cells might modulate their metabolic

activities and reduce autoantibody production, thereby mitigating

the inflammatory response in RA.

Despite the significant findings, our study has some limitations.

The use of scRNA-seq data, while providing high-resolution

insights into cellular heterogeneity, is limited by its snapshot

nature, capturing gene expression profiles at a single time point.

Longitudinal studies are needed to understand the dynamic changes

in lactylation and metabolic reprogramming in plasma cells during

the progression of RA. Furthermore, while we employed a variety of
frontiersin.or
FIGURE 7

Differential expression and immune activation in RA clusters. (A) Box plot showing the differential expression of core lactylation genes between the
two clusters. NDUFAF3 and SIL1 are highly expressed in cluster 1, while CALR, NDUFB3, NGLY1, and TMEM70 are highly expressed in cluster 2. (B)
Heatmap illustrating the expression of MHC molecules. MHC-I molecules (HLA-A, HLA-C) are primarily expressed in cluster 1, whereas MHC-II
molecules are highly expressed in cluster 2. (C, D) Heatmaps showing the expression of various chemokines and TNF family molecules, which are
predominantly expressed in cluster 2, indicating an inflammatory and chemotactic subtype associated with immune activation. (E) Box plots
comparing the stromal score, immune score, and microenvironment score between the two clusters, calculated using the Estimate algorithm.
All scores are significantly higher in cluster 2, suggesting enhanced microenvironment activation. * mean P < 0.05, ** mean P < 0.01, *** mean
P < 0.001.
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machine learning algorithms, it is important to acknowledge the

limitations associated with these approaches. Different machine

learning systems may produce varying results depending on the

dataset and parameters used, and the complexity of integrating

multiple algorithms can introduce potential biases. Although we

aimed to mitigate this by using a comprehensive set of algorithms,

further optimization and validation are required to ensure

robustness and generalizability. Additionally, functional validation

of the diagnostic and therapeutic targets identified by these models

is essential. Experimental studies should investigate the specific

roles of lactylation-promoting genes in plasma cell function and

their contribution to RA pathogenesis. Moreover, the therapeutic
Frontiers in Immunology 12
potential of targeting lactylation pathways should be explored in

preclinical models of RA to assess their efficacy and safety.

In conclusion, our study underscores the significant role of

lactylation in plasma cells in the pathogenesis of RA. By integrating

scRNA-seq data with advanced bioinformatics and machine

learning approaches, we identified core lactylation-promoting

genes and developed a highly predictive diagnostic model for RA.

These findings provide new insights into the metabolic and

immunological mechanisms driving RA and highlight potential

biomarkers and therapeutic targets for this debilitating disease.

Future directions for research should focus on elucidating the

precise molecular mechanisms of lactylation in plasma cells,
FIGURE 8

Expression of Core RA Lactylation Genes and Clinical Prediction Model. (A) Violin plot depicting the expression of the seven core RA lactylation
genes in plasma cells at the single-cell level. (B) Density plot showing the aggregated expression of the seven core RA lactylation genes in plasma
cells. (C) Flowchart illustrating the construction of the clinical prediction model for RA based on core lactylation genes. (D, E) ROC curves displaying
the performance of the clinical prediction model, with an area under the ROC curve (AUC) exceeding 0.9, indicating good predictive efficacy
and calibration.
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particularly its role in regulating immune responses and metabolic

pathways. Additionally, further experimental studies are needed to

validate these findings in larger patient cohorts and explore the

therapeutic potential of targeting lactylation pathways in

RA treatment.
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FIGURE 9

All genes are highly expressed. (A) NDUFB3 gene expression. (B) NGLY1 gene expression. (C) SLC25A4 gene expression.
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