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Objective: Develop a predictive model utilizing weakly supervised deep learning

techniques to accurately forecast major pathological response (MPR) in patients

with resectable non-small cell lung cancer (NSCLC) undergoing neoadjuvant

chemoimmunotherapy (NICT), by leveraging whole slide images (WSIs).

Methods: This retrospective study examined pre-treatment WSIs from 186

patients with non-small cell lung cancer (NSCLC), using a weakly supervised

learning framework. We employed advanced deep learning architectures,

including DenseNet121, ResNet50, and Inception V3, to analyze WSIs on both

micro (patch) andmacro (slide) levels. The training process incorporated innovative

data augmentation and normalization techniques to bolster the robustness of the

models. We evaluated the performance of these models against traditional clinical

predictors and integrated them with a novel pathomics signature, which was

developed using multi-instance learning algorithms that facilitate feature

aggregation from patch-level probability distributions.
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Results: Univariate and multivariable analyses confirmed histology as a

statistically significant prognostic factor for MPR (P-value< 0.05). In patch

model evaluations, DenseNet121 led in the validation set with an area under

the curve (AUC) of 0.656, surpassing ResNet50 (AUC = 0.626) and Inception V3

(AUC = 0.654), and showed strong generalization in external testing (AUC =

0.611). Further evaluation through visual inspection of patch-level data

integration into WSIs revealed XGBoost’s superior class differentiation and

generalization, achieving the highest AUCs of 0.998 in training and robust

scores of 0.818 in validation and 0.805 in testing. Integrating pathomics

features with clinical data into a nomogram yielded AUC of 0.819 in validation

and 0.820 in testing, enhancing discriminative accuracy. Gradient-weighted

Class Activation Mapping (Grad-CAM) and feature aggregation methods

notably boosted the model’s interpretability and feature modeling.

Conclusion: The application of weakly supervised deep learning to WSIs offers a

powerful tool for predicting MPR in NSCLC patients treated with NICT.
KEYWORDS

non-small cell lung cancer, major pathological response, neoadjuvant

chemoimmunotherapy, whole slide image, weakly supervised learning
Introduction

The employment of neoadjuvant chemoimmunotherapy

(NICT) has risen as an effective method for managing resectable

non-small cell lung cancer (NSCLC). A number of research has

explored its viability and efficacy, showcasing that this strategy can

enhance pathological response rates and complete tumor removal.

Furthermore, it assists in managing microscopically invisible

metastases, thus favorably influencing patient outcomes (1–6).

In many trials focusing on neoadjuvant immunotherapy for

NSCLC, major pathological response (MPR) is considered a key

predictor for overall survival (OS) and disease-free survival (DFS).

However, the rates of MPR observed in current clinical research on

NICT display a wide variance, ranging from 18% to 83% (1, 3–5,

7–14). This disparity underscores that not all patients derive benefit

from NICT; indeed, ineffective treatment may lead to delays in

surgical intervention and an increased likelihood of immune-

related side effects. Consequently, crafting a dependable predictive

model for MPR response to NICT in patients with resectable

NSCLC is crucial, offering the potential to tailor treatments more

effectively and enhance patient outcomes.

Tissue specimens stained with Hematoxylin and Eosin (H&E)

contain a wealth of useful information for routine histopathological

analysis. Artificial intelligence (AI) is increasingly used to analyze

H&E stained histopathological images for differential diagnosis and

prognosis prediction in NSCLC studies, enhancing the evaluation of

conventional histological slides (15–22). This approach holds

immense potential for disease research, as AI algorithms can
02
assist clinicians and pathologists in their decision-making by

analyzing whole slide images (WSIs).

Weakly supervised learning has garnered widespread attention

due to its significant advantage in reducing the workload of manual

annotation and has been gradually applied in the field of

pathological image analysis (23–25). The classic patch-based

weakly supervised method provides a specific workflow for

processing histological images. Due to the expansive dimensions

of WSIs, segmentation into smaller tiles is necessary for processing,

with an averaging method subsequently aggregating the tile-level

predictions for each slide (26). This approach has introduced a new

level of flexibility and application prospects in the realm of weakly

supervised learning for pathological image analysis.

In this study, we developed a weakly supervised deep learning

model utilizing pre-treatment WSIs to predict MPR in patients

undergoing NICT for NSCLC. The model’s predictions can serve as

a reference for physicians to enhance treatment planning.
Materials and methods

Data collection

The flowchart illustrating the cohort selection process for this

study is presented in Figure 1. This study initially enrolled 302

patients who received NICT followed by surgical intervention from

November 24, 2020, to March 10, 2024. However, 116 patients were

subsequently excluded based on predefined criteria. All pre-treatment
frontiersin.org
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H&E-stained slides were digitized into WSIs using a WISLEAP

scanner and then converted to NDPI format via NDPView2

software. Ultimately, 186 patients contributing 212 WSIs diagnosed

with NSCLC were retrospectively selected from three institutions.

The allocation of patients across these institutions was as follows: 150

from Shandong Cancer Hospital (Database 1), 23 from Shanxi

Cancer Hospital (Database 2), and 13 from the First People’s

Hospital of Jining City (Database 3). Within the training cohort,

samples were apportioned into a training subset and an internal

validation subset at a 7:3 ratio. Due to sample size constraints, data

from Databases 2 and 3 were amalgamated to constitute the

test datasets.

Full details regarding the treatment protocols can be found in

Supplementary Data Sheet 2. This study was conducted in accordance

with the 8th edition of the American Joint Committee on Cancer

(AJCC) Tumor, Node, Metastasis (TNM) staging system. MPR was

defined as the presence of less than 10% viable tumor cells in the

pathological examination of the surgical specimen (27). The conduct

of this study was in strict compliance with the principles of the

Declaration of Helsinki and received ethical clearance from

the institutional review board (number: SDTHEC2024002010). This

study, which was retrospectively registered with the ResearchRegistry

(registration ID: researchregistry10216). Additionally, the study

received further ethical approvals from the Institutional Review

Board of the First People’s Hospital of Jining City (approval

number: JNRM-2024-KY-037) and the Medical Ethics Committee
Frontiers in Immunology 03
of Shaanxi Cancer Hospital [approval number: Ethics Review No. 39

(2024)]. Owing to its retrospective design and the absence of any risk

to participants, the need for informed consent was duly waived.

Figure 2 depicts the comprehensive workflow of our study.
Data processing

In processing the WSIs, which typically span dimensions of

approximately 100,000 x 50,000 pixels, we utilized a 20x

magnification to capture these images, resulting in a pixel

resolution of about 0.5 mm/pixel. The WSIs were subsequently

divided into smaller segments of 512x512 pixels each. By employing

a series of image processing techniques, including grayscale

conversion, Otsu’s thresholding, and morphological operations

for background removal, we efficiently eliminated all white

backgrounds from these patches. This process resulted in over

17,000 distinct, non-overlapping tiles.

During the model’s training phase, we incorporated online data

augmentation strategies to increase the dataset’s variability. This

included random horizontal and vertical flips of the image patches.

To maintain a standardized input size, we meticulously performed

center cropping to adjust the dimensions to 224 x 224 pixels, and

specifically to 299 x 299 pixels for the Inception V3 architecture.

Additionally, Z-score normalization was applied to the RGB

channels to normalize the distribution of pixel values.
FIGURE 1

Flowchart of the cohorts used in this study.
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Weakly supervised learning

In our study, we employed deep learning algorithms to facilitate

predictive analysis at both the micro (patch) and macro (WSI)

levels. The segmentation of WSIs into smaller, discrete patches was

undertaken, ensuring that each patch from a single specimen

uniformly bore the same MPR designation. To predict outcomes

at the patch level, we meticulously evaluated three prominent neural

network architectures: DenseNet121, ResNet50, and Inception V3.

The objective was to ascertain the precision with which each patch

could be classified into a category mirroring its overarching

WSI classification.

To improve the generalizability of our pathology model, we

optimized the learning rate employing a cosine decay algorithm,

ensuring a refined and effective adjustment over the training period.

This approach is characterized as follows:

ht = hi
min +

1
2
(hi

max − hi
min) 1 + cos

Tcur

Ti
p

� �� �

In this formulation, hi
min = 0 sets the minimum learning rate,

hi
max = 0:01 establishes the maximum learning rate, and Ti = 50

denotes the number of epochs in the iterative training process. This
Frontiers in Immunology 04
learning rate schedule employs a gradual diminution strategy,

enabling precise model refinement throughout the training phase.

For further refinement of the training approach and to increase

predictive accuracy, we utilized stochastic gradient descent as the

optimization technique. Additionally, softmax cross-entropy served

as the loss function, aiding in calculating the probability

distribution over the intended target classes.
Multi-instance learning for WSI integration

Upon completing the training of our deep learning model, we

directed our efforts towards predicting labels and corresponding

probabilities for individual patches. Subsequently, these

probabilities were aggregated through a classifier to formulate

predictions at the WSI level. In our study, we employed the

densenet121 model to predict labels and obtain corresponding

probabilities for each patch, denoted as Patchprob and Patchpred,

respectively. The prediction probabilities were precisely rounded to

two decimal places.

In our study, we developed two machine learning strategies for

integrating patch-level probabilities. Firstly, employing histogram
FIGURE 2

Overall workflow of the study.
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feature aggregation for the Probability Label Heatmap (PLH), we

categorized each unique numerical value as a “bin,” monitoring the

occurrence of data types within these bins. We specifically tallied the

frequencies of Patchprob and Patchpred in each bin and applied min-

max normalization across all features. This process culminated in the

generation of Histoprob and Histopred, enhancing data interpretability.

Secondly, we implemented the Bag of Words (BoW) feature

aggregation method, initiating with a comprehensive dictionary

comprising unique dataset elements. Each patch was vectorized

according to the presence of these elements, with further

refinement via term frequency-inverse document frequency (TF-

IDF) transformation, emphasizing the significance of unique,

informative features. This approach yielded a BoW feature

representation for each patch, effectively encapsulating feature

presence and relevance. The final BoW features, denoted as

BoWprob and BoWpred offered a comprehensive, weighted overview,

priming them for advanced analytical applications.

In the final phase of our feature fusion approach, based on

multi-instance learning, we integrated previously derived features:

Histoprob, Histopred, Bowprob, and Bowpred. To accomplish this

integration, we employed a feature concatenation method

symbolized by ⊕, effectively merging these distinct feature sets

into a single, comprehensive feature vector. The specific formula for

this concatenation is as follows:

featurefusion = Histoprob ⊕ Histopred ⊕ Bowprob ⊕ Bowpred
Pathomics signature

In our study, we developed a nuanced pathomics signature by

integrating patch-level predictions, probability histograms, and TF-

IDF features to create individualized patient profiles. To refine

feature selection, we employed the Pearson correlation coefficient,

retaining only one feature from each pair with a correlation

exceeding 0.9. The model integrates a diverse array of machine

learning methodologies, encompassing Logistic Regression (LR),

Support Vector Machine (SVM), Random Forest, LightGBM,

ExtraTrees, and XGBoost. Together, these techniques form what

is termed the pathomics signature.
Model evaluation and statistical analysis

Model accuracy was evaluated through receiver operating

characteristic (ROC) curves. Statistical analyses, comprising

independent sample t-tests for continuous variables and c² tests

for discrete variables, were performed to evaluate differences in

patients’ clinical characteristics. Univariate and multivariate logistic

regression analyses were utilized to examine clinical characteristics,

retaining those with P-values< 0.05 in the combined model for

further use. For practical clinical application, we integrated

significant clinical characteristics with the pathomics signature

into a combined model, which is visualized through a nomogram

for ease of interpretation.
Frontiers in Immunology 05
All selected patients were regularly followed up through

outpatient visits and telephone check-ins. During the follow-up

period, they underwent routine physical examinations and chest-

enhanced computed tomography (CT) scans, with additional tests

such as positron emission tomography-computed tomography

(PET-CT), ultrasound, bronchoscopy, magnetic resonance

imaging (MRI), or whole-body bone scans as necessary. For

patients with more than one month since the last recorded entry

in the case system, we conducted telephone follow-ups to assess

their condition and survival status. The last follow-up for all

patients was conducted on August 18, 2024, with a median

follow-up time of 21 months (range: 3-44 months). In our study,

DFS was defined as the interval from the date of curative lung

cancer resection to the first occurrence of recurrence, metastasis,

death from any cause, or the last follow-up. OS was defined as the

time from the initiation of treatment to death from any cause or the

last follow-up. Kaplan-Meier analysis was used to estimate DFS and

OS, and comparisons between groups were performed using the

log-rank test.

The deep learning models in this study were trained on robust

hardware, including an Intel i9-14900k CPU, 64GB of RAM, and an

NVIDIA RTX 4090 GPU. For our analysis, we employed a blend of

software tools alongside custom scripts to achieve precise and efficient

processing. Medical image segmentation and processing were

facilitated using ITK-SNAP v3.8.0. Our computational work,

spanning from modeling to data analysis, was primarily executed in

Python v3.7.12, leveraging essential libraries such as PyTorch v1.8.0 for

deep learning algorithms, scikit-learn v1.0.2 for machine learning.
Results

Patients data and clinical features

Table 1 summarizes the baseline characteristics of our study

cohort. Notably, the MPR rate was 63.4%(118/186). The cohort

predominantly consisted of male patients, representing 89.2%(166/

186), with the majority undergoing 2 to 3 cycles of neoadjuvant

therapy, which accounted for 89.8%(167/186). Squamous cell

carcinoma emerged as the leading histological type, comprising

72.6%(135/186) of cases, and most patients were classified under

clinical TNM stage III (136/186, 73.1%). Through detailed

univariate and multivariable analysis of clinical features, histology

was identified as an independent prognostic factor for MPR,

showing statistical significance with a P-value below 0.05, as

illustrated in Table 2.

The performance of the clinical model, assessed using the area

under the curve (AUC) metric, revealed distinct levels of

discrimination capability across various machine learning

algorithms and datasets. LR exhibited modest effectiveness in the

training set (AUC = 0.735), but its performance significantly declined

in the validation set (AUC = 0.484), highlighting a notable reduction

in its discriminative power. The SVM algorithm demonstrated

superior discrimination in the training set (AUC = 0.871), though

it achieved only moderate results in the validation set (AUC = 0.585).
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TABLE 1 Baseline characteristics of all cohorts.

Characteristics

Training cohort(n=105) Validation cohort(n=45) Test cohort(n=36)

Non-MPR
(n=47)

MPR
(n=58)

P value
Non-MPR
(n=14)

MPR
(n=31) P value

Non-MPR
(n=7)

MPR
(n=29) P value

Age 0.642 0.421 1.0

≥60 15(31.91) 15(25.86) 7(50.00) 10(32.26) 2(28.57) 9(31.03)

<60 32(68.09) 43(74.14) 7(50.00) 21(67.74) 5(71.43) 20(68.97)

Gender 0.099 0.547 0.838

Female 8(17.02) 3(5.17) 1(7.14) 6(19.35) 1(14.29) 1(3.45)

Male 39(82.98) 55(94.83) 13(92.86) 25(80.65) 6(85.71) 28(96.55)

Smoking status 0.339 0.948 1.0

No 18(38.30) 16(27.59) 5(35.71) 13(41.94) 1(14.29) 4(13.79)

Yes 29(61.70) 42(72.41) 9(64.29) 18(58.06) 6(85.71) 25(86.21)

Alcohol status 0.119 1.0 1.0

No 36(76.60) 35(60.34) 10(71.43) 22(70.97) 4(57.14) 19(65.52)

Yes 11(23.40) 23(39.66) 4(28.57) 9(29.03) 3(42.86) 10(34.48)

Histology 0.004 0.549 0.049

Adenocarcinoma 24(51.06) 13(22.41) 3(21.43) 3(9.68) 4(57.14) 4(13.79)

SCC 23(48.94) 45(77.59) 11(78.57) 28(90.32) 3(42.86) 25(86.21)

Surgical approach 0.383 1.0 0.808

Thoracotomy 30(63.83) 31(53.45) 8(57.14) 18(58.06) 1(14.29) 8(27.59)

VATS 17(36.17) 27(46.55) 6(42.86) 13(41.94) 6(85.71) 21(72.41)

Neoadjuvant therapy cycle 0.583 0.053 0.634

1 1(2.13) 0 1(7.14) 0 1(14.29) 1(3.45)

2 24(51.06) 35(60.34) 5(35.71) 20(64.52) 3(42.86) 12(41.38)

3 17(36.17) 18(31.03) 8(57.14) 8(25.81) 3(42.86) 14(48.28)

4 5(10.64) 5(8.62) 0 3(9.68) 0 2(6.90)

Clinical T stage 0.839 0.819 0.591

1 3(6.38) 2(3.45) 2(14.29) 2(6.45) 2(28.57) 5(17.24)

2 22(46.81) 26(44.83) 5(35.71) 12(38.71) 2(28.57) 16(55.17)

3 11(23.40) 17(29.31) 4(28.57) 8(25.81) 2(28.57) 4(13.79)

4 11(23.40) 13(22.41) 3(21.43) 9(29.03) 1(14.29) 4(13.79)

Clinical N stage 0.277 0.19 0.447

0 10(21.28) 9(15.52) 2(14.29) 13(41.94) 0 5(17.24)

1 9(19.15) 19(32.76) 4(28.57) 6(19.35) 2(28.57) 9(31.03)

2 28(59.57) 30(51.72) 8(57.14) 12(38.71) 5(71.43) 15(51.72)

Clinical TNM stage 0.13 0.571 0.285

I 2(4.26) 1(1.72) 0 1(3.23) 0 0

II 7(14.89) 18(31.03) 3(21.43) 10(32.26) 0 8(27.59)

III 38(80.85) 39(67.24) 11(78.57) 20(64.52) 7(100.00) 21(72.41)

Surgical procedure 0.242 0.445 0.087

(Continued)
F
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TABLE 1 Continued

Characteristics

Training cohort(n=105) Validation cohort(n=45) Test cohort(n=36)

Non-MPR
(n=47)

MPR
(n=58)

P value
Non-MPR
(n=14)

MPR
(n=31) P value

Non-MPR
(n=7)

MPR
(n=29) P value

Bilobectomy 6(12.77) 5(8.62) 3(21.43) 3(9.68) 0 3(10.34)

Lobectomy 36(76.60) 51(87.93) 10(71.43) 27(87.10) 6(85.71) 26(89.66)

Pneumonectomy 5(10.64) 2(3.45) 1(7.14) 1(3.23) 1(14.29) 0
F
rontiers in Immunology
 07
 fro
MPR, major pathologic response; Non-MPR, non-major pathologic response; SCC, Squamous cell carcinoma; VATS, video-assisted thoracic surgery.
TABLE 2 Univariable and multivariable analysis for predicting major pathological response in non-small cell lung cancer after
neoadjuvant chemoimmunotherapy.

Variables
Univariate Analysis Multivariate Analysis

OR(95% CI) P value OR(95% CI) P value

Age (<60) 1.255 (0.661, 2.380) 0.487

Smoking status (No) 1.455 (0.766, 2.760) 0.252

Alcohol status (No) 1.485 (0.769, 2.868) 0.239

Gender (Female) 1.912 (0.752, 4.862) 0.173

Histology (Adenocarcinoma) 3.784 (1.929, 7.423) <0.001 3.784(1.929,7.423) <0.001

Surgical approach (Thoracotomy) 1.378 (0.755, 2.517) 0.297

Neoadjuvant therapy cycle

1 Reference

2 6.281 (0.628, 62.780) 0.118

3 4.556 (0.450, 46.113) 0.199

4 6.000 (0.490, 73.455) 0.161

Clinical T stage

1 Reference

2 1.117 (0.369, 3.384) 0.845

3 1.024 (0.316, 3.318) 0.969

4 1.040 (0.315, 3.436) 0.949

Clinical N stage

0 Reference

1 1.007 (0.405, 2.507) 0.987

2 0.644 (0.292, 1.420) 0.276

Clinical TNM stage

I Reference

II 3.600 (0.449, 28.858) 0.228

III 1.473 (0.201, 10.770) 0.703

Surgical procedure

Bilobectomy Reference

Lobectomy 1.684 (0.656, 4.322) 0.278

Pneumonectomy 0.351 (0.070, 1.761) 0.203
OR, odds ratio; CI, confidence interval; SCC, squamous cell carcinoma; VATS, video-assisted thoracic surgery.
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Both Random Forest and ExtraTrees algorithms displayed

commendable results in the training set (AUC = 0.799 and 0.810,

respectively), yet their efficacy was moderate to modest in the

validation and test sets. XGBoost demonstrated consistent

performance with good results in both the training (AUC = 0.722)

and test sets (AUC = 0.714), but it exhibited suboptimal performance

in the validation set (AUC = 0.492). LightGBM presented moderate

performance across all datasets, with AUC scores of 0.674, 0.563, and

0.667 for the training, validation, and test sets, respectively

(Supplementary Figure 1).
Pathomics signature

Our pathology models’ ability to discern regional features was

rigorously evaluated using ROC curves at the patch level. DenseNet121,

among the models assessed, distinguished itself in the validation set,

achieving an AUC of 0.656 (95% CI: 0.651-0.661), thereby surpassing

both ResNet50 (AUC = 0.626, 95% CI: 0.621-0.631) and Inception V3

(AUC = 0.654, 95% CI: 0.649-0.660). Additionally, DenseNet121

demonstrated commendable generalization with an AUC of 0.611

(95% CI: 0.603-0.619) in the external test set. The comparative analysis

of these models is illustrated in Figures 3A–C.

To further evaluate our model’s effectiveness, we visually

inspected the amalgamation of patch-level data into WSIs.
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Among the machine learning techniques assessed, XGBoost

outperformed others, delivering the highest AUC scores in the

training and testing phases. With an AUC of 0.998 in the training

phase, XGBoost demonstrated exemplary discriminative prowess.

In the validation phase, it achieved a robust AUC of 0.818 and

maintained a strong AUC of 0.805 in the testing phase, indicating

reliable performance. XGBoost’s consistent AUC superiority reveals

its remarkable capacity for class differentiation and generalization

to unseen data (Figures 3D–F).

Gradient-weighted class activation mapping (Grad-CAM)

generates visual maps by tracing gradients in the network’s final

convolutional layer, preserving key spatial details relevant to the

classification task, details that are often lost in fully connected

layers. This technique seamlessly fits into existing neural

architectures without necessitating any model modifications or

retraining. Figure 4 demonstrates this, by providing a clear

depiction of the last convolutional layer’s contribution in the

model’s predictive response, enhancing interpretability of the

model’s decision-making. Predictive label and probability

heatmaps were obtained to assist in the evaluation. As depicted in

Figure 5, the prediction heatmap vividly showcases our pathological

model’s high accuracy when assessing regional tiles. The results

indicate that feature modeling has been notably improved following

aggregation via the BoW and PLH processes. This signifies the

efficacy of our feature aggregation methodology.
FIGURE 3

Prediction model evaluation. (A) Patch-level area under the curve (AUC) for the DenseNet121 prediction model across cohorts; (B) Patch-level AUC
for the Resnet50 prediction model; (C) Patch-level AUC for the Inception v3 prediction model; (D) whole slide image (WSI)-level AUC for the
prediction model in the training cohort; (E) WSI-level AUC for the prediction model in the validation cohort; (F) WSI-level AUC for the prediction
model in the testing cohort.
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Model fusion and performance

The nomogram, an integrative tool combining clinical and

pathomics information, is effectively illustrated in Figure 6. The

assessment of AUC scores for clinical, pathomics, and nomogram
Frontiers in Immunology 09
signatures indicates that the nomogram consistently secures

marginally higher AUC values than the pathomics signature on

its own, observed in both validation and test datasets. Notably, the

nomogram records an AUC of 0.819 in the validation group and

0.820 in the test group, reflecting an effective amalgamation of
FIGURE 5

Probability and prediction heatmap of the prediction model. This image displays the whole slide image (WSI)-level hematoxylin and eosin slide (left),
a heatmap of the prediction probabilities for each patch (middle), and the result prediction map for the WSI (right). Major pathological response
(MPR) is primarily predicted with a probability label of 1, whereas non-major pathological response (Non-MPR) is predominantly predicted with a
probability label of 0.
FIGURE 4

Use of Grad-CAM to illustrate activation in the final convolutional layer of the prediction model.
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features for refined discriminative accuracy. The pathomics

signature alone exhibits formidable discriminative strength across

all datasets, with an almost perfect AUC of 0.998 in training. The

clinical signature, however, reveals a descending trajectory in

discriminative capacity, with an AUC drop from 0.799 in training

to 0.613 in validation and further to 0.584 in testing, thereby

emphasizing the incremental benefit of pathomics feature

integration in enhancing model efficacy (Supplementary Table 1,

Figure 7A). Utilizing the DeLong test for statistical comparison, the

nomogram, which synthesizes clinical and pathomics attributes,

demonstrated augmented predictive superiority. The performance

elevation of the nomogram over the clinical-only model was

statistically significant, registering a P-value less than 0.05, hence

confirming the added value of integrating pathomics insights into

clinical predictions (Figure 7B).
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Clinical outcomes

Figures 8A, B present the DFS and OS curves for patients

treated with NICT, comparing the MPR group to the Non-MPR

group. The analysis reveals that the MPR group exhibited

significantly improved DFS and OS outcomes, with statistically

significant differences between the two cohorts.
Discussion

In this study, our objective was to develop an accurate predictive

model for MPR in NSCLC patients undergoing NICT. By

integrating machine learning analyses of clinical data, we

established a clinical signature grounded in machine learning
FIGURE 7

Assessment of model efficacy in forecasting major pathological responses to neoadjuvant chemoimmunotherapy in training, validation, and test
cohorts. (A) receiver operating characteristic curves depicting prediction accuracy of signatures; (B) DeLong test comparisons among
various signatures.
FIGURE 6

Clinical nomogram to predict major pathological response in non-small cell lung cancer patients post-neoadjuvant chemoimmunotherapy.
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principles. Moreover, we assessed the predictive value of pathomics

data on MPR outcomes. Leveraging a weakly supervised deep

learning framework trained on WSIs with multi-instance

aggregation, we achieved precise predictions of MPR at the

patient level, culminating in the establishment of a pathomics

signature. The pinnacle of our study involved merging the

derived clinical features with the pathomics signature into a

unified nomogram, crafted for extensive interpretability and

detailed examination, offering a methodology for MPR prediction

in NSCLC patients receiving NICT. This integrated approach

represents a significant fusion of clinical insights with advanced

machine learning techniques and, to our knowledge, it pioneers the

use of WSI for the first-time prediction of MPR in NSCLC patients

treated with NICT, setting a new benchmark in the field.

MPR is gaining recognition as a pivotal prognostic marker in

resectable NSCLC, particularly when considering the context of

NICT. The capability of MPR to accurately mirror the tumor’s

response to therapeutic interventions is essential for predicting

patient outcomes effectively. Research demonstrates MPR’s link to

improved long-term OS among NSCLC patients who receive

neoadjuvant chemotherapy, underscoring its significance as both

a surrogate endpoint for survival and a critical measure for

evaluating neoadjuvant therapy in clinical trials (28).

Additionally, comprehensive studies exploring the prognostic

relevance of MPR in NSCLC patients undergoing NICT have

found a strong correlation with enhanced DFS and OS,

supporting the use of MPR as a surrogate marker for survival

outcomes in the evaluation of NICT’s effectiveness (2, 4, 6, 29, 30).

Our research, in conjunction with these findings, accentuates the

crucial role of MPR in assessing the success of neoadjuvant
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treatment approaches in NSCLC, thereby validating our decision

to use MPR as a predictor of NICT’s efficacy in this clinical setting.

In the field of deep learning model development, access to large

datasets and high-quality annotations is crucial for training high-

performance models. However, the high resolution of WSI presents

significant challenges for detailed annotation. Consequently,

researchers have developed a new training method using limited

annotations, known as weak supervision (31, 32). In the realm ofWSI

classification under weak supervision, a significant portion of

research has predominantly concentrated on employing multiple

instance learning (MIL) techniques (33–36). The MIL approach

identifies the relative importance of each image patch for model

prediction by analyzing histopathological images, allowing the model

to autonomously learn to recognize morphological features of

diseases without the need for manual annotations. In this research,

we applied a weakly supervised learning framework using MIL on

pre-treatment WSIs to forecast MPR in NSCLC patients post-NICT,

achieving an AUC of 0.998 in training, and demonstrating robust

performance with AUCs of 0.818 in validation and 0.805 in testing

phases. Additionally, we enhanced our model’s interpretability in

decision-making by utilizing GradCAM localization mapping, which

facilitated the evaluation through predictive labels and probability

heatmaps. GradCAM uniquely enables target localization in models

trained using only image labels by incorporating guided

backpropagation, precisely determining pixel-level importance in

predictive areas, thus offering significant benefits for applications

like cancer subtype classification (37–39).

This study has several limitations, including a small sample size

and reliance on a retrospective cohort, which may affect the

generalizability of our findings. To validate our results and
FIGURE 8

Kaplan-Meier survival analysis of disease-free survival (DFS) (A) and overall survival (OS) (B) between major pathological response (MPR) and non-
major pathological response (Non-MPR) groups.
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strengthen the conclusions drawn, future research with a larger

sample size and a prospective design is essential. Furthermore, the

developed model focuses on pathological images and clinical

features without incorporating conventional imaging data, such as

CT scans, or molecular information like genetic and protein

expressions. Acknowledging the dynamic nature of AI models,

future iterations will aim to incorporate multidimensional patient

data to enhance the performance of model predictions.

Moving forward, our research will focus on several key areas.

First, we plan to conduct prospective studies to validate our findings

and evaluate the model’s applicability across diverse populations

and clinical settings. Additionally, we aim to develop advanced

visualization and interpretation tools to improve model

transparency and facilitate its use by clinicians in decision-

making processes. Finally, we will explore strategies for

integrating the predictive model into existing clinical workflows,

with an emphasis on feasibility, usability, and acceptance in real-

world clinical environments.
Conclusion

The utilization of weakly supervised deep learning for analyzing

WSIs provides a potent predictive tool for MPR in NSCLC patients

undergoing NICT. By enhancing treatment precision, this model

promises not only to improve patient outcomes but also to refine

therapeutic strategies. Future work will aim to incorporate extensive

multimodal data, further improving the predictive accuracy and

robustness of our models.
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